PROBABILITY
AND
MATHEMATICAL STATISTICS
Vol. 3, Fasc. 1 (1982), p. 53-69

$\mathscr{U}(X)$ -STABLE MEASURES ON BANACH SPACES

D.

BOHDAN MINCER (WROCLAW)

Abstract. The probability measures on separable Banach space X which are stable under the group $\mathscr{U}(X)$ of all invertible linear operators on X are investigated. The characterization of such measures on finite-dimensional spaces was obtained by Parthasarathy in [6]. In this paper some generalizations of Parthasarathy's result are given.

1. Parthasarathy proved in [6] (see also [3] and [7]) that the probability measures on the at least two-dimensional Euclidean space \mathbb{R}^n which are stable under the group $\mathcal{U}(\mathbb{R}^n)$ of all invertible linear transformations of \mathbb{R}^n onto itself are precisely the full Gaussian and the degenerate probability measures. Our aim is to discuss $\mathcal{U}(X)$ -stable distributions on a real separable Banach space X. The main results of this paper are the following: For a Hilbert space X it is shown that a non-degenerate Gaussian measure is $\mathcal{U}(X)$ -stable if and only if it is full and completely stable in the sense of paper [4]. Hence we obtain a characterization of $\mathcal{U}(X)$ -stable Gaussian measures on Hilbert spaces in terms of proper values of their covariance operators. Further, it is shown that a nondegenerate $\mathcal{U}(X)$ -stable probability measure on X (dim $X \ge 2$) is a full Gaussian measure if and only if there exists a non-trivial finite-dimensional projector in its decomposability semigroup. As an application of this we obtain a Parthasarathy-type theorem for probability distributions on X, which are stable under $\mathcal{U}(X)$ in some "enough regular" way (for so-called strongly $\mathcal{U}(X)$ stable distributions). The question whether in the infinite-dimensional case there are non-Gaussian $\mathcal{U}(X)$ -stable probability measures is still open.

Further in this section we shall introduce basic notions and facts.

Let $\|\cdot\|$ be the norm of a real separable Banach space X and let X^* be the topological dual of X.

For a set $A \subset X$ its norm closure is denoted by \bar{A} .

By $\mathscr{P}(X)$ we denote the set of all probability measures defined on the class of Borel subsets of X. The set $\mathscr{P}(X)$ with the topology of weak convergence

and multiplication defined by the convolution becomes a topological semigroup. We denote the convolution of two measures λ and μ by $\lambda * \mu$, and by μ^{*n} the *n*-th power in the sense of convolution. If a sequence $\{\mu_n\}$ of probability measures on X converges weakly to a $\mu \in \mathscr{P}(X)$, we write $\mu_n \Rightarrow \mu$. Moreover, by δ_x $(x \in X)$ we denote the probability measure concentrated at the point x.

The characteristic functional of μ is defined on X^* by the formula

$$\hat{\mu}(x^*) = \int_X e^{ix^*(x)} d\mu(x) \quad (x^* \in X^*).$$

Given $\mu \in \mathcal{P}(X)$, we define $\bar{\mu}$ by

$$\bar{\mu}(E) = \mu(-E)$$
, where $-E = \{-x \colon x \in E\}$.

The mapping $\mu \to \overline{\mu}$ is a continuous automorphism of $\mathscr{P}(X)$. For any $\mu \in \mathscr{P}(X)$, $\mu^s = \mu * \overline{\mu}$ is called the *symmetrization* of μ .

A probability measure μ is said to be symmetric if $\mu = \bar{\mu}$.

A measure μ from $\mathscr{P}(X)$ is said to be *full* if its support is not contained in any proper hyperplane of X. It is clear that μ is full if and only if μ^s is full.

Further, $\mathscr{B}(X)$ will denote the algebra of continuous linear operators on X with the norm topology. By $\mathscr{U}(X)$ we shall denote the group of all invertible operators from X onto X.

The image and the kernel of $A \in \mathcal{B}(X)$ will be denoted by Im A and Ker A, respectively. An operator A is said to be *n*-dimensional if dim Im A = n (n = 1, 2, ...). By a projector we mean an operator P from $\mathcal{B}(X)$ with the property $P^2 = P$. The zero operator will be denoted by 0, and the unit operator by I.

For any $A \in \mathcal{B}(X)$ and $\mu \in \mathcal{P}(X)$ let $A\mu$ denote the measure defined by the formula $A\mu(E) = \mu(A^{-1}(E))$ for all Borel subsets E of X. For all A in $\mathcal{B}(X)$ and μ , $\nu \in \mathcal{P}(X)$ we can easily check the equations

$$A(\mu * v) = A\mu * Av, \quad (A\mu)^{\wedge}(x^*) = \hat{\mu}(A^*x^*),$$

where A^* denotes the adjoint operator. Moreover, it is clear that the mapping $\langle A, \mu \rangle \to A\mu$ from $\mathcal{B}(X) \times \mathcal{P}(X)$ onto $\mathcal{P}(X)$ is jointly sequentially continuous even if $\mathcal{B}(X)$ is provided with a strong operator topology. Consequently, if a sequence $\{A_n\}$ of linear operators is sequentially strongly compact, then for every $\mu \in \mathcal{P}(X)$ the sequence $\{A_n\mu\}$ is compact in $\mathcal{P}(X)$.

For full measures on finite-dimensional spaces the converse implication is also true. Namely, if the sequence $\{A_n \mu\}$ is compact in $\mathcal{P}(X)$, where μ is full and $A_n \in \mathcal{B}(X)$ (n = 1, 2, ...), then the sequence $\{A_n\}$ is compact in $\mathcal{B}(X)$ (see [11], p. 120).

In the study of limit probability distributions Urbanik [11] introduced the concept of decomposability semigroups $\mathcal{D}(\mu)$ of linear operators associated

with the probability measure μ . Namely, $\mathcal{D}(\mu)$ consists of all operators A from $\mathcal{B}(X)$ for which $\mu = A\mu * v$ holds for a certain probability measure v. It is clear that $\mathcal{D}(\mu)$ is a semigroup under multiplication of operators and $\mathcal{D}(\mu)$ always contains the operators 0 and I. Moreover, $\mathcal{D}(\mu)$ is closed in $\mathcal{B}(X)$. It has been shown that some probabilistic properties of measures correspond to algebraic and topological properties of their decomposability semigroups (see, e.g., [12]).

The Tortrat representation of infinitely divisible laws on Banach spaces is an important step in our considerations. We recall that for any bounded nonnegative Borel measure F on X vanishing at 0 the Poisson measure e(F) associated with F is defined as

$$e(F) = e^{-F(X)} \sum_{n=0}^{\infty} \frac{1}{n!} F^{*n},$$

where $F^{*0} = \delta_0$. Let M be a not necessarily bounded Borel measure vanishing at 0. If there exists a representation

$$M = \sup_{n} F_{n},$$

where F_n are bounded and the sequence $\{e(F_n)\}$ of associated Poisson measures is shift compact, then each cluster point of $\{e(F_n)\}$ will be called a *generalized Poisson measure* and denoted by $\tilde{e}(M)$. The measure $\tilde{e}(M)$ is uniquely defined up to a shift transformation, i.e. for two cluster points, say μ_1 and μ_2 , of translates of $\{e(F_n)\}$ there exists an element $x \in X$ such that $\mu_1 = \mu_2 * \delta_x$.

