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Abstract. Some experiments occurring in sampling theory may be 
described as follows: 

, Consider a finite population f and a characteristic of interest 
which, with varying amount (value, degree, etc.), is possessed by all 
individuals in f. Let 8(i) be the amount of this characteristic for an 
individual i. 

I t  is known that 0 belongs to some set 8 of functions on 9. 
Let a be a sampling plan, i.e. a probability distribution on the set 

of finite sequences of elements from 4. If this sampling plan is used 
~ n d  if the characteristics of sampled individuals are determined 
pi4hout, error, then the outcome 

obtained with probability a (i, , . . . , i,J. 
, ' Let grn denote the experiment obtained by observing x and 
assume that 8 is not too small. Then is at least as informative as 

if and only if the sampled subset under a, is "stochastically 
contained" in the sampled subset under a,.  

Using the theory of comparison of statistical experiments we shall 
here discuss this and other related results. 

B 

- 
I. ld&dwri&o. A theory of comparison of experiments based on 

mathemati*] decision theory has developed during the last thirty years or so. 
It has been lextensively used (see 171) in asymptotic theory. There are so far not 
many applications to non-asymptotic comparison of statistical models. Some 
fairly gene~al results on linear normal models may be found in [I l l .  The 
puipose of this paper is to present some simple applications for experiments 
associated [with sampling plans. We refer to [2], 171, [8], and [12] far 
expositions of the theory of comparison of experiments. The mdbrial covered 
in section 2 of [I31 is adequate here. 
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Consider a population .Y which is an (and may be any) enumerable set. 
Suppose also that there is a characteristic of interest which, with varying 
amount (value, degree, etc.), is possessed by all individuals in .Y. Let O { i )  be the 
amount of this characteristic for an individual i ~ 9 .  The function 8 on 9 
defined in this way is our parameter of interest. We shall assume that it is a , 

priori known that 8 belongs to (and may be any element of) a set O of functions 
on 9. 

In order to find out about fl we may take a sample from 9 and measure the 
characteristic for each of the individuals in the sample. An essential assumption 
is now that the sampling is carried out according to a known sampling plan 1, 

i.e. a probability distribution on the space 9, of finite sequences of elements 
from I. Before proceeding let us agree that a probabjljty measure on an 
enumerable set is defined for all subsets. To retain the possibility of making no 
observations at all we may include _the "empty" sequence 8 in -9,. If the 
sampling plan x is used and if the characteristics of the sampled individuals are 
measured without errors, then the ontwme (it , 0  ( i , ) ) ,  . . . , (i,, 0 (in)) is obtained 
with probability a (i, , . , . , i,,). Thus we may let our sample space consist of all 
sequences ( i ,  , f,) , . . . , ti,, f,), where (i, , . . . , i,) E 9s, fl , . . . , f, E tJ B [9] and 

8 where f, = f, whenever i, = i, . 
Let P o ,  denote the probability distribution of the outcome when tl prevails 

and a is used. Then the sampling plan ct determines a statistical experiment 
cFs = (Pe,, : 8  E 0). 

Let ( I ,  , F,), . . . , ( I , ,  F,) be the random outcome and consider the statistics 
U and X, where U = { I , ,  . .., I,} and X is the function on the set U 
determined by F. Now 

, ..., i,,) $(f ly ..., f,) = ( O ( j l ) ,  . - . , O ( i , , ) ) ,  
P ~ . a ( ( i l ,  fi), - - * ,  ( i n ,  fn)) = otherwise. 
As is well known, ( U ,  X) is sufficient. (Just check that conditional 

probabilities, given ( U ,  X), may be specified independently of 8.) It is known 
(see'[l]) that (U, X) actually is minimal sufficient, but we shall not use this fact 
here. The important thing is that the reduction by sufficiency leads to another 
equivalent experiment gi = (Po,i: 0 ~ 1 9 )  which may be described as follows. 

Let # be the class of all finite subsets of 9. If u  E 'II and x is a sampling plan 
on 9, then is the probability distribution on % induced from x by the set- 
valued map (i,, .. ., i,J + ( i ,  , . .., in ) .  Thus & is the probability distribution of 
the sampled subset of 9. 

We may then let the sample space 2 of gi consist of all pairs ( u ,  x) ,  where 
u  E @ and x = 8 [ u  for some 0  E O .  If a is used, then the probability Fe,, ((u, x)) 
of the outcome ( u , x )  is ~ ( u )  or 0 as x = 8 ( u  or x # O(u,  respectively. 

It follows that the structure of experiments 8, may be identified with 
a structure of probability measures on the set of finite subsets of the popula- 
tion 4. 



