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Abstract. Some experiments occurring in sampling theory may be
described as follows:

, Consider a finite population # and a characteristic of interest
iwhich, with varying amount (value, degree, etc.), is possessed by all
;ndmduals in .#. Let 6(i) be the amount of this characteristic for an
individual i,

It is known that # belongs to some set & .of functions on .%.

Let « be a sampling plan, ie. a probability distribution on the set

f fﬁnite,sequences of elements from . If this sampling plan is used

anclfl if the characteristics of sampled individuals are determined
without error, then the outcome

x = (i1, 0G0), ..., (in, 0(n))
is obtained with probability (i, ..., i,).

. Let. &, denote the experiment obtained by observing x and
_ assume that @ is not too small. Then &, ay is at least as informative as
&,, if and only if the sampled subset ‘under «, is “stochastically
contained” in the sampled subset under «,.
Using the theory of comparison of statistical experiments.we-shall
here discuss this and other related results,

1. Iniroductlon. A theory of comparison of experiments based on
‘mathematld'al decision theory has developed during the last thirty years or so.
It has been extensively used (see [7]) in asymptotic theory. There are so far not
many apphcatlons to non-asymptotic comparison of statistical models. Some
falrly genelral results on linear normal models may be found in [11]. The
purpose of 'thlS paper is to present some simple applications for experiments
associated with sampling plans. We refer to [2], [7], [8], and [12] for -
expositions: of the theory of comparison of experiments. The mattrial covered

in Section 2 of [13] is adequate here.
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Consider a population .# which is an (and may be any) enumerable set.
Suppose also that there is a characteristic of interest which, with varying
amount (value, degree, etc.), is possessed by all individuals in .#. Let 6(i) be the
amount of this characteristic for an individual ie.#. The function § on £
defined in this way is our parameter of interest. We shall assume that it is a
priori known that 6 belongs to (and may be any element of) a set @ of functions
on ..

"~ In order to find out about # we may take a sample from .# and measure the
characteristic for each-of the individuals in the sample. An essential assumption
is now that the sampling is carried out according to a known sampling plan x,
i.e. a probability distribution on the space .#; of finite sequences of elements
from .#. Before proceeding let us agree that a probability measure on an
enumerable set is defined for all subsets. To retain the possibility of making no
observations at all we may include the “empty” sequence @ in .. If the
sampling plan « is used and if the characteristics of the sampled individuals are
measured without errors, then the outcome (iy, (i), ..., (i,, 0(i,) is obtained -
with probability «(i,, ..., i,). Thus we may let our sample space consist of all
sequences (iy, f1), ..., (in> fu), Where (iy, ..., i)€F, fi, ..., f,el) 0[F] and
where f, = f, whenever i, = i,. 6

Let P, , denote the probability distribution of the outcome when 6§ prevails
and « is used. Then the sampling plan o determines a statistical experiment

&, = (Po,: 0€0).

Let (I,, Fy), ..., (I,, F,) be the random outcome and consider the statistics
U and X, where U = {I;, ..., I,} and X is the function on the set U
determined by F. Now -

v.y-",.n if s aney n=0' ""’.B.na
Poolins f1)s o5 i f)) = {D(;(u i,) ;t(tlfrwise.f) (0(,) (i)

As is well known, (U, X) is sufficient. (Just check that conditional

_ probabilities, given (U, X), may be specified independently of 6.) It is known

(see [1]) that (U, X) actually is minimal sufficient, but we shall not use this fact
here. The important thing is that the reduction by sufficiency leads to another
equivalent experiment & = (Pyz: 0€®) which may be described as follows.

" " Let % be the class of all finite subsets of .#. If ue # and « is a sampling plan

on .#, then & is the probability distribution on % induced from x by the set-
valued map (iy, ..., i) = {i;, ..., i,}. Thus & is the probability distribution of
the sampled subset of .#.

We may then let the sample space ¥ of &; consist of all pairs (1, x), where
ue# and x = 0|u for some 8e®. If « is used, then the probability Pyz((#, X))
of the outcome (u, x) is &(u) or 0 as' x = 0|u or x # 0|u, respectively.

It follows that the structure of experiments &, may be identified with
a structure of probability measures on the set of finite subsets of the popula-
tion .#.




Statistical experiments

Note that the set of experiments &,, and hence the set of experiments &, is
closed under products. More precisely, &, x & ~ &,, where

ykys kay ooy k) = a(@)Bky, ..., k)+ak)Bka,y oo k)+ ... +

+Ci(k1, RS kr—l)ﬁ(kr)_{'a(kl, R | k,.)ﬁ(@), (kla LR ] kr)Ejs,.
so that

T) = Y {a(uy) B(uy): uyVu, = u} uedl.