Clearly, $\tilde{e}(M_1) = \tilde{e}(M_2)$ implies $M_1 = M_2$. Moreover, if $\tilde{e}(M)$ is full, then so is M.

For each pair $\tilde{e}(M)$, $\tilde{e}(N)$ of generalized Poisson measures and each $A \in \mathcal{B}(X)$ we can easily check the equations

$$\tilde{e}(M) * \tilde{e}(N) = \tilde{e}(M+N), \quad A\tilde{e}(M) = \tilde{e}(\widetilde{AM}),$$

where $\widetilde{AM}(S) = AM(S)$ for all Borel subsets S of $X \setminus \{0\}$.

By a Gaussian measure on X we mean a measure ϱ such that, for every $x^* \in X^*$, the induced measure $x^* \varrho$ on R is Gaussian.

Tortrat proved in [10], p. 311, the following analogue of the Lévy-Khintchine representation: $\mu \in \mathcal{P}(X)$ is infinitely divisible, i.e. for every positive integer n there exists a probability measure μ_n on X such that $\mu_n^{*n} = \mu$ if and only if μ has a unique representation $\mu = \varrho * \tilde{e}(M)$, where ϱ is a symmetric Gaussian measure on X and $\tilde{e}(M)$ is a generalized Poisson measure.

If ϱ is a Gaussian measure on X, then the characteristic functional of ϱ takes the form

$$\hat{\varrho}(x^*) = \exp\{ix^*(x) - \frac{1}{2}x^*(Rx^*)\} \quad (x^* \in X^*),$$

where x is the mean value of ϱ and R is its covariance operator, i.e. a nuclear operator from X^* into X with the following properties: $x_1^*(Rx_2^*)$

= $x_2^*(Rx_1^*)$ for all x_1^* , $x_2^* \in X^*$ (symmetry) and $x^*(Rx^*) \ge 0$ (non-negativity) (see [1]). Clearly, if R is the covariance operator of ϱ and $A \in \mathcal{B}(X)$, then ARA^* is the covariance operator of $A\varrho$. Moreover, for any Gaussian measures ϱ_1 and ϱ_2 with the covariances R_1 and R_2 , respectively, the covariance of $\varrho_1 * \varrho_2$ is equal to $R_1 + R_2$.

We note that ϱ is full if and only if its covariance operator R is one-to-one. If X is a Hilbert space, then every Gaussian covariance is a positive definite, nuclear operator on X.

2. Let μ be a probability measure on a real separable Banach space X and let $\mathscr A$ be a subgroup of $\mathscr U(X)$. We say that μ is $\mathscr A$ -stable if for any A, $B \in \mathscr A$ there exist a $C \in \mathscr A$ and a point $x \in X$ such that

$$A\mu * B\mu = C\mu * \delta_x.$$

The notion of stability with respect to arbitrary groups of automorphisms in the case of probability measures on locally compact groups was introduced by Parthasarathy and Schmidt in [7]. Earlier (in [6]) Parthasarathy investigated probability distributions on \mathbb{R}^n which are stable under the group of all invertible linear transformations of \mathbb{R}^n onto itself. The theory of \mathscr{A} -stable measures on Euclidean spaces has been presented in [8]. In particular, [8] contains the Lévy-Khintchine formula for such measures.

It is easy to see that if μ is \mathscr{A} -stable, then for any finite set A_1, \ldots, A_n of elements of \mathscr{A} there exist a $C_n \in \mathscr{A}$ and a point $x_n \in X$ for which

$$A_1 \mu * \ldots * A_n \mu = C_n \mu * \delta_{x_n}.$$

Consequently, for each positive integer n there are $C_n \in \mathcal{A}$ and $x_n \in X$ such that $\mu^{*n} = C_n \mu * \delta_{x_n}$, e.g. μ is operator-stable in the sense of Sharpe (see [9]). For full measures on \mathbb{R}^n the converse is also true. Namely, a full probability measure μ on \mathbb{R}^n is operator-stable if and only if μ is stable under a one-parameter subgroup of $\mathcal{U}(\mathbb{R}^n)$ (see [9], Theorem 2).

PROPOSITION 2.1. Let \mathscr{A} be a subgroup of $\mathscr{U}(X)$ and let μ be a probability measure on X which is stable under \mathscr{A} . Then μ is infinitely divisible. Let $\mu = \varrho * \widetilde{e}(M)$ be the decomposition of μ into its symmetric Gaussian part ϱ and its generalized Poisson part $\widetilde{e}(M)$. Then both ϱ and $\widetilde{e}(M)$ are stable under \mathscr{A} .

Proof. The proposition follows immediately from the operator stability of μ and from the uniqueness of the Tortrat representation.

We note that a generalized Poisson measure $\tilde{e}(M)$ associated with the measure M is stable under \mathscr{A} if and only if for any pair A, $B \in \mathscr{A}$ there exists a $C \in \mathscr{A}$ such that

$$(2.1) AM + BM = CM.$$

Let ϱ be a Gaussian measure with the covariance operator R. It is clear that ϱ is \mathscr{A} -stable if and only if for any A, $B \in \mathscr{A}$ there is a $C \in \mathscr{A}$ for which the equality $ARA^* + BRB^* = CRC^*$ holds.

Let μ be a probability measure on X which is stable under a subgroup \mathscr{A} of $\mathscr{U}(X)$ and assume that λ is a real number from (-1, 1) such that $\lambda I \in \mathscr{A}$. Then the operator λI belongs to $\mathscr{D}(\mu)$. We infer this from the following

PROPOSITION 2.2. Let μ be an \mathcal{A} -stable probability measure on X and assume that A is an operator from \mathcal{A} such that

- (i) the sequence $\{A^n\}$ converges strongly to 0;
- (ii) A commutes with every element of A.

Then A belongs to $\mathcal{D}(\mu)$.

Proof. Since μ is \mathscr{A} -stable and $A \in \mathscr{A}$, there exist a sequence $\{C_n\}$ in \mathscr{A} and a sequence $\{x_n\}$ in X such that

$$A\mu * A^2 \mu * \dots * A^n \mu = C_n \mu * \delta_{x_n}$$
 for all n .