Sdotistical experiments 3 

Note that the set of experiments ge, and hence the set of experiments b,, is 
closed under products. More precisely, x ba - b,, where 

r(kl,  k,, ..., kr) = a(@)B(k,, ..., kr)+a(k1)B(k2, ..., &,I+ ... + 
+a(kl, ..., kr-AD(k,)+-a(k~, .-., kr)P(O), ( k l ,  -.., k r ) ~ ~ s ,  

so that 

Some notation and other terms which will be used in the sequel: 
9 - .a population. 
N = # l .  
j8 - the set of finite sequences of elements from I. 
4% - the class of finite subsets of $. 
# A - the number of elements in A or a as A is finite or infinite. 
a ,  8 ,  . . . - probability distributions on 9J. 
E - the probability measure on 92 induced from zt by the set-valued maps 

(iI, . . ., in) + {&, . . ,, i,,]. 
d - the probability distribution on integers induced from r by the map 

( i ,  , . .., i,J + # {il , . .., i M } .  
(z l ,  . . ., zA) - an ordered n-tuple. 
{z, , . . . , z,)  - the set consisting of a11 elements z such that z = z ,  or 

z = z2 or ... or z = z,. 
~ ( x )  = p({x)) if p is a measure and { x )  is the one-point set containing x. 
)tpII - total variation of p. 
8 2 9 : the experiment d is at least as informative as the experiment $. 
d - 9: d and P are equally informative. 
S (8 ,  F) - the deficiency of d? with respect to F. If 8 = (P, : 0 E 0) and 
9 = (Q,: 6 E O),  then 48, F) is 173 the smallest number of the form 
supllP,M-Q(/, where M is a Markov operator from the band generated by 

0 
the Po's to the band generated by the QO9s. 

A ( & ,  9) = 6 ( & ,  F) v 6 ( 9 ,  8). 

Isotonic = monotonically kcrewing : A map q from a partially ordered set 
( x ,  6) to a partially ordered set is called monotonically increasing (decreasing) if 
q ( x l )  < q(x2) whenever x, < x2 (x, 2 x,). 

2. Comparability of experiments 8,. In order to simplify the notation we 
write "8 2 9" instead of "8 is at least as informative as @". If & 2 9 and 
9 2 E, then we say that d and 9 are equivalent and write C - 9. 

Among several natural (and fortunately equivalent) ways of introducing the 
notation of comparison we can use the randomization (Markov kernel 
transition, etc.) criterion of Le Cam, which states roughly that d 2 9 if and 
only if 9 may be obtained from E by a randomization. 
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Applying this to the discrete experiments &* - 8: and gB - fP we find 
I that 3 &@ if and only if 

for numbers M ((v,  y ) [ ( u ,  x)) 2 0, (u ,  x), ( u ,  y) E 2, such that 

Using the definitions of the measures P, we may rewrite (1) as 

(21 B(v) = C ~ ( ( ~ , e l ~ ) i ( u , e l ~ ) ) a ( ~ ) ,  V E % , B E @ .  
U - - 

Hence 

13) 1 = C [ C W ( v ,  BIV)I(U, ~ J U ) ) ] E ( U ) ,  e ~ e .  
u u 

I It follows that 

~ M ( ( v , B l v ) l ( u , t J l u ) ) =  1 for $(u) > 0. 
V 

The following condition will be useful: 
(C) There is a tJO in 8 with the property that to each i ~9 there corresponds 

at least one B in Q such that 86) = @"' or 00)  # Bob] as j # i or j = i, 
respectively. 

Let 0' be as in (C). Assume 8(u0) > 0 and put xO = OO(uO. Put 8' 
= (8: O E  8 and f?(uO = xo).  Then 8' E 8'. Consider so a pair ( v ,  O), where 
V E ~  and 8 ~ 8 ~ .  If M({u ,  8(v)((u0, x0)) > 0, then, by (31, (v,  81v) is necessarily 
of the form (v ,  BOjv), i.e. O1v = 9Olv. It folfows that 

Hence, since both sides add up to 1 in v, the equality holds in (4) for each 
v  €9. Consider now a particular v0 E 9 such that M(fuO, BOJvO)((uO, xO)) > 0. 
Then, by (4) with d replaced by =, 

M((vO, 8(vo)((u0, xo)) > 0 for each 0 ~ 8 ~ .  