Some notation and other terms which will be used in the sequel:
SRR # — a population.
e N = # 4. :
T ‘#, — the set of finite sequences of elements from .#.
% — the class of finite subsets of .#. -
# A — the number of elements in 4 or co as A is finite or mﬁmte

o, f, ... — probability distributions on .#,.
‘ o — the probablhty measure on % induced from o by the set-valued maps
i (ll,... {11,.. }

a— the probability distribution on mtegers induced from o by the map
(ils RS n) - # {lls LEAE] n}

(zy5 ---» z,) — an ordered n-tuple.
{z1,..., 2,y — the set consnstlng of all elements z such that z = z, or
z =2, 00 ...0r z = z,

u(x) = p({x})if p is a measure and {x} is the one-pomt set containing x.

llull — total variation of pu.

‘& > % the experiment & is at least as informative as the experiment &

& ~ F. & and & are equally informative.
o(€, #) — the deficiency of & with respect to #. If & = (P,: 6€©) and

F = (Qy: 0€0), then 6(&, F) is [7] the smallest number of the form
supHPgM Qll, where M is a Markov operator from the band generated by

the Py’s to the band generated by the Qp’s.
A€, F) = 6(6, F) v o(F, 6).
Isotonic = monotonically increasing: A map ¢ from a partially ordered set

(x, <)toa partially ordered set is called monotonically increasing (decreasing) if
©(x;) < @(x;) whenever x; < x; (x; > x,).

2. Comparability of experiments &,. In order to simplify the notation we
write “6 > F” instead of “& is at least as informative as #”. If & > % and
F > &, then we say that & and & are eguivalent and write & ~ #.

- Among several natural (and fortunately equivalent) ways of introducing the
notation of comparison we can use the randomization (Markov kernel,
transition, etc.) criterion of Le Cam, which states roughly that & > % if and
only if % may be obtained from & by a randomization.
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Applying this to the discrete experiments &, ~ &; and & ~ & we find
that &, > &, if and only if
M Py, y) = ¥ M(0, DI, )P, %), (@, e 7T,

‘ (4,x)
for numbers M((v, y)I(u, x)) = 0, (u, x), (v, y)e ¥, such that
Y M(@, ), 0) =1, (4, x)e 7
v,y

Usmg ‘the definitions of the measures P, we may rewrite (1) as
. '(2) _ ' (v) ZM((I‘J le)l(u Glu))oz(u), ve¥,0eO.

“Hence~
(3) 1=3[> M((u,Blv)l(u,()]u))]q?(u), 0eO.
It follows that

Y M((v, 0]0)l(u, Olw)) = 1 for &(u) > O.

The following condition will be useful:

(C) There is a 8° in @ with the property that to each i e .# there corresponds
at least one 0 in @ such that 6(j) = 0°()) or 0(j) # 6°() asj # iorj = i,
respectively.

Let 6° be as in (C). Assume &(u° > 0 and put x° = #°%u° Put ©°
= {0: 6e® and 0|u° = x°}. Then 8°eO°. Consider so a pair (v, 6), where.
ved and 0e@°. If M((v, 0|v)|(u°, x%) > O, then, by (3), (v, 0|v) is necessarily
of the form (v, 8°)v), ie. 0lv = 0°v. It follows that

) M(@o, Blv)l(u“, x°))‘< M((v, 8°])|(u®, x°)),_ | ve¥.

Hence, since both sides add up to 1 in », the equality holds in (4) for each
ve%. Consider now a particular v°€ % such that M ((v°, 8°/v°)|(u°, x%) > 0.
Then, by (4) with < replaced by =, o
_ M((v°, 01v9)|(u°, x°) > 0 for each e @°.

It follows from (3) that 0}v° = 6°)v°, 0eO°. If v° & u° then we
may choose an iev®—u® By assumption there is a 8&©° such that 6(i)
# 0°(i) contradicting 6|v° = 6°)v°. It follows that » < u whenever

M((v, 0°|v)|(u,0° u))@(u) > 0. Define now for each pair (u v)e %* a number
r (v|u) by

M((v, 0°0)|(u, 0°|w)&(w) if &) > O,
F(v|lu) =<0 | if v # u and a(u) = 0,
U ' if v =u and @(u) = 0.
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Then :
Y I—"(vlu) =Y Twlu =1 uea.

vEu

Substituting # = 6° in (2) we find
B = Z T (o|wa(u).
Define ﬁnaIIy a joint dlstrlbutlon @ on %% by
‘ 2, v) = T(olwaw.