Hence we get the formula

$$(2.2) \quad C_n^{-1} A \mu * C_n^{-1} A^2 \mu * \dots * C_n^{-1} A^n \mu = \mu * \delta_{C_n^{-1} x_n} \quad (n = 1, 2, \dots).$$

Since A commutes with C_n^{-1} , it is easy to obtain from (2.2) the following equation:

$$(2.3) \quad \mu * \delta_{C_n^{-1}x_n} * C_n^{-1} A^{n+1} \mu = C_n^{-1} A \mu * A \mu * \delta_{AC_n^{-1}x_n} \quad (n = 1, 2, \ldots).$$

Moreover, from (2.2) and Theorem 5.1, Chapter III in [5], we infer that the sequence $\{C_n^{-1}A\mu\}$ is shift compact and, consequently (by (i) $A^n \to 0$ strongly), there exists a sequence $\{y_n\}$ in X for which

$$C_n^{-1} A^{n+1} \mu * \delta_{y_n} = A^n C_n^{-1} A \mu * \delta_{y_n} \Rightarrow \delta_0.$$

Thus, setting $v_n = C_n^{-1} A^{n+1} \mu * \delta_{y_n}$ and $\mu_n = C_n^{-1} A \mu * \delta_{AC_n^{-1}x_n + y_n - C_n^{-1}x_n}$ (n = 1, 2, ...), by (2.3) we have the formula $\mu * v_n = A \mu * \mu_n$, where $v_n \Rightarrow \delta_0$. Since in this case the sequence $\{\mu_n\}$ must be compact (see Theorem 2.1, Chapter III in [5]), it is then clear that there exists a $v \in \mathcal{P}(X)$ for which $\mu = A \mu * v$. This completes the proof.

We say that a probability measure $\mu \in \mathcal{P}(X)$ is self-decomposable if the inclusion $\{\lambda I : \lambda \in [0, 1]\} \subset \mathcal{D}(\mu)$ holds (see [2]). Thus, if μ is $\mathcal{U}(X)$ -stable, then μ is self-decomposable. Moreover, for any $\lambda \in (-1, 0)$ we have also $\lambda I \in \mathcal{D}(\mu)$, and since $\mathcal{D}(\mu)$ is closed, the same is true for $\lambda = -1$. But it is easy to prove that $-I \in \mathcal{D}(\mu)$ if and only if μ is a translation of a symmetric probability measure. Thus, every $\mathcal{U}(X)$ -stable measure is in addition a translation of a symmetric one.

Moreover, the following statement is true:

PROPOSITION 2.3. Let μ be a symmetric \mathscr{A} -stable probability measure on X. Then for any finite group $\mathscr{G} \subset \mathscr{A}$ there exists a $T \in \mathscr{A}$ such that $(T^{-1}AT)\mu = \mu$ for all $A \in \mathscr{G}$.

For the proof see [6], Lemma 3.

Further, we shall need the following lemma:

LEMMA 2.1. Let N be an infinite-dimensional subspace of X. Then there exists an $A \in \mathcal{U}(X)$ such that the linear manifold A(N) + N is dense in X.

Proof. Let $\{x_n\}$ be a countable dense subset of X. Since N is infinite dimensional, we can find a pair of sequences $\{y_n\}$ in N and $\{y_n^*\}$ in X^* such that $y_n^*(y_m) = \delta_{n,m}$ (n, m = 1, 2, ...). Choose a sequence $\{a_n\}$ of positive numbers such that

$$\left\| \sum_{n=1}^{\infty} a_n y_n^*(x) x_n \right\| < \|x\| \quad \text{for all } x \neq 0.$$

If we define the operator S by

$$Sx = \sum_{n=1}^{\infty} a_n y_n^*(x) x_n \quad (x \in X),$$

then ||S|| < 1 and $Sa_n^{-1}y_n = x_n$ for all n. Consequently, $S(N) \supset \{x_n\}$. Put A = I + S. Obviously, A is invertible and $A(N) + N \supset \{x_n\}$. Thus the lemma is proved.

An application of Lemma 2.1 leads to the following

THEOREM 2.1. Let μ be a non-degenerate $\mathcal{U}(X)$ -stable probability measure on a real separable Banach space X. Then μ is full.

Proof. Denote by N the smallest closed subspace of X for which there exists an element x_0 such that μ is concentrated on the hyperplane $N+x_0$. Since μ is $\mathscr{U}(X)$ -stable, for any $A \in \mathscr{U}(X)$ there exists an operator $B \in \mathscr{U}(X)$ such that the formula

$$(2.4) \overline{A(N)+N} = \overline{B(N)} = B(N)$$

holds. Under our assumption $N \neq \{0\}$. We shall prove that N = X. Indeed, if $N \neq X$, we can choose an operator A from $\mathscr{U}(X)$ in such a way that $A(N) \neq N$. Then from (2.4) it follows that N (and X) must be infinite dimensional. But in this case A(N) + N is dense in X for some $A \in \mathscr{U}(X)$ (Lemma 2.1). Hence and from (2.4) we infer that there exists an operator $B \in \mathscr{U}(X)$ such that B(N) = X, which contradicts the assumption $N \neq X$. Thus the theorem is proved.

A probability measure μ on X is said to be *completely stable* if for any pair A, $B \in \mathcal{B}(X)$ there exist $C \in \mathcal{B}(X)$ and $x \in X$ such that

$$(2.5) A\mu * B\mu = C\mu * \delta_x.$$

We note that any non-degenerate completely stable distribution μ on the Euclidean space \mathbb{R}^n is full. Consequently, if A, $B \in \mathcal{U}(\mathbb{R}^n)$, then $C\mu$, where C satisfies (2.5), is also full. Hence $C(\mathbb{R}^n) = \mathbb{R}^n$, i.e. the operator C is invertible. Thus, every completely stable measure on \mathbb{R}^n is $\mathcal{U}(\mathbb{R}^n)$ -stable. Since any full Gaussian measure on \mathbb{R}^n is completely stable, the converse is also true.

Completely stable measures on the infinite-dimensional Hilbert space were investigated in [4]. In particular, in [4] it is shown that in this case there exist even completely stable distributions which are not infinitely divisible. Moreover, a characterization of completely stable Gaussian measures in terms of proper values of their covariance operators is given. Namely, it is shown (see [4], Theorem 3) that a non-degenerate Gaussian measure ϱ on the infinite-dimensional separable Hilbert space H is completely stable if and only if its covariance operator has infinitely many positive eigenvalues $a_1 \ge a_2 \ge \dots$ (i.e. ϱ is not concentrated on a finite-dimensional hyperplane of H) and the sequence a_n/a_{2n} ($n = 1, 2, \dots$) is bounded.

Further, by H we denote a real separable Hilbert space with the inner product $\langle \cdot, \cdot \rangle$. We shall prove that the non-degenerate Gaussian measures on H which are $\mathscr{U}(H)$ -stable are precisely the full Gaussian completely stable measures. The problem of characterization of $\mathscr{U}(X)$ -stable Gaussian measures on an arbitrary Banach space is still open.

The following propositions are true:

PROPOSITION 2.4. Let $a_1 \ge a_2 \ge \ldots$ and $b_1 \ge b_2 \ge \ldots$ be the sequences of eigenvalues of covariance operators S and ASA^* $(A \in \mathcal{B}(H))$, respectively. Then the inequality $b_n \le ||A||^2 a_n$ $(n = 1, 2, \ldots)$ holds. In particular, if $A \in \mathcal{U}(H)$, we also have $a_n \le ||A^{-1}||^2 b_n$ for all n.