It follows from (3) that 91v0 = BOlvO, 6 ~ 8 ~ .  If u0 $ uO, then we 
may choose an i~vO-uO. By assumption there is a 9 ~ 8 '  such that B(i) 
# BO(i )  contradicting B{vO = OOjvO. It follows that v c u whenever 
M((v,  OO(v)j(u, OO(u))d(u) > 0. Define now for each pair fu ,  v) E %Y2 a number 
f (vlu) by 

~ ( ( ~ , B ~ l v ) j ( u , B ~ l u ) ) a ( ~ )  i f @ ( u )  > 0, 

if v # u and E(u) = 0, 

if v = u and d(u) = 0. 
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Then 

Substituting .d = 0' in (2) we find 

P ( v )  = C T(vJu)E(u). 
V 

Define finally a joint distribution g on 4Y2 by 

Q(u, v)  = F(v(u)E(u). - - 
.. - -  

Then- @ has marginal~ @ and B and g( ( (u ,  v): u 2 v}) = 1. 
The last established result may be recognized as one of several usual and 

equivalent ways of expressing the fact that B is stochastically larger than with 
respect to the inclusion ordering s on 42. 

Suppose now, conversely, that we have been able to construct a joint 
distribution @ with this property. Specify the conditional distribution on F of 
obtaining a "last" set v under the assumption that the "first" is u such that 
x { r ( v / u ) :  u z u )  = 1 for all UEQ.  (If R(u) > 0, then this holds by 
definition.) Define a Markov kernel M from f to X by M((v , y)l(u, x)) 
= F(v 1 u) whenever v 5 u and y = x 1 v .  (If v $ u or y # xi v ,  then necessarily 
M ((v, y)l(u, x)) .= 0.) It is then easily checked that M satisfies (2) so that R6 is. 
obtained from gZ by the randomization M. 1 

We collect this as well as some closely related statements in 
THEOREM 1 (comparability criterions). Suppose 8 satisfies condition (C). 

Then the following four conditions are equivalent: 
(i) 2 gB. 
6) tFz 2 Ze. 
(ii) There is a joint distribution Q on pairs ( I ,  J )  E 9: such that I is distributed 

as or, J is distributed as j3, and @ ( ( I )  2 ( J ) )  = 1 .  
(z) There is a joint distribution g on pairs ( U ,  V)E@' such that U is 

distributed as $ V is distributed as $, and @(U 2 = 1 .  
Remark 1. Condition (C) is only needed to prove that (i) impfies (ii). The 

implications (i) - (i) e (ii) - (z) hold even if 8 does not satisfy (C). This 
follows from the theorem as stated, by enlarging 0 or directly from an 
inspection of its proof. 

Remark 2. From well-known results (see Remark 6) on orderings of 
probability measures on partialiy ordered sets it follows that (a and hence (ii), 
may be expressed as follows: 

(ii') E,h(I) 2 Eb h(J) for each bounded function h such that 

(3) a(&') 2 b(2')  for any increasing class S E Q. 
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Here a subclass 2 of %! is called increasing if u E SEa whenever v E .% for 
some v G u.  Trivially, 2' is increasing if and only if X is of the form 

for some sequence w , ,  w,, . . . in q. 
Comple t ion  of t h e  proof  of Theorem I .  The equivalence (i) o ( i )  

follows from the sufficiency and we have seen above that (i) - (E). The 
implication (ii) - (E) is trivial, so it remains only to show that (z) 3 (ii). 
Suppose then that (z) is satisfied. Let o c ( . I  { I ] )  and f l ( . I  { J ) )  be the conditional 
distributions of I given {I) and given { J ) ,  respectively. Construct a joint 
distribution Q for I and J such that the conditional distribution of (I, J) given 
(O, V) has marginals a(.I U) and fl(- I V). Then Q satisfies (ii). 

A "cumulative distribution" function d$ on 4Y defined by @.(w) = 
= { ~ ( u )  : u E w )  is associated with each sampling plan a. It is easily seen 
that Ip, determines ti. 

COROLLARY 1 .  Suppose O satisfies (C). Then the fofblbwing three conditions me 
equivalent : 

(i) &= - gfi. (ii) ii = F ,  (iii) @z = QF. 
Proof.  By Remark 2, @, = @a when - 8,. 

Ordering of sampling plans according to the "distribution functions" @,- 
corresponds to ordering by affinities or, which is equivalent in this case, to 
ordering by Heliinger transforms. To see this, consider functions 01, . . ., 8' in 
0 and positive numbers t , ,  . .., t, with sum 1 .  Then 

where w = { i :  0' (i) = . . . = B r ( i ) ) .  If Q satisfies condition (C), then any class 
{u: u E w}, where w E 9 ,  is of this form. However, it is not difficult to 
construct examples of non-comparable sampling plans a and fi  such that 
Qi < @a. 