Then- g has margmals % and B and g({(u,v): u 2 v}) = 1.

The last established result may be recognized as one of several usual and
equivalent ways of expressing the fact that & is stochastically larger than f w1th
‘respect to the inclusion ordering < on %.

Suppose now, conversely, that we have been ‘able to construct a joint
distribution g with this property. Specify the conditional distribution on I of
obtaining a “last” set v under the assumption that the “first” is u such that
Y{T'wu:v<cu} =1 for all ue#. (If &(u) > 0, then this holds by .
. definition)) Define a Markov kernel M from ¥ to ¥ by M{(v, y)l(u, x))
= I'(v|u) whenever v < uand y = x|v.(Ifv £ uory # x|v, then necessarily
M ((v, ¥)|(u, x)) = 0.) It is then easily checked that M satisfies (2) so that & 1s.
obtained from &; by the randomization M.

We collect ‘this as well as some closely related statements in

THeOREM 1 (comparability criterions). Suppose @ satisfies condition (C).
Then the following four condmons are equivalent:

(i) &, = 65.

(i) zE’a 2> &;.

(ii) There is a joint distribution eonpairs(I, J) e f 2 such that I is distributed
as o, J is distributed as B, and o({I} 2 {J}) = _

(i) There is a joint distribution @ on pairs (U V)eU? such that U is
distributed as &, V is distributed as B, and eU=2V)=1.~

Remark 1. Condition (C) is only needed to prove that (i)-implies (ii). The
imphcatlons (i) < (i) <= (ii) <> (ii) hold even if @ does not satisfy (C). This
follows from the theorem as stated, by enlarging & or directly from an
inspection of its proof.

Remark 2. From well-known results (see Remark 6) on orderings of
probability measures on partially ordered sets it follows that (ii), and hence (ii),
may be expressed as follows: -

(ii') E,h(J) > Ezh(J) for each bounded function h such that

h(y, ... 'i,,,) < hiys ... jn)  whenever {iy, ..., in} S {1, ..., ju}-
(it') a(%) B() for any mcreasmg class # < «. ‘
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Here a subclass # of % is called increasing if ue # whenever ve # for
some v < u. Trivially, # is increasing if and only if 5 is of the form

= Q‘{u:uzwv}

for some sequence wy, w,, ... in %.

Completion of the proof of Theorem 1. The equivalence (i) <> (i)
follows from the sufficiency and we. have seen above that (i) < (ii). The
implication (i) = (ii) is trivial, so it remains only to show that (ii) = (ii).
Suppose then that (ii) is satisfied. Let a(-|{I}) and B(-|{J}) be the conditional
distributions of I given {I} and given {J}, respectively. Construct a joint
distribution g for I and J such that the conditional distribution of (I, J) given
(U, V) has marginals a(:|U) and B(|V). Then g SatISﬁCS (id).

A “cumulative distribution” function @; on % defined by @;(w) =
=) {a@(u): u = w} is associated with each sampling plan «. It is easily seen
that @; determines &. ' '

COROLLARY 1. Suppose @ satisfies (C). Then the following three conditions are
equivalent :

(i) & ~ 8. (i) @ = B. (iii) ¢z = P5.

Proof. By Remark 2, #; = &7 when &, ~ &;.

Ordering of sampling plans according to the “distribution functions” &;
corresponds to ordering by affinities or, which is equivalent in this case, to
ordering by Hellinger transforms. To see this, consider functions ', ..., 8" in
©® and positive numbers ¢y, ..., t, with sum 1. Then

o [dPy ...dPy = [dPy ... dPy = &;(w),
where w = {i: 0'(i)) = ... = 6"(i)}. If O satisfies condition (C), then any class
~{u: u = w}, where we, is of this form. However, it is not difficult to
construct examples of non-comparable sampling plans o and f such that
&;: < P5.

If cg’, = &, then &, is more informative than &y for any decision problems
and, in particular, for all testlng problems. If @ is not too small, then it suffices
to consider testing problems by

PROPOSITION 1. Suppose © > n”, where # n = 2. Then &, > &, if and only
if €, is at least as informative as &y for testing problems. o

Proof. Suppose that @ > n”, where # n = 2, and that &, is at least as
informative as &, for testing problems. Choose a fen” and sets v', ..., v in %.
Let @, consist of all 0 @ such that §[v® # 8|v*,v = 1, ..., r. Let & and &5

“be realized by observing (U, X) and (V, Y), respectively. Define the test @
= &(V, Y) by putting § = 1 if there is a ve{l, ..., 7} such that ¥ 2 v" and
Y|v” = 8]v", and by putting $ = 0 otherwise. Then E,3(V, Y) = 0, 0e@,.
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By assumption there is a test ¢ = @(U, X) such that E;o = Eg. In
particular,

Y o, Olwa() =0 if 66,.