For the proof see [4], Lemma 2.

PROPOSITION 2.5. Let S_1 and S_2 be one-to-one covariance operators with the corresponding sequences of eigenvalues $a_1 \ge a_2 \ge \ldots$, respectively. Then $S_1 = AS_2 A^*$ for some $A \in \mathcal{U}(H)$ if and only if the sequence $\{\max\{a_n/b_n, b_n/a_n\}\}$ is bounded.

Proof. The necessity follows from Proposition 2.4. To prove the sufficiency we assume that $e_1, e_2, \ldots (f_1, f_2, \ldots)$ is an orthonormal basis of eigenvectors of $S_1(S_2)$ corresponding to the eigenvalues $a_1, a_2, \ldots (b_1, b_2, \ldots)$, respectively. Further, let U be the unitary operator on H such that $Uf_n = e_n (U^{-1}e_n = f_n)$ for all n. Put

$$H_0 x = \sum_{n=1}^{\infty} \sqrt{a_n/b_n} \langle x, f_n \rangle f_n \quad (x \in H).$$

Since the sequence $\{\max\{a_n/b_n, b_n/a_n\}\}\$ is bounded, H_0 is a well-defined linear operator from $\mathcal{U}(H)$. Obviously, H_0 is a Hermitian operator. Consequently, setting $A = UH_0$ we have $A \in \mathcal{U}(H)$ and $A^* = HU^{-1}$. Now it is easy to verify the equation $AS_2 A^* e_n = S_1 e_n$ (n = 1, 2, ...), which shows that $AS_2 A^* = S_1$. Thus the proposition is proved.

PROPOSITION 2.6. Let S be a one-to-one covariance operator on H and A, $B \in \mathcal{U}(H)$. If there exists an operator C from $\mathcal{B}(H)$ such that $ASA^* + BSB^* = CSC^*$, then we can find an invertible operator with the same property.

Proof. Put $S_1 = ASA^* + BSB^*$. Obviously, the covariance operator S_1 is also one-to-one. By our assumption, $S_1 = CSC^*$. Hence, by Proposition 2.4, we have the formula

$$(2.6) b_n \leq ||C||^2 a_n (n = 1, 2, ...),$$

where $a_1 \ge a_2 \ge \ldots$ and $b_1 \ge b_2 \ge \ldots$ are the sequences of eigenvalues S and S_1 , respectively. We note that $\langle S_1 x, x \rangle \ge \langle ASA^*x, x \rangle$ and $\langle S_1 x, x \rangle \ge \langle BSB^*x, x \rangle$ for all x. Consequently, if $c_1 \ge c_2 \ge \ldots$ and $d_1 \ge d_2 \ge \ldots$ are the sequences of eigenvalues of ASA^* and BSB^* , respectively, then

$$(2.7) b_n \geqslant \max\{c_n, d_n\} (n = 1, 2, ...).$$

But by Proposition 2.4 we get

(2.8)
$$c_n \ge ||A^{-1}||^2 a_n, \quad d_n \ge ||B^{-1}||^2 a_n$$

for all n. From (2.7) and (2.8) we obtain the inequality

$$b_n \geqslant \max\{\|A^{-1}\|^2 a_n, \|B^{-1}\|^2 a_n\} \quad (n = 1, 2, ...)$$

which, together with (2.6) and Proposition 2.5, completes the proof.

THEOREM 2.2. Let ϱ be a non-degenerate Gaussian measure on a real separable Hilbert space H. Then ϱ is $\mathscr{U}(H)$ -stable if and only if it is a full completely stable measure.

Proof. It follows from Proposition 2.6 that every full Gaussian completely stable probability measure on H is $\mathscr{U}(H)$ -stable. Conversely, suppose that ϱ is a non-degenerate Gaussian measure on H which is $\mathscr{U}(H)$ -stable. By Theorem 2.1, ϱ is full. Obviously, we may assume that H is infinite dimensional. Let S denote the covariance operator of ϱ and let $a_1 \geqslant a_2 \geqslant \ldots$ be the sequence of eigenvalues of S. Using the same arguments as in the proof of Theorem 1 in [4], we infer from $\mathscr{U}(H)$ -stability of ϱ that the sequence $\{a_n/a_{2n}\}$ is bounded. But in this case ϱ is completely stable (Theorem 3 in [4]). Thus the theorem is proved.

Remark 2.1. Let ϱ be a full completely stable Gaussian measure on an infinite-dimensional Hilbert space H. Then the sequence $a_1 \geqslant a_2 \geqslant \ldots$ of eigenvalues of its covariance operator fulfils the condition $\sup_n a_n/a_{2n} < \infty$. Put

$$a = \sup a_n/a_{2n}.$$

Let $A, B \in \mathcal{B}(H)$. Then there exists an operator C such that

$$A\varrho * B\varrho = C\varrho * \delta_x$$

for some $x \in X$ and $||C|| \le a(||A|| + ||B||)$. Namely, the operator C constructed in the proof of Theorem 2 in [4] has this property. Moreover, the proof of Proposition 2.6 shows that for A, $B \in \mathcal{U}(H)$ we can find an invertible operator with the same property.

3. Let μ be a probability measure on X and suppose that P is a projector belonging to $\mathcal{D}(\mu)$. Then, by Proposition 1.5 in [11], I-P also belongs to $\mathcal{D}(\mu)$ and the equality

$$\mu = P\mu * (I-P)\mu$$

holds.

Let μ be in addition infinitely divisible. Then from (3.1) and the uniqueness of the Tortrat representation of μ one can obtain the following

PROPOSITION 3.1. Suppose that $\mu = \varrho * \tilde{e}(M)$, where ϱ is a symmetric Gaussian measure with the covariance operator R and $\tilde{e}(M)$ is a generalized Poisson measure. Moreover, let P be a projector on X. Then:

- (i) $P \in \mathcal{D}(\mu)$ if and only if $P \in \mathcal{D}(\mu) \cap \mathcal{D}(\tilde{e}(M))$;
- (ii) $P \in \mathcal{D}(\rho)$ if and only if $R(\operatorname{Im} P^*) \subset \operatorname{Im} P$ and $R(\operatorname{Ker} P^*) \subset \operatorname{Ker} P$;
- (iii) $P \in \mathcal{D}(\tilde{e}(M))$ if and only if the measure M is concentrated on Im $P \cup \text{Ker } P$.

The following lemma is a crucial step in our considerations:

LEMMA 3.1. Let X be a real separable Banach space of dimension at least two and let $\tilde{e}(M)$ be a non-degenerate generalized Poisson measure on X. If there exists a non-trivial finite-dimensional projector P belonging to $\mathcal{D}(\tilde{e}(M))$, then $\tilde{e}(M)$ is not $\mathcal{U}(X)$ -stable.

Proof. Clearly, by Theorem 2.1 it is sufficient to prove the lemma under the assumption that $\tilde{e}(M)$ is full. Then the measure M is also full.