If 2 8,, then &a is more informative than tTp for any decision problems 
and, in particular, for all testing problems. If 8 is not too small, then it suffices 
to cansider testing problems by 

PROPOSITION 1. Suppose O 2 rf ,  where # q 2 2. Then gE 2 6, ifand only 
if &a is at least as informative as &, for testing problems. 

Proof,  Suppose that 8 2 q9, where # q = 2, and that &a is at least as 
informative as gfi for testing problems. Choose a B E  q9 and sets v l ,  . . . , vr in 9. 
Let O0 consist of all 8 ~ 0  such that 81vv # f;lvv, v = 1 ,  ..., r. Let E, and gF 
be realized by observing ( U ,  X) and (V, Y), respectively. Define the test @ 
= @(V, Y) by putting @ = 1 if there is a V E  { l ,  . . ., r }  such that V 2 vv and 
Yl uv = f ; l  v v ,  and by putting @ = 0 otherwise. Then E, @(V, Y) = 0, 8 E 0,. 
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By assumption there is a test cp = q(U, X) such that E,cp = E,?. In 
particular, 

1 q ( u ,  Blu)a(u) = 0 if O E O ~ .  
u 

Suppose UE% is such that u $ vv, v = 1 ,  .. ., r .  Then, by assumption, 
there is a B E  O0 such that 01 u = el u.  Hence rp(u, Blu) a (u) = 0 in this case. 
Consequently, 

C{X(U) :  u 2 v1 or ... .. - or u 2 v ' ]  2 Ccp(u,B(u)n(u) = Egq = ET@ 
1 

= ~ @ ( U , B I Y ) P ( V )  = C [ f i ( v ) :  v 2 v or ... or u 2 or). 
I 

Hence r (2) 2 P ( # )  for any increasing class X in (%, c). The 
proposition follows now from Theorem 1 and Remark 1. 

If .9 is finite, then a sampling plan r will be called (popularion) symmetric if 
r (p(i,),-. . ., @(in)) = r ( i l ,  . . ., in )  for each sequence (i,, . . ., in) in .%* and each 
permutation Q of g, It is easily seen that #(u)  depends on u only through # u 
when r is symmetric. Conversely, any probability distribution z on 6 such that 
n(u )  depends on u via # u is of the form rc = ti for a symmetric sampling plan 
x without replacement. 

For any sampling plan x let d be the probability distribution of the number 
of different elements in the sample sequence {set) when the sample sequence 
(set) is distributed according to x (8). Then 

?(n) = x { ~ i ( u ) :  # u  = n) = x { u ( i , ,  ..., i,): # { i , ,  ..., i,) = n). 

If r is symmetric, then if is determined by B as follows: 

Clearly, any probability distribution on (0, 1, . . . , N) is of the form 5 for a 
unique symmetric plan r without replacement. If both or and P are symmetric 
sampling plans, then the product experiment &fa x gc, is equivalent to by, where 
the symmetric sampling plan y satisfies 

where the summation is over all ordered pairs (r,, r,) of integers in 
(0, 1, ..., n) such that r , + r ,  2 n. 

Note also, as is well known, that any symmetric sampling plan r is a 
mixture of simple random sampling plans without replacement. More precisely, 
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where en(il , . . . , i,) = [ N ( N  - I). . . ( N -  n+ 111- when i ,  , . . . , in are distinct, 
while e,(il, .. ., i,) = 0 whenever nm # n.  It follows then, since 

that ~ 3 ' ~  2 gP whenever a and B are symmetric sampling plans such that d is 
stochasticaily greater than f l .  Suppose conversely that a' is stochastically 
greater than B. Then there is a joint distribution p on (0, 1, . .., N)' with 
marginals d and and such that G(((m,  n): m 2 n } )  = 1. Let us put 

If E(m) = 0, then we may put T l n ~ r n )  = 1 or r(nlmj = D as n = rn or 
n # m, respectively. 

Define a kernel F from @ to $2 by 

F(alu) = (:;)-l~(# .I # u) if r cu, 

I 

Put r(ulu) = 0 if v 4 u. Let ~ € 5  and put n = # u. Then 

This, together with Theorem 1, proves 
THEOREM 2. Let 8 satisfy condition (C) and let a and /3 be symmetric sampling 

plum. Then &a if and only if B is stochastically greater than p. 
Remark  3. Condition (C) is, by the proof above, not needed for the "if' 

part of the statement. 