Suppose ue is such that u P o', v=1,...,r. Then, by assumption,
there is a 8¢ @, such that 9|u = O|u. Hence (p(u Hlu)a(u) = 0 in this case.
Consequently,

Zlac(u). u2vtor...oru2v} = Yo, dluaw = Eego = E,,(p
= Y3, 0w =Y {B®: v 2v* or ... or v 2 v}

Hence a(#) = B(#) for any increasing class # in (%, <). The
proposition follows now from Theorem 1 and Remark 1.

If . is finite, then a sampling plan x will be called (population) symmetric if
%(0(iy)s...-» @(iy) = aliy, ..., i,) for each sequence (i, ..., i,) in .#, and each
permutation g of ,#. It is easily seen that &(u) depends on u only through # u
when « is symmetric. Conversely, any probability distribution z on % such that

n(u) depends on u via # u is of the form = = & for a symmetric sampling plan
2 without replacement.

For any sampling plan  let & be the probability distribution of the number
of different elements in the sample sequence (set) when the sample sequence
© (set) is distributed according to x (¥). Then

I(n) = Z{a‘t(u): #u=mnp =3 {al, . im: #{i1s--s im} = n}.
If  is symmetric, then & is determined by & as follows:
-1
() = <if) A(# u).

Clearly, any probability distribution on {0, 1, ..., N} is of the form ¥ for a
unique symmetric plan a without replacement. If both o and f are symmetric
sampling plans, then the product experiment &, X é”,, is equ1valent to &,, where
the symmetric sampling plan y satisfies

= '\ nlm—ri+n—r;)_ -1 N\!
v(n)(n) = Y e T () B’(m(rz) :
where the summation is over all ordered pairs (ry, rz)‘ of integers in
{0,1, ..., n} such that r,+r, > n.

Note also as is well known, that any symmetric sampling plan xis a
- mixture of simple random sampling plans without replacement. More precisely,

N
ga_“_’ Z i(n)ggny

n=0
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where ¢,(i1, ..., i) = [N(N=1)...(N—n+1)]"! when i,, ..., i, are distinct,
while ¢,(i;, ..., i,) = 0 whenever m # n. It follows then, since

oo S &4y S o S &,

that &, > &; whenever o and f are symmetric sampling plans such that & is
stochastically greater than B. Suppose conversely that & is Stochastically
greater than B. Then there is a joint distribution g on {0, 1, ..., N}? with
marginals & and B and such that g({(m n: m3zn}) = 1 Let us put

é(m,
&(m )
If &(m) = 0, then we may put I'(n|m) = 1 or I'(njm) = 0 as n = m or
n # m; respectively.
Define a kernel I' from % to % by

T(nim) = if &(m) > 0.

-1
F(vlu) =(::) F(#ol#uw ifvcu

Put F'(v|lu) = 0 if v £ u. Let veF and put n = # v. Then

o _ N —m\ /m\-1 -1
g romsw = ¥ (o_")(") " reimaom())

m=n \M—1

N—1 -1
=(IZ) Y. I'(n|m)&(m) = (Z) B(n) = B(v).

This, together with Theorem 1, proves

. THEOREM 2. Let O satisfy condition (C) and let o and B be symmetric sampling
plans. Then &, > &4 if and only if & is stochastically greater than B.

Remark 3. Condition (C) is, by the proof above, not needed for the “if”

part of the statement.