Suppose that P_1 and P_2 are projectors from $\mathcal{D}(\tilde{e}(M))$. We infer from Proposition 3.1 that M is concentrated on the set

$$(\operatorname{Im} P_1 \cup \operatorname{Ker} P_1) \cap (\operatorname{Im} P_2 \cup \operatorname{Ker} P_2).$$

Consequently, the restrictions $M \mid \text{Im } P_1$ and $M \mid \text{Ker } P_1$ are concentrated on the unions

$$(\operatorname{Im} P_1 \cap \operatorname{Im} P_2) \cup (\operatorname{Im} P_1 \cap \operatorname{Ker} P_2), \quad (\operatorname{Ker} P_1 \cap \operatorname{Im} P_2) \cup (\operatorname{Ker} P_1 \cap \operatorname{Ker} P_2),$$

respectively. Hence, since M is full, $\operatorname{Im} P_1$ is equal to the direct sum of $\operatorname{Im} P_1 \cap \operatorname{Im} P_2$ and $\operatorname{Im} P_1 \cap \operatorname{Ker} P_2$, and $\operatorname{Ker} P_1$ is equal to the direct sum of $\operatorname{Ker} P_1 \cap \operatorname{Im} P_2$ and $\operatorname{Ker} P_1 \cap \operatorname{Ker} P_2$. Consequently, $P_1 P_2 = P_2 P_1$.

Let k be the least positive integer for which there exists a k-dimensional projector belonging to $\mathscr{D}(\tilde{e}(M))$ and let \mathscr{J}_k denote the set of all k-dimensional projectors from $\mathscr{D}(\tilde{e}(M))$. Consider P_1 , $P_2 \in \mathscr{J}_k$, $P_1 \neq P_2$. Since P_1 commutes with P_2 , the operator $P_1 P_2$ is a projector from $\mathscr{D}(\tilde{e}(M))$. Moreover, the dimension of $P_1 P_2$ is less than k. By the definition of k, this implies $P_1 P_2 = P_2 P_1 = 0$.

Hence, in particular, we infer (note that, for any $P \in \mathcal{J}_k$, $M(\operatorname{Im} P) > 0$ and M is σ -finite) that \mathcal{J}_k is a countable set.

Contrary to the assertion of the lemma, suppose that $\tilde{e}(M)$ is $\mathcal{U}(X)$ -stable. Then, by (2.1), given an arbitrary $A \in \mathcal{U}(X)$ we can find $B \in \mathcal{U}(X)$ such that

$$(3.2) AM + M = BM.$$

Now let P be a projector from $\mathcal{D}(\tilde{e}(M))$. Then the projector BPB^{-1} belongs to $\mathcal{D}(B\tilde{e}(M))$. Consequently, since $AM \leq BM$ and $M \leq BM$ by (3.2), Proposition 3.1 implies $BPB^{-1} \in \mathcal{D}(A\tilde{e}(M)) \cap \mathcal{D}(\tilde{e}(M))$ (note that $\tilde{e}(BM) = B\tilde{e}(M)$ and $\tilde{e}(AM) = A\tilde{e}(M)$). Hence BPB^{-1} , $A^{-1}BPB^{-1}A \in \mathcal{D}(\tilde{e}(M))$. Obviously, if $P \in \mathcal{J}_k$, then also BPB^{-1} , $A^{-1}BPB^{-1}A \in \mathcal{J}_k$. Thus the set \mathcal{J}_k has the following property: for any $A \in \mathcal{U}(X)$ there exists a $P_A \in \mathcal{J}_k$ such that $A^{-1}P_AA \in \mathcal{J}_k$. Fix $P_0 \in \mathcal{J}_k$. Let A be an arbitrary operator from $\mathcal{U}(X)$ and let $A^{-1}P_AA \in \mathcal{J}_k$ for $P_A \in \mathcal{J}_k$. If $P_A \neq P_0$, then $P_AP_0 = 0$ and, consequently, $A^{-1}P_AAA^{-1}P_0A = 0$. Hence, since $A^{-1}P_AA \in \mathcal{J}_k$, we obtain

$$(3.3) A^{-1}(\operatorname{Im} P_0) \subset \bigcup_{P \in \mathcal{I}_b} \operatorname{Ker} P.$$

If $P_A = P_0$, then $A^{-1} P_0 A \in \mathcal{I}_k$ and, consequently,

$$(3.4) A^{-1}(\operatorname{Im} P_0) \subset \bigcup_{P \in \mathcal{I}_k} \operatorname{Im} P.$$

Since A is arbitrary, (3.3) and (3.4) together imply that

$$\bigcup_{P\in\mathcal{I}_k} (\operatorname{Ker} P \cup \operatorname{Im} P) = X,$$

which contradicts the fact that \mathcal{J}_k is a countable set. The lemma is thus proved.

We note that for any Gaussian measure ϱ on X (dim $X \ge 2$) there are non-trivial finite-dimensional projectors in $\mathscr{D}(\varrho)$. For instance, if ϱ is a full Gaussian measure with the covariance operator R, then every projector of the form $x^*(\cdot)(Rx^*/x^*(Rx^*))$ ($x^* \in X^*$) belongs to $\mathscr{D}(\varrho)$ (this follows, by a simple computation, from Proposition 3.1). Thus, combining Proposition 2.1 and Lemma 3.1 and taking into account Theorem 2.1, we obtain

THEOREM 3.1. Let X be a real separable Banach space of dimension at least two. Then a non-degenerate $\mathscr{U}(X)$ -stable probability measure on X is a full Gaussian measure if and only if there exists a non-trivial finite-dimensional projector in its decomposability semigroup.

4. Before proceeding to state and prove the main results of this paper we shall establish auxiliary propositions.

PROPOSITION 4.1. Suppose that, for $n=1, 2, ..., \mu_n \in \mathcal{P}(X)$ and $\{A_n\}$, $\{B_n\}$ are two sequences of linear operators on X. If the sequences $\{A_n \mu_n\}$ and $\{B_n \mu_n\}$ are conditionally compact, then so are the sequences $\{(A_n+B_n)\mu_n\}$ and $\{(A_n-B_n)\mu_n\}$. Moreover, if $A_n \mu_n \Rightarrow v$ for some $v \in \mathcal{P}(X)$ and $B_n \mu_n \Rightarrow \delta_0$, then $(A_n+B_n)\mu_n \Rightarrow v$.

Proof. Since $\{A_n \mu_n\}$ and $\{B_n \mu_n\}$ are conditionally compact, it follows from Theorem 6.7, Chapter II in [5], that given $\varepsilon > 0$ there exist compact sets K_{ε}^1 and K_{ε}^2 such that

$$\mu_n\{x: A_n x \in K_{\varepsilon}^1\} > 1 - \varepsilon/2, \quad \mu_n\{x: B_n x \in K_{\varepsilon}^2\} > 1 - \varepsilon/2$$

for all n. Then we have

$$\mu_n\{x: A_n x \in K_{\varepsilon}^1 \text{ and } B_n x \in K_{\varepsilon}^2\} > 1 - \varepsilon.$$

We note that -

$$\{x: A_n x \in K_{\varepsilon}^1 \text{ and } B_n x \in K_{\varepsilon}^2\} \subset \{x: (A_n + B_n) x \in K_{\varepsilon}^1 + K_{\varepsilon}^2\}.$$

Consequently,

$$\mu_n\{x: (A_n+B_n)x\in K_\varepsilon^1+K_\varepsilon^2\} > 1-\varepsilon$$
 for all n .