3. Random replacement samplling plans. Define (not necessarily symmetric) 
sampling plans a,,,, = a,, where pis a probability distribution on 4 such that 
p(i) > 0 for all i E 9 ,  n is a positive integer, and n: is a probability distribution 
on (0, I)"-' defined as follows: 

Choose a sequence E, , . . ., E,- , of 0's and 1's according to n. Then draw 
individuals I, , . . . , In one after another so that 

(i) an individual which is drawn at the m-th draw (where m < n) is 
replaced or not according as E, = 1 or E, = 0; 

(ii) I ,  is drawn from 9 so that Pr(I, = i,) = p(i,), i1 €9; 
(iii) if I,, . . ., I, have been drawn, then stop whenever m = n or if m < n 

and each element of 9 has been drawn without being replaced; otherwise, 
I,,, is drawn from the remaining part A of the population so that 
f i ( I m + ~  = im+d = P(~~+I)/P(A),  j m + ~  € A .  
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Using Theorem 1 we get the following intuitively reasonable sufficient 
condition for comparability : 

PROPOSITION 2. Let p and n be fixed. Then &an < whenever R is 
stochastically greater (for the pointwise ordering on { 0 ,  I}"-') than n'. 

Remar,k 4. Let n = 3. It is then easily seen that $,, is stochastically 
greater than Zal,, when N 2 2. Thus the converse of the above statement is not 
true even if we restrict attention to independent and uniformly distributed 
drawings.. 

Remark  5.  Suppose -that N = # $ < a and that p is the uniform 
distribution on 4. Then, by Theorem 2 and Proposition 2, 

whenever a is stochastically greater than x' and h is monotonically increasing. 
If, in addition, the drawings are independent (i.e. a and a' are product 
measures), then this proves a very particular case of a conjecture by Karlin [4]. 
A discussion of the relationship of the problems and results in [4] to the theory 
of comparison of experiments may be found in [14]. 

Proof.  Note first that a,( i , ,  . . ., in )  = EadE(il ,  . . ., ill), where E is 
distributed according to 7t and 6, is the one-point distribution in E. Hence 
ixx (u) = EMSe (u), u E a. Suppose now that we know that is "stochastically 
contained in Eae, whenever E 2 E'. (The terminology is consistent with the 
following convention: Let P and Q be probability distributions on x and let R 
be a relation on X. Then P is stochastically in relation R to Q if 
Pr( (X, ,  X Q ) € R )  = 1 for random variables X, and XQ with distributions P 
and Q, respectively.) Let h be an isotonic function on (%, L). Then 
C h(u) gaE(u) is monotonically decreasing in E .  Hence 
U 

It follows that if, is stochastically contained in Bn,. Therefore, it suffices to 
prove that Bae is stochastically contained in ifaE, when E 2 E', We shall show this 
by proving that the sampling plans a%, E E { 0 ,  I ) " - ' ,  may all be imbedded 
within a single stochastic framework. This framework will consist of 
independent $-valued random variables &,, (p = 1,  2, . . .; v = 1 ,  2, .. ., n) 
such that each c,, has distribution p. Before proceeding, for each m-tuple 
( i , ,  . .., i,) with m < n and for each sequence E,, . .., E, of 0's and 1's we put 

A h ,  ..., im,cl  ,..., E,) = 9 - { i , :  v < m and E ,  = 0). 

Thus A ( & ,  ..., i,, c l ,  . .., E,) are precisely the elements left in 9 after 
i , ,  ..., i, have been drawn and the replacement policy ( E , ,  ..., E,) has been 
used. 
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For given c we define recursively random variables R ,  , . . . , R, as follows : 
(i) R ,  = 1 .  

(ii) If R, , ..., R,  are given, where m < n and R,  < x, then R, , ,  is the 
smallest integer p 2 1 such that 

~ A C Y I . A ~  ,... , K , R ~ , ~ ~ ,  ..., em ) as A ~ I , R  3 Vrn,ltm8 E m )  # 0. 
Put R,, , = x otherwise. 
The quantities R,, I,, and v depend on c .  Use the notation RL, 16, and vf  

when r is replaced- by E'. Suppose now that c 3 c'. Then for each m G n we 
have : 

(a) R,, 2 R,. - 

(bl If I ; ,  ..., I; are dejned, then I , ,  ..., I ,  are also defined anti 

(c) If I ; ,  . . ., I ;  are defined, then I , ,  . . ., I ,  are also dejneti and 

P r o  of s of (a), (b), a n d  (c). The statements are trivial if m = 1. The genera1 
case follows by induction on m'. Suppose (a), (b), and (c) hold with rn replaced 
by m-1, where m 2 2. 