3. Random replacement sampling plans. Define (not necessarily symmetric)
sampling plans a,,,,, = a,, where pis a probability distribution on .# such that
p(i) > Ofor all ie.#, n is a positive integer, and = is a probability distribution
on {0, 1}"! defined as follows:

Choose a sequence ¢, ..., &, of 0s and 1’s according to n. Then draw
individuals I, ..., I, one after another so that

(i) an individual which is drawn at the m-th draw (where m < n) is
replaced or not according as ¢, = 1 or ¢, = 0;

(i) I, is drawn from # so that Pr(I; =.i,) = p(i,), i;€F;

(i) if I, ..., I, have been drawn, then stop whenever m = norif m < n
and each element of # has been drawn without being replaced ; otherwise,

I+, is drawn from the remaining part A of the population so that
- Pr(Imsy = im+1) = P(im+1)/P(A), ims1€A.
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Using Theorem 1 we get the following intuitively reasonable sufficient
condition for comparability:

ProrosITION 2. Let p and n be fixed. Then &, < &, , whenever m is
stochastically greater (for the pointwise ordering on {O 1}~ 1) than '

Remark 4. Let n = 3. It is then easily seen that T, is stochastlcally
greater than 7, s, , When N = 2. Thus the converse of the above statement is not
true even if we restrict attention to independent and uniformly distributed
drawings.. : o

Remark 5. Suppose .that N = # . < oo and that p is the uniform
distribution on .#. Then, by Theorem 2 and Proposition 2,

E, h(# {1y, .5 LY = B h(# (I, ..., 1))

whenever = is stochastlcally greater than n' and h is monotomcally increasing.
If, in addition, the drawings are independent (ie. # and n’ are product
measures), then this proves a very particular case of a conjecture by Karlin [4].
A discussion of the relationship of the problems and results in [4] to the theory
of comparison of experiments may be found in [14].

- Proof. Note first that a,(if,..., i) = Exs @iy, ..., i), where & is
distributed according to n and J, is the one-point distribution in &. Hence
&y (u) = E&, (u), ue%. Suppose now that we know that &; is “stochastically
contained” in &;, whenever ¢ > ¢'. (The terminology is consistent with the
following convention: Let P and Q be probability distributions on ¥ and let R
be a relation on yx. Then P is stochastically in relation R to Q if
Pr((Xp, Xg)eR) = 1 for random variables X, and X, with distributions P
and Q, respectively) Let h be an isotonic function on (%, <). Then
Y. h(u) s, (u) is monotonically decreasing in £. Hence

Y h@a ) =3 Y h(wa, Wn(e) < Z Z h(u)os (u)n’ (0 = E h(u) o, (u)
It follows that &, is stochastically contained in &, . Therefore, it suffices to

prove that &, is stochastically contained in &,;, when ¢ > ¢". We shall show this
by proving that the sampling plans a,, se{O 1}*~1, may all be imbedded

within a - single stochastic framework. This framework will consist of

independent .#-valued random variables V, , (p = 1,2,...;v =1,2,...,n)
such that each V,, has distribution p. Before proceeding, for each m-tuple
(iys ..., i) with m < n and for each sequence ¢,, ..., &, of 0's and 1's we put

Ay, ooeyims 815 ooy &) = I —{i,: v < m and ¢, = 0}.

Thus A(iy, ..., im> €15 ..., &m) are precisely the elements left in ¥ after
iy, ..., iy have been drawn and the replacement policy (s, ..., &,) has been
used.
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For given ¢ we define recursively random variables Ry, ..., R, as follows:

0] R, =1. .

(i) If Ry, ..., R, are given, where m < nand R,, < oc, then R,,,, is the
smallest 1nteger 1 = 1 such that

Vu,m+1eA(V1.R1,..., Vm,R,;,,el,...,em) as A(VI.RI,...! MR 81,08, ) # (Z)

Put R,., = x otherwise.

The quantities R, I,,, and v depend on ¢. Use the notation Ry, I,,, and %
when ¢ is replaced by &' Suppose now that ¢ > ¢'. Then for each m < n we
have: :

(a) Rm’ 2 Rm' ) - -

) If Iy, ..., I, are defined, then I, ..., I, are also defined and

Ay, ooy Iy €1y nees &) S Ay, oeey Digy 815 onns Epy).
) If I, ..., I,, are defined, then I, ..., I, are also defined and
{,,... 1, <{Iy, ..., I}.

. Proofs of(a), (b), and (c). The statements are trivial if m = 1. The general
case follows by induction on mi. Suppose (a), (b), and (c) hold with m replaced
by m—1, where m > 2. .

Put A, = A(,, ..., I;;€,...,8) and A; = A(I}, ..., I}, &}, ..., &). By
the induction hypothe51s Apm-1 S A,,,_1 whenever R,, < 2. Suppose then
that R,, < . Then V,,, (1 = 1, 2,...) have already reached A,_; when
A,,_, is reached. This proves (a). :

Now A4,, = A,,_,n{l,,: &, = 0F and 4,, = A, N {I,: &, = 0}. This
shows that A4,, = A,, whenever ¢,, = 1. If¢,, = 0, then ¢, = 0 since ¢’- < ¢.
The only case which then needs particular attention is A4,,_;31,,# I,,. This,
however, is impossible since R, > R,,. Hence (b) is. established.