Since $K_{\varepsilon}^1 + K_{\varepsilon}^2$ is compact and ε is arbitrary, it follows once more from Theorem 6.7, Chapter II in [5], that $\{(A_n + B_n) \mu_n\}$ is compact.

If A is an operator from $\mathscr{B}(X)$, then $(-A)\mu = \overline{A\mu}$ for any $\mu \in \mathscr{P}(X)$. Hence and from the continuity of the operation — we infer that the compactness of $\{B_n \mu_n\}$ implies the compactness of $\{(-B_n)\mu_n\}$. Consequently, the sequence $\{(A_n - B_n)\mu_n\}$ is also conditionally compact.

Let $A_n \mu_n \Rightarrow v$ and $B_n \mu_n \Rightarrow \delta_0$. By the inequality

$$\begin{aligned} & \left| \left((A_n + B_n) \, \mu_n \right)^{\wedge} (x^*) - (A_n \, \mu_n)^{\wedge} (x^*) \right| \; = \; |\hat{\mu}_n (A_n^* \, x^* + B_n^* \, x^*) - \hat{\mu}_n (A_n^* \, x^*) | \\ & \leqslant \; \int\limits_X |1 - e^{iB_n^* x^*(x)}| \, d\mu_n(x) \; = \; \int\limits_X |1 - e^{ix^*(x)}| \, dB_n \, \mu_n \qquad (n = 1, \, 2, \, \dots; \, \, x^* \in X^*) \end{aligned}$$

we get

$$\lim_{n} ((A_{n} + B_{n}) \mu_{n})^{\wedge} (x^{*}) = \lim_{n} (A_{n} \mu_{n})^{\wedge} (x^{*}) = \hat{v}(x^{*}) \quad \text{for all } x^{*} \in X^{*}.$$

Moreover, by the first part of the proposition, the sequence $\{(A_n + B_n) \mu_n\}$ is compact. Hence $(A_n + B_n) \mu_n \Rightarrow v$. The proposition is thus proved.

PROPOSITION 4.2. Let $\{T_n\}$ be a sequence of one-dimensional operators from $\mathcal{B}(X)$, let $\mu_n \in \mathcal{P}(X)$ (n = 1, 2, ...), and assume that

- (i) $T_n \mu_n \Rightarrow \mu \in \mathcal{P}(X), \ \mu \neq \delta_0$,
- (ii) the sequence of norms $\{||T_n||\}$ is bounded.

Then the sequence $\{T_n\}$ is sequentially compact in the strong operator topology.

Proof. Let T_n be given for each n by the formula $T_n = x_n^*(\cdot) x_n$, where $x_n^* \in X^*$ and x_n is the element of X with $||x_n|| = 1$. From (ii) it follows that the sequence $\{x_n^*\}$ is bounded and, consequently (X is separable), $\sigma(X^*, X)$ -compact. Thus, to prove our statement it is enough to verify that the sequence $\{x_n\}$ is compact.

There exist a > 0 and b > 0 such that for sufficiently large n we have $\mu_n\{x: ||T_nx|| \ge b\} > a.$

Indeed, if no such a and b exist, then for any b > 0 there exists a subsequence of $\{T_n\}$, say $\{T_{n_k}\}$, such that

$$\lim_{k} \mu_{n_{k}}\{x \colon ||T_{n_{k}}x|| \geqslant b\} = \lim_{k} T_{n_{k}} \mu_{n_{k}}\{x \colon ||x|| \geqslant b\} = 0.$$

But, by (i), $T_{n_k}\mu_{n_k} \Rightarrow \mu$. As $\mu \neq \delta_0$, this leads to a contradiction. Moreover, since $\{T_n \mu_n\}$ is conditionally compact, it follows from Theorem 6.7, Chapter II in [5], that given $\varepsilon > 0$ there exists a compact set K_{ε} such that

$$(4.2) T_n \mu_n(K_{\varepsilon}) = \mu_n\{x: T_n x \in K_{\varepsilon}\} > 1 - \varepsilon$$

for all n. By (4.1) and (4.2) we can find a compact set K and b > 0 such that for sufficiently large n, say $n \ge N$, we have

$$\mu_n\{x: ||T_n x|| \ge b \text{ and } T_n x \in K\} > 0.$$

Consequently, since $||T_n x|| = |x_n^*(x)|(n = 1, 2, ...)$, there exists a sequence $\{y_n\}$ in X with $|x_n^*(y_n)| \ge b$ and $x_n^*(y_n)x_n \in K$ for $n \ge N$. But this implies the compactness of $\{x_n\}$. The proposition is thus proved.

PROPOSITION 4.3. Let μ be a full measure on X, let P be a one-dimensional projector from $\mathcal{B}(X)$, and $C_n \in \mathcal{B}(X)$ (n = 1, 2, ...). If the sequence $\{C_n P\mu\}$ is compact in $\mathcal{B}(X)$, then the sequence $\{C_n P\}$ is compact in $\mathcal{B}(X)$. In particular, if $C_n P\mu \Rightarrow \delta_0$, then $||C_n P|| \to 0$.

Proof. First we prove the second part of the proposition. Let $P = x_0^*(\cdot)x_0$, where $x_0^* \in X^*$, $x_0 \in X$, $x_0^*(x_0) = 1$, and $||x_0|| = 1$. Thus $C_n Px = x_0^*(x) C_n x_0$ $(x \in X; n = 1, 2, ...)$. Moreover, it is easy to see that if $b < \overline{\lim} ||C_n x_0||$, then the inequality

(4.3)
$$\mu\{x: |x_0^*(x)| b \geqslant a\} \leqslant \overline{\lim} \mu\{x: |x_0^*(x)| \cdot ||C_n x_0|| \geqslant a\}$$

holds for any a > 0. Suppose that $C_n P\mu \Rightarrow \delta_0$. Hence for each a > 0 we obtain

$$\lim C_n P\mu\{x: ||x|| \geqslant a\} = 0.$$

But we have

$$C_n P\mu\{x: ||x|| \ge a\} = \mu\{x: |x_0^*(x)| \cdot ||C_n x_0|| \ge a\} \quad (n = 1, 2, ...),$$

which together with (4.3) implies that if $b < \lim ||C_n x_0||$, then

$$\mu\{x: |x_0^*(x)| b \ge a\} = 0$$
 for any $a > 0$.