Put Ak = A ( I l ,  . . . , I k  , E, , . . . , E ~ )  and A; = A ( i ;  , . . . , I ; ,  E', , . . . , 8 ; ) .  By 
the induction hypothesis, A&-,  G A , - ,  whenever Rk < x. Suppose then 
that Rk < x .  Then Vm,, (p = 1, 2, ...) have already reached A , - ,  when 
A&- ,  is reached. This proves (a). 

Now A; = A ; - ,  n ( I ; :  EL = 0)' and A, = A , - ,  n ( I , :  E ,  = OF. This 
shows that A& c A, whenever E, = 1. If E ,  = 0, then EL = 0 since E' < E .  

The only case which then needs particular attention is A; - ,3 I ,  # I ; .  This, 
however, is impossible since R; 2 R,. Hence (b) is established. 

It remains to show that I , E { J ; ,  . . ., I ; ) .  Assuming I,  # I ;  we see, as 
above, that I,$ A;- This, however, implies that I ,  has been drawn and not 
replaced in the sequence I ; ,  . . . , I ; - ,  . Hence 

I , E ( ~ ; ,  ..., I k - l j  z [ I ; ,  ..., I ;> .  

This proves (c). 
It is now easily seen that (I,, . . ., I,) is distributed according to T , ~ .  (Just 

consider the conditional probability of obtaining the sequence i , ,  ..., i, 
( m  < V) under the assumption 'that the sequence i, , . . . , i,- , has been 
obtained.) Our claims concerning the sampIing plans r ,  follow now from (c) 
and Theorem 1. 

4. Deficiencies and distances. Let us proceed to the slightly more difficult 
problem on deficiencies between experiments gE. Thus we shall try to find out 
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how much do we lose (in risk say) under the least favourable conditions for 
comparison by basing our decisions on 8, instead of on 8,. Following Le Cam 
161 we shall limit ourselves to decision problems with bounded loss functions. 
Clearly, 

where Itg- may be replaced by I~~Z-FH when r and are symmetric. It 
follows that S(d';, 8,) $ 1 1 % -  811 in general and 6 (ga,  gp) < 115-1711 in the 
symmetric case. However, we shall see that these upper bounds may be very 
bad. If, for example, 5 and B are mutually singular, then 113- 811 = llx'-fll 
= 2, while the deficiencies S(ga, &,J and Em) may both be, say,-less than 
10- 100 

In order to get lower bounds for deficiencies we now consider the problem 
of estimating the restrictions [81wl, .. ., Blw,) of 13 to given non-empty subsets 
w, , .. ., w, of $. If our proposals for these restrictions are r ,  , . . ., t,, 
respectively, then we put the loss equal to 0 or 1 according to whether at least 
one of the restrictions has been correctly estimated or not. Let (";E be realized by 
( U ,  X f ,  where WE% is distributed according to T while X = 0 J U  when 8 
prevails. Choose a 8' E O and define an estimator g = (g, , . . . , Q ~ )  by 
pY(U, X)  = X ( w , , o r ~ , , ( U ,  X) = O0Jwyaccordingas U 2 w,or Lr $ w,.The 
risk at B E @  is then E(%(u): u $ w,, ..., u $w,) or 0 for O0lwV # e J w ,  or 
O0lwv = 81 w, (V  = 1 ,  . .., r), respectively. 

Assuming that there is a B E  O such that 8 ( i )  # OO(i) for all i, we see that 
the maximum risk is 

C = 1-x{if(u): u 2 w, or ... or u 2 w,;, 
Suppose now that there is a decision rule with smaller maximum risk. 

Restrict, for the moment, B to some finite subset 6 of O .  If 1, is the least 
favourable prior distribution on 6, then any Bayes solution for 2, is minimax. 
Thus we may assume that there is a non-randomized decision rule 8 with risk 
less than C for a11 8 E 6. Let 9, consist of all sets u E % which do not contain 
any set w, and put 97, = @-93,. The risk at 8 may then be decomposed 
as El +I,, where 

c,~ = c ~ T ( u ) :  ~ J U ,  elu) # elw,,; = 1 ,  ..., p ,  U E ~ J .  