It remains to show that I,e{I, ..., I,,}. Assuming I, # I, we see, as
above, that I, ¢ A,,_,. This, however, 1mp11es that I,, has been drawn and not
replaced in the sequence Iy, ..., I, . Hence

Lne{ly, ... Iu_y) € {14, .., 1)

This proves (c).
It is now easily seen.that (I,, ..., I,) is distributed accordlng to x4 . (Just
consider the conditional probability - of obtaining the sequence iy, ..., in

(m < v) under the assumption that the sequence iy, ..., in—, has been

obtained.) Our claims concerning the sampling plans «, follow now from (c)
and Theorem 1.

4. Deficiencies and distances. Let us proceed to the slightly more difficult -
problem on deficiencies between experiments &,. Thus we shall try to find out
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how much do we lose (in risk say) under the least favourable conditions for -
comparison by basing our decisions on &, instead of on &;. Following Le Cam
[6] we shall limit ourselves to decision problems with bounded loss functions.
Clearly,

|1 Poz— Pogll = X |Pog(u, 8]u)~Poz(u, 0)w)| = ||lz— B,

where ||Z— B|| may be replaced by ||&— Bl when x and f are symmetric. It
follows that 8(&;, &) < J@— Bll in general and 8(&,, &) < |Z—pl| in the
symmetric case. However, we shall see that these upper bounds may be very
bad. If, for example, & and B are mutually singular, then ||x— B|| = ||Z— Bl
= 2, while the deficiencies 4 (&, , &;) and 6(&,, &,) may both be, say, Jess than
10~ 100
 In order to get lower bounds for deficiencies we now consider the problem
of estimating the restrictions (8|wy, ..., 8|w,) of 0 to given non-empty subsets
We,...,w, of #. If our proposals for these restrictions are 1,,...,1,,
respectively, then we put the loss equal to 0 or 1 according to whether at least
one of the restrictions has been correctly estimated or not. Let &; be realized by
(U, X), where Ue# is distributed according to ¥ while X = 6]U when 0
prevails. Choose a 0°c® ~and define an estimator ¢ = (¢;,..., ¢) by
0, (U, X) = X|w,org,(U, X) = 6°w,accordingas U =2 w,or U 3 w,. The
risk at 6€@ is then ) {x(w): u 2 wy, ..., u Pw,} or O for 8°lw, # 0w, or
°lw, = 0|w, (v = 1, ..., r), respectively. »
Assuming that there is a € @ such that 6(i) # 0°(i) for all i, we see that
the maximum risk is :

=1-Y{au): u 2w, or ...or u 2w,

Suppose now that there is a decision rule with smaller maximum risk.
Restrict, for the moment, € to some finite subset @ of @. If Ay is the least
favourable prior distribution on @, then any Bayes solution for 4, is minimax.
Thus we may assume that there is a non-randomized decision rule g with risk
less than C for all f & . Let 9, consist of all sets ue# which do not contain
any set w, and put 2, = #—2,. The I'lSk at 6 may then be decomposed
as ) +22, where

Y =Y {Ew: 8, 0lu) # Olw,; v =1,...,r,uc%}.

Our assumptlon implies that Z <C = Z{a(u) ue®,} for all 6eé.
Hence for all 9 ® there is a ue 9, such that g, (u, 8]u) = 8|w, for some v. If
ueZ,, then there are points i,,, ..., i,, such that i, ,ew,—u, v =1, ..., 7.
For each pair (u, x) we put ¢¥(u, x) = g,(u, x)(i,,). Then

5 = U{B,,: ue2,,ve{l, ..., r}},
where 6,, = {0: 08, g*(u, 0lu) = 0G,,)}.
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It follows that there are a finite subset {iy, ..., i} of (w; U...uUw,)—u and
functions f; , ..., f; on @ such that '

-~

o,,
1

6 =
where 6, = {0: 6(i,) = £, (0)} and each f; depends on 6e@ via O|w,.
Without loss of generality we may assume that i,, ..., i, are distinct.