Since μ is full, the last relation shows that $||C_n x_0|| \to 0$ and, consequently,

$$\lim \|C_n P\| = 0.$$

Now assume that the sequence $\{C_n P\mu\}$ is compact in $\mathscr{P}(X)$. In order to establish that the sequence $\{C_n P\}$ is compact in $\mathscr{P}(X)$ it is enough (by Proposition 4.2 and the second part of Proposition 4.3) to show that the sequence of norms $\{\|C_n P\|\}$ is bounded. But the last assertion follows easily from the fact that if the sequence $\{C_n P\mu\}$ is compact, then for every sequence $\{a_n\}$ chosen so that $a_n > 0$ and $\lim_n a_n = 0$ we have $a_n C_n P\mu \Rightarrow \delta_0$ and, consequently (by the second part of the proposition), $\|a_n C_n P\| \to 0$. Thus the proof is completed.

5. Let \mathscr{A} be a subgroup of $\mathscr{U}(X)$ and let σ be a map from $\mathscr{A} \times \mathscr{A}$ into \mathscr{A} . We say that σ is *continuous at* 0 if for any pair of sequences $\{A_n\}$ and $\{B_n\}$ in \mathscr{A} which converge to 0 we have $\sigma(A_n, B_n) \to 0$.

Let μ be a probability measure on X which is stable under \mathscr{A} . For each $(A, B) \in \mathscr{A} \times \mathscr{A}$ let $\mathscr{C}(A, B)$ denote the subset of \mathscr{A} consisting of those operators C from \mathscr{A} for which

$$A\mu * B\mu = C\mu * \delta_x$$
 for a certain $x \in X$.

If there exists a selector σ on $\mathscr{A} \times \mathscr{A}$ with $\sigma(A, B) \in \mathscr{C}(A, B)$ for any $A, B \in \mathscr{A}$, which is continuous at 0, then μ is said to be *strongly* \mathscr{A} -stable.

Remark 5.1. Let μ be an \mathscr{A} -stable measure on X and assume that for any pair of sequences $\{A_n\}$ and $\{B_n\}$ in \mathscr{A} which converge to 0 we can find a sequence $\{C_n\}$ in \mathscr{A} such that

$$A_n \mu * B_n \mu = C_n \mu * \delta_{x_n}$$
 for some $x_n \in X$ $(n = 1, 2, ...)$

and

$$\lim C_n = 0.$$

Then μ is strongly \mathscr{A} -stable.

For example, given A, $B \in \mathcal{A}$ it is enough to take as $\sigma(A, B)$ an operator C from $\mathcal{C}(A, B)$ such that

$$|||C||-r_{A,B}| \leq ||A||, \quad \text{where } r_{A,B} = \inf \{||C||: C \in \mathscr{C}(A, B)\}.$$

Remark 5.2. Let μ be a full \mathscr{A} -stable measure on a finite-dimensional space. Then μ is strongly \mathscr{A} -stable.

To see this we note that for full measures μ on the finite-dimensional space X the convergence $A_n \mu \Rightarrow \delta_0$ for $A_n \in \mathcal{B}(X)$ implies

$$\lim A_n = 0$$

(it is a simple consequence of statement (ii), p. 120, in [11]).

Moreover, it is clear that any μ which is stable must also be strongly $\{aI: a > 0\}$ -stable.

PROPOSITION 5.1. Let μ be a probability measure on X which is strongly $\mathscr{U}(X)$ -stable and let A_n , $B_n \in \mathscr{U}(X)$ (n = 1, 2, ...). If the sequences of norms $\{||A_n||\}$ and $\{||B_n||\}$ are bounded, then we can find a sequence $\{C_n\}$ in $\mathscr{U}(X)$ such that

$$A_n \mu * B_n \mu = C_n \mu * \delta_{x_n}$$
 for some $x_n \in X$ $(n = 1, 2, ...)$

and $\{\|C_n\|\}$ is bounded.

Proof. Let μ be a strongly $\mathscr{U}(X)$ -stable measure. Given A, $B \in \mathscr{U}(X)$ we put $r_{A,B} = \inf \{ ||C|| : C \in \mathscr{C}(A, B) \}$. Then for any pair of sequences $\{A'_n\}$ and $\{B'_n\}$ in $\mathscr{U}(X)$ which converge to 0 we have

$$\lim_{n} r_{A_{n},B_{n}'} = 0.$$

Let $\{A_n\}$, $\{B_n\}$ be two sequences of operators from $\mathcal{U}(X)$ with

$$\sup_{n} \{||A_n||+||B_n||\} < \infty.$$

Then, for any sequence of positive real numbers $\{a_n\}$ which converge to 0, we have

$$\lim_{n} r_{a_n A_n, a_n B_n} = 0.$$

We note that for each a>0 and A, $B\in \mathcal{U}(X)$ we have $r_{aA,aB}=ar_{A,B}$. Consequently, $a_nr_{A_nB_n}\to 0$ as $n\to\infty$ for every sequence $\{a_n\}$ chosen so that $a_n>0$ and $\lim a_n=0$. Hence

$$\sup r_{A_n,B_n} < \infty.$$

For each n we choose an operator C_n from $\mathscr{C}(A_n, B_n)$ such that $|||C_n|| - r_{A_n, B_n}| \le 1$. It is clear that the sequence $\{C_n\}$ has the required properties. The proposition is thus proved.

Now, we are ready to prove the main result of this paper.

THEOREM 5.1. Let X be a real separable Banach space of dimension at least two and let μ be a non-degenerate probability measure on X which is strongly $\mathscr{U}(X)$ -stable. Then μ is full Gaussian.

Proof. Let μ be a non-degenerate and strongly $\mathscr{U}(X)$ -stable measure on X. It is clear that the symmetrized distribution μ^s is also strongly $\mathscr{U}(X)$ -stable. In this case for any A, $B \in \mathscr{U}(X)$ there exists a $C \in \mathscr{U}(X)$ such that

$$(5.1) A\mu^s * B\mu^s = C\mu^s.$$

If we prove that μ^s is Gaussian, then it will follow from Cramer's theorem that so is μ . By Theorem 2.1, μ and, consequently, μ^s are full. For simplicity of

the notation we put $v = \mu^s$. According to Theorem 3.1 it will be sufficient to show that there is a one-dimensional projector P in $\mathcal{D}(v)$.

Given a projector P, we put $P^{\perp} = I - P$. It is obvious that $\{I, P - P^{\perp}\}$ is a finite subgroup of $\mathcal{U}(X)$. Consequently, by Proposition 2.3 there exists a one-dimensional projector P_0 such that $(P_0 - P_0^{\perp})v = v$. Put

$$A_n = P_0 + \frac{1}{n} P_0^{\perp}, \quad B_n = P_0^{\perp} + \frac{1}{n} P_0 \quad (n = 1, 2, ...).$$

Obviously, the operators A_n and B_n belong to $\mathcal{U}(X)$. By (5.1) for every integer n we can find an operator C_n in $\mathcal{U}(X)$ such that

$$(5.2) A_n v * B_n v = C_n v.$$

We note that the sequences of norms $\{||A_n||\}$ and $\{||B_n||\}$ are bounded. Consequently, by Proposition 5.1 we may assume that also the sequence $\{||C_n||\}$ is bounded. From (5.2) we obtain