Our assumption implies that 1, < C = {a(u): u E 93,) for all B E 8. 
Hence, for all 0 E 6 there is a u E 9, such that g,, (u , 81 u) = 81 w, for some v . If 
U E ~ ' , ,  then there are points i,,, , . .., i,, such that i , , , ~w , -u ,  v = 1, ..., r. 
For each pair ( u ,  x) we put ez (u , x)  = G, (u, x) (i,,,). Then 

63 = U{G,,: U E ~ , ,  V E { ~ ,  ..., r ) ) ,  
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It follows that there are a finite subset (i, , . . ., i,) of (w, u . . . u w,)-u and 
I functions A,, . . . ,Am on 6 such that 

where 6, = (8: O ( i , )  = .f;.Y(8)) and each hy depends on 8 E & via 81 w,. 
Without loss of generality we may assume that i , ,  . . ., i, are distinct. 
. There are several conditions which we may impose on 8 in order to ensure 
the impossibility of this. Suppose, for example, that # 4 = N < x, a E qN, 
where # q = k > N. Then the construction above implies the contradiction: 

Similarly for # 4 = c~ and O 2 q?, where # q ,  = m. In that case 
may be chosen as follows: Choose O 0 ~ q F  and let q be some subset of q ,  

I 
kbntaining k > # f w, u . . . u w,) elements. Then the above arguments t a d  to 
the following contradiction: 

m 

# { ~ ~ , u . . . u w ~ } k ~ - ~  < km = # &  d #@, < mk-I 
v =  1 

< # { W ~ U . . . W W , ) ~ ~ - ' .  

We have shown altogether that C is the minimax risk whenever 8 2 f ,  
where # t] 2 1 + # 9. Hence, since the loss function is non-negative and 
bounded by 1, we have 

9(&, 8,) = +WE,  8,) 2 B ( = @ ) - - O C ( ~ ,  
where # = {u : u E $2 and u 2 wi for some i )  . As any increasing class of sets is 
a limit of such families, we infer that 

where the supremum is over all increasing classes in (4-2, G).  Using a result of 
Strassen [lo] we find the following criterions for deficiency: 

THEOREM 3. Suppose O 1 qfl, where # q 2 1 + # 9. Ler ci and B be 
sampling plans and let E 2 0. Then the following conditions are all equivalent: 

(i) 8 (ga , = 8 (g. ,  E',) < E .  

(ii) j(,rY)-@(X) ,< €12 for any increasing class -X' of sets in (#, c). 
(iii) j hdB - j hd@ 6 2- E Hh[J for any isotonic functwn h on (& , G). 
(iv) There is a joint distribution @ on @2 with marginals Z and 8 such that 

~ ( ( ( u ,  0): u 2 v ) )  3 1-&/2. 

Remark  6. The equivalence of conditions (ii), (iii) and (iv), and the fact that 
these conditions imply (i) do not require any condition on O . It should be 
apparent from [lo] and the proof below that these equivalences hold if(@, E) 
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is replaced, by quite general partially ordered sets. For E = 0 this has been 
-noted by several authors. 

. Pr  o of, If (ii) holds, then (iii) follows from 

l l  hll 

and from noting that [h 2 t] is an increasing class of sets. Applying (iii) to 
indicator functions we obtain (ii). Thus (ii) u (iii). 

By Theorem -11 in [lg], (ivj is equivalent to the condition 

F(H) d z({u: u 3 u for some v ~ 2 ) ) + ~ / 2  

for each subclass X of I. Clearly, nothing is lost by restricting attention to 
isotonic subclasses of (P, G),  and then this is merely a restatement of (ii). 

Suppose that g is as in (iv). Put r(vlu) = @(u, v)/E(u) when h(u) > 0. Put 
,F(vlu)  = 11 and F(vlu) = 0 as v = u and v # u, respectively, when @(u) = 0. 
Define a function A from Q to LO, 1) by 

A(uj = x { f ( v l u ) :  v G u) .  

8 Extend = {(u , x) : u E a, x = 01 u for some 8 E 8) to a set 2 by joining 
a point 5 not belonging to X. Finally, define a Markov kernel M from to f 
by M ( ( v ,  y ) [ (v ,  x)) = F(vlu) when (u, x ) ~  f ,  v G u, and y = xlv. Then, 
necessarily, M ([I (u , x)) = 1 - A (u). We find successively 

I I F ~ . ~ - P ~ , ~ M I I  = ~ B ( V ) - Z  M((v, eIo)l(u, B I U ) ) ~ ( U ) ~  + C M ( T I ( ~ ,  O I U ) ) ~  
V U u 

, m 

= C I B(v)-- C W l ~ ) @ ( u ) ]  +C(1 -A(u))@Cu) 
V 1120 U 

= 2C{g(u, v): u 3 v )  < e. 

Thus (iv) implies (i) without any assumption on 63. 
The proof is now completed by noting that, under the stated condition on 

8, the lower bound established immediately before the formulation of this 
theorem yields the implication (i) - (ii) : 

If or and /3 are symmetric, then, as we might expect, comparison may be 
expressed in terms of ti and p. 
COROLLARY 2. Let a and B be symmetric sampling plans and put N = # 9. 