.. There are several conditions which we may impose on 9 in order to ensure
he impossibility of this. Suppose, for example, that # & = N < o, @eq®,
where # n = k > N. Then the construction above implies the contradiction:

N s

N1 < kN = #6 < Y #6, <mk¥ 1 < NKV-1,
. v=1
Similarly for # 4 = oo and @ =2 5y, where ##, = 0. In that case &
may be chosen as follows: Choose 0°en? and let n be some subset of n,
containing k > # {w, U...Uw,} elements. Then the above arguments lead to
the following contradlctlon:

# {w, U uw k™l < km = #6 < S #6, < mk!
v=1

< #{w v uw kTl

We have shown altogether that C is the minimax risk whenever @ 2 »”,
where # n =2 1+ # 4. Hence, since the loss function is non-negative and
bounded by 1, we have :

_%5(&‘” (g,ﬂ) = %6(255 gﬁ) = ﬁ('}f)_a(%):

where # = {u: ue% and u 2 w, for some i}. As any increasing class of sets is
a limit of such families, we infer that

5(6ay &y) = (&, &p) > 2 sup [B(H) = a ()],

where the supremum is over all increasing classes in (%, <). Using a result of
Strassen [10] we find the following criterions for deficiency:

THEOREM 3. Suppose O 2n%, where #n = 1+ #F. Let a and B be "

~ sampling plans and let e 2 0. Then the following conditions are all equlvalent

(1) 6(&,, &p) = 8(&; ,6p < .
(i) B(H)—a(#) < 8/2 for any increasing class # of sets in (fll
(iii) fhdB—[hdax < 27 'e||h|| for any isotonic function h on (%, =
(iv) There is a joint distribution @ on U* with marginals & and B such that
o({(u, v): u 2 v}) = 1—-¢/2.

Remark 6. The equivalence of conditions (ii), (iii) and (iv); and the fact that
these conditions imply (i) do not require any condition on @. It should be
apparent from [10] and the proof below that these equivalences hold if (%, <
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-is replaced by quite general partially ordered sets. For ¢ = 0 this has been
"noted by several authors.

Proof. If (ii) holds, then (iii) follows from
i

Thd(F~8) = [ (B~ >

and from noting that [k > ¢] is an increasing class of sets. Applymg (iii) to
indicator functions we obtam (ii). Thus (i) < (iii).
By Theorem-11 in [10], (iv) is equivalent to the condition -

B(#) < @({u: u 2 v for some ve%"})+a/2

for each subclass s# of #. Clearly, nothing is lost by restricting attention to
isotonic subclasses of (#, <), and then this is merely a restatement of (ii).
Suppose that g is as in (iv). Put I'(v|u) = @(u, v)/&(u) when &(u) > 0. Put
T(vlu) = Lrand I'(v|lu) = Oasv = uand v # u, respectively, when &(u) = 0.
Define a function 4 from % to [0, 1] by

=Y {F(wlu: v < u}.

. Extend ¥ = {(u, x): ue¥, x = 60)u for some O} to a set § by joining
a point { not belonging to ¥. Finally, define a Markov kernel M from 7 to ¥
by M((v, y)l(u, x)) = T'(v|u) when (u, x)e ¥, v < u, and y = x|v. Then,
necessarily, M ({|(u, x)) = 1—A(u). We find successively

I1Pog—Poz M| = X [B0)= X M((w. 010)iw. O1)a(w] + T M (CI(u, Blui) )
—Zlﬁ(v) Z Tl +X (1= A(u))oc(u)

= 25 (3, 0 u % 0} <

Thus (iv) implies (i) without any assumption on &. _

. The proof is now completed by noting that, under the stated condxtlon on
©, the lower bound established immediately before the formulation of this
theorem yields the implication (i) = (ii):

If « and B are symmetric, then, as we might expect, comparison may be
expressed in terms of & and f.

CoROLLARY 2. Let a and f§ be symmetrzc sampling plans and put N = # .
Then conditions (ii), (iii), and (iv) of Theorem 3 are, without any assumption on @
equivalent to each of the following conditions:

(ii) B{m, N]—&[m,w] < &2, m=0,1,..., N.

- (iii') {hdB—[hdZ < 27 '¢||hl| for any isotonic non-negative function h on
{0,1,..., N}. " I

(iv') There is a joint distribution § on {0, 1, ..., N}? with marginals & and B
such thar g({ (m n): m = n}) = 1—¢/2. :
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Proof. The equivalence of (ii'), (iii’) and (iv’) follows by Remark 6. Suppose
these conditions are satisfied. Let h be a non-negative isotonic function on
(%, <). Then
E;h(U) = Ezgg(# U) and Ezh(U) = Ezg(# U),
where o

gim) = E(h(U)| # U = m) = (J,Z) Y {h@): #u = m).