Then conditions (ii), (iii), and (iv) of %orem 3 are, without any assumption on 8, 
equivaient to each of the following conditions: 

(ii') J[m, N J - Z [ m ,  w]  < e/2, m  = 0, I ,  ..., N. 
(iii') MF- 1 hdZ < 2- ' e llhll for any isotonic non-negative function h on 

{O, 1 ,  .*., N]. 
(iv') There is a joint distribution on (0, 1 , . . . , N)' with marginals B and f l  

such rkat ~ ( ( ( m ;  n): rn 2 n ) )  2 1 - ~ / 2 .  
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Proof.  The equivalence of (ii'), (iii') and (iv3 follows by Remark 6. Suppose. 
these conditions are satisfied. Let h be a non-negative isotonic function on 
(42, E). Then 

Eik(U) = EzB(#  U) and Eah(U) = Eag(# U), 
where 

Clearly, llgll <-IlhlJ and g is isotonic since 

Hence, by (iii'), 

Thus condition (iii) of Theorem 3 is established. Conversely, suppose (iii) of 
Theorem 3 (and hence (ii)) holds. Let rn d N and put X = {u: # u 2 m). 
Then X is isotonic. Hence fl  [m, Nl - E  fm, N-j = p ( X )  - @(X) < €12. Thus 
(ii') holds. 

Example  1 (approximation by fixed size sampling plans). Let a be a 
symmetric sampling plan and let w, be the sampIing plan consisting of k 

' elements drawn "randomly" without replacement, i.e. 

Then 6 (ga, 8,) = BCO, k - l] while 6 (CWk, ga) = B [k + 1, NJ, so that 
J(ga, gWJ+6(8,, rfa) = 211a- wklf. Thus, if 

where ~€10, I[, then 6(gWk, 8.J -+ 0 as p -, 0 although Ila-w,ll -, 2. 
Note also that the best approximation, with respect to A ,  to &= by a fixed 

size sampling plan bwk is obtained by letting k be a median in 6. Thus, in 
general it is not expected sample size but the median sample size which yields 
the best approximation. 
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Ex a m p  1 e 2 (inequalities for symmetric sampling plans). For each finite 
subset u of 4 define a vector [ ( u )  = (5, (u ) ,  . . ., i N ( u ) ) ~ ~ N  by ii(u) = [#  u]-I 

N 

a s i ~ u a n d [ ~ ( u )  = Oasi$u, i  = 1, ..., N.Then 2 {,(u)B(i)isthearithmetic 
i= 1 

mean of the observed 0-values after repetitions in the sample sequence have 
N 

been removed. If the sampling is without replacement, then ri (u) B ( i )  is just 
i =  1 

the arithmetic mean n -  fB (i, ) + . . . + O ( i , ) f .  
Consider now a convex function cp on [ - I ,  ZIN. Suppose the random 

sample sequence I = ( I , ,  .. ., I,) is distributed according to the symmetric 
sampling plan or. Let K i  (i E 9) be the absolute frequency of an individual i in 
the sequence (I,, . . ., I,). By symmetry the distribution of Ki given U = (I} 
does not depend on i as long as i is restricted to U .  In particular, 

Writing K = (K, , . . . , K,) we get [ ( U )  = E [(K/n)l U]. Hence, by Jensen's 
inequality, 

( 5 )  Eq(KIp2) 2 Erp(S(U)). 

Consider another symmetric sampling plan B and let Q be a joint 
distribution for the random pair ( U ,  V) satisfying condition (iv) of Theo- 
rem 3 with 

E = 2 sup [ f l [ m ,  i V l - Z [ m ,  m]. 
m 

Then, by convexity, 

Now, by symmetry, Q may (and shall) be chosen so that ~ ( n ( u ) ,  x(v)) 
= ~ ( u ,  v) for any permutations x of 9. It follows that Pr(V = v ( U ,  v E U) 
depends only on the cardinalities of v and U as long as v c U ,  Hence 

C [(v)Pr(V = vl U ,  v E U )  = C(U) 
v 

so that 
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It follows that 

(6) Ep(C(lJ)) 2 E z ~ ( i ( ~ ) ) - ~ I i q l l .  
I 

Combining (5) and (6) we get 
I 

In particular, for any convex function $ on [mine,, max 6,] we obtain 
i i 

The most left inequalities in (7) and (8) may trivially be replaced by 
equalities when fl  is without replacement. 

I 

Formula (8) generalizes various extended versions (see [ 5 ]  and [9]) of the 
basic inequalities for sampling with and without replacement in [3]. 
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