Clearly, |lgl| <.||h| and g is isotonic since

gim+1) = (m+1) Y {h(w: #u = m+1}

>(N)ml ¥ L (h(v): v S u, #v =m
g m+1 u:Fu=m+1 m+1 t ) - ’ :
= ( N )_IJ—(N—m)Z{h(U): #v =m} = g(m)
m+1/) m+1 ’
m=0,1,..., N—1.
Hence, by (iii’),

Egh(U)—Ezh(U) = Bgg(# U)=Ezg(# U) < Sligll < 3|1l

Thus condition (iii) of Theorem 3 is established. Conversely, suppose (iii) of
Theorem 3 (and hence (ii)) holds. Let m < N and put # = {u: #u > m).
Then J is isotonic. Hence Blm, N]—&[m, N] B(#)—a(#) < ¢2. Thus
(it") holds.

Example 1 (approximation by fixed size sampling plans). Let o be a
symmetric sampling plan and let w, be the sampling plan consisting of k '
_ elements drawn “randomly” without replacement, i.e.

' , -1
w () = (f) if #u=4k
Then 6(&,, &,,) = 2&[0, k—1] while 0(8y,, 6,) = 2%[k+1, NJ, so that
0(8,, 8, )+5(é°wk, &) = 2|la—w,||. Thus, if

N -
a(r) = (r)p'(l—pN", r=0,1,...,N,

where pe]0, 1[, then 6(8y,, &) — 0 as p — 0 although |ja—w,| — 2.

Note also that the best approximation, with respect to 4, to &, by a fixed
size sampling plan ., 1s obtained by letting k be a median in &. Thus, in
general, it is not expected sample size but the median sample size which yields
the best approximation.
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Example 2 (inequalities for symmetric sampling plans). For each finite
subset u of # define a vector { (u) = ({;(4), ..., (n(u)eRN by {i(w) = [#u]™"

‘asieuand {;(u) = Oasi¢u,i =1,..., N.Then ¥ (;(u)6() is the arithmetic
mean of the observed -values after repetitions iin= %the sample sequence have
been removed. If the sampling is without replacement, then % {; (u) 8() is just
the arithmetic mean n~*[0(i;))+ ... +0(i,)]. =

Consider now a. convex function ¢ on [—1, 1]". Suppose the random
sample sequence I = (I,, ..., I,) is distributed according to the symmetric
sampling plan . Let K; (ie.#) be the absolute frequency of an individual i in
the sequence (I, ..., I,). By symmetry the distribution of K; given U = {I}
does not depend on i as long as i is restricted to U. In particular,

| E(%K,-‘{I} = u) = ;—e— Y EK;Inl{I} = w) = (#u)~ U asieu.

Jeu

Writing K = (K4, ..., Ky) we get {(U) = E[(K/n)|U]. Hence, by Jensen’s
inequality,

) . Eg(K/n) > Eo({(U)).

Consider another symmetricm Sémpling plan § and let g be a joint
distribution for the random pair U,V satisfying condition (iv) of Theo-
rem 3 with

= 2sup [B[m, N]-&[m, N]].

, ~ Then, by convexity,

E;o(®IU) = T o(l@)Pr(V = o|U)=|lgll ¥ Pr(V = 0|U)

el v U

> @(LLOPr(V = o|U, v € UYPr(V < U|U)~llol| Pr(V & UIU

Now, by symmetry, ¢ may (and shall) be chosen so that g(n(u), n(v))
= g(u, v) for any permutations = of .#. It follows that Pr(V = v|U,v € U)
depends only on the cardinalities of v and U as long as v < U. Hence

| ;C(U)Pr(V=v|_U,v§ U) = {(U)

so that
Efo((0)IU) 2 o((U)Pr(V < U| )—|I<Pll Pr(V ¢ UjU)

= o (L(U)~Pr(V & UIU) [ (L (U)+l9ll] = 0 (V) —2Pr (VE UlU) loll.
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It féllows that
(6 Ezo({(U) > Ezo({(U)—¢lloll.
Combining (5) and (6) we get

(7 Ezo(K/n) = Ezo({(U)) > E; ¢({(U))—2max (B—&)([m, N])||¢|.

In particular, for any convex function ¢ on [miné;, max6,] we obtain
i )

(8)- E,,w( Z H(Iv)) (#UZB)
e > an(ﬁg ei)—znwnmfx(éi@([m, ND).

The most left inequalities in (7) and (8) may trivially be replaced by
equalities when f is without replacement.

Formula (8) generalizes various extended versions (see [5] and [9]) of the
basic inequalities for sampling with and without replacement in [3].
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