(5.3)
$$C_n^{-1} A_n v * C_n^{-1} B_n v = v \quad (n = 1, 2, ...).$$

Hence, by Theorem 2.2, Chapter II in [5], the sequences $\{C_n^{-1}A_nv\}$ and $\{C_n^{-1}B_nv\}$ are shift compact. Since $\hat{v}(x^*) \ge 0$ for all $x^* \in X^*$, we infer that $\{C_n^{-1}A_nv\}$ and $\{C_n^{-1}B_nv\}$ are compact. Applying the formula $(P_0 - P_0^{\perp})v = v$ and Proposition 4.1 it is easy to prove that for any sequence $\{T_n\}$ in $\mathcal{B}(X)$ the compactness of $\{T_nv\}$ implies the compactness of $\{T_nP_0v\}$ and $\{T_nP_0^{\perp}v\}$. Hence, in particular, the sequences $\{C_n^{-1}A_nP_0v\}$ and $\{C_n^{-1}B_nP_0^{\perp}v\}$ are compact. Consequently,

$$\frac{1}{n}C_n^{-1}A_nP_0v\Rightarrow\delta_0\quad\text{and}\quad \frac{1}{n}C_n^{-1}B_nP_0^{\perp}v\Rightarrow\delta_0.$$

But for n = 1, 2, ... we have

$$C_n^{-1} A_n = C_n^{-1} P_0 + \frac{1}{n} C_n^{-1} P_0^{\perp}, \quad C_n^{-1} B_n = C_n^{-1} P_0^{\perp} + \frac{1}{n} C_n^{-1} P_0,$$

$$C_n^{-1} A_n P_0 = C_n^{-1} P_0, \quad C_n^{-1} B_n P_0^{\perp} = C_n^{-1} P_0^{\perp}.$$

Thus (5.3) can be rewritten in the form

(5.4)
$$\left(C_n^{-1} P_0 + \frac{1}{n} C_n^{-1} P_0^{\perp}\right) v * \left(C_n^{-1} P_0^{\perp} + \frac{1}{n} C_n^{-1} P_0\right) v = v \quad (n = 1, 2, ...),$$

where the sequences $\{C_n^{-1}P_0v\}$ and $\{C_n^{-1}P_0^{\perp}v\}$ are compact. Passing, if necessary, to subsequences we may assume without loss of generality that these sequences are convergent. Moreover, we have

$$\lim_{n} \frac{1}{n} C_{n}^{-1} P_{0}^{\perp} v = \lim_{n} \frac{1}{n} C_{n}^{-1} P_{0} v = \delta_{0}.$$

Hence and from Proposition 4.1 we get

(5.5)
$$\lim_{n} C_{n}^{-1} P_{0} v = \lim_{n} \left(C_{n}^{-1} P_{0} + \frac{1}{n} C_{n}^{-1} P_{0}^{\perp} \right) v,$$

$$\lim_{n} C_{n}^{-1} P_{0}^{\perp} v = \lim_{n} \left(C_{n}^{-1} P_{0}^{\perp} + \frac{1}{n} C_{n}^{-1} P_{0} \right) v.$$

On the other hand, from (5.4) by a simple computation we obtain

$$C_n^{-1} P_0 C_n v = C_n^{-1} P_0 v * \frac{1}{n} C_n^{-1} P_0 v, \qquad C_n^{-1} P_0^{\perp} C_n v = C_n^{-1} P_0^{\perp} v * \frac{1}{n} C_n^{-1} P_0^{\perp} v$$

$$(n = 1, 2, ...)$$

and, consequently,

(5.6)
$$\lim C_n^{-1} P_0 C_n v = \lim C_n^{-1} P_0 v$$
, $\lim C_n^{-1} P_0^{\perp} C_n v = \lim C_n^{-1} P_0^{\perp} v$.

Thus (5.4)-(5.6) together imply that

(5.7)
$$\lim C_n^{-1} P_0 C_n v * \lim C_n^{-1} P_0^{\perp} C_n v = v.$$

Since $\{C_n^{-1}P_0v\}$ is convergent, we infer from Proposition 4.3 that $\{C_n^{-1}P_0\}$ is compact. Consequently, by the assumption on the sequence $\{\|C_n\|\}$ the norms $\|C_n^{-1}P_0C_n\|$ (n=1,2,...) are bounded in common. This together with the convergence of $\{C_n^{-1}P_0C_nv\}$ proves (by Proposition 4.2) that the sequence $\{C_n^{-1}P_0C_n\}$ has a strongly convergent subsequence. Denoting by P its limit, by (5.7) we have

$$Pv * \lim_{n \to \infty} C_n^{-1} P_0^{\perp} C_n v = v,$$

which shows that $P \in \mathcal{D}(v)$. Obviously, P is a projector from $\mathcal{B}(X)$ of dimension at most one. Moreover, $P \neq 0$. Indeed, if P = 0, then there exists a subsequence of indices $n_1 < n_2 < \ldots$ for which $\{C_{n_k}^{-1} P_0 C_{n_k}\}$ converges strongly to 0 and, consequently,

$$\lim_{k} C_{n_{k}}^{-1} P_{0} v = \lim_{k} C_{n_{k}}^{-1} P_{0} C_{n_{k}} v = \delta_{0}.$$

But Proposition 4.2 then implies that $||C_{n_k}^{-1} P_0|| \to 0$, which contradicts the fact that the sequence $\{||C_n||\}$ is bounded. The theorem is thus proved.

Remark 5.3. In the statement of Theorem 5.1 we have assumed that μ is strongly $\mathscr{U}(X)$ -stable. However, it is enough to assume that μ is $\mathscr{U}(X)$ -stable and has the property proved in Proposition 5.1.

From Remark 2.1 it follows that if H is a Hilbert space, then every $\mathcal{U}(H)$ -stable Gaussian measure ϱ is also strongly $\mathcal{U}(H)$ -stable. Thus, combining Theorems 2.2 and 5.1 and taking into account Theorem 3 in [4], we get a

characterization of strongly $\mathcal{U}(H)$ -stable measures on the infinite-dimensional Hilbert space.

THEOREM 5.2. Suppose that the Hilbert space H is infinite dimensional. Then a non-degenerate probability measure μ on H is strongly $\mathscr{U}(H)$ -stable if and only if μ is full Gaussian and the sequence $a_1 \geqslant a_2 \geqslant \ldots$ of eigenvalues of its covariance operator fulfils the condition $\sup a_n/a_{2n} < \infty$.

REFERENCES

- S. Chevet, S. A. Chobanjan, W. Linde et V. T. Tarieladze, Caractérisation de certaines classes d'espaces de Banach par les mesures gaussiennes, C. R. Acad. Sci. Paris, Sér. A, 285 (1977), p. 793-796.
- [2] A. Kumar and B. M. Schreiber, Self-decomposable probability measures on Banach spaces, Studia Math. 53 (1975), p. 55-71.
- [3] B. Mincer, On GL(n, R)-stable measures, Probability and Mathematical Statistics 2 (1982), p. 193-195.
- [4] and K. Urbanik, Completely stable measures on Hilbert spaces, Colloq. Math. 42 (1979), p. 301-307.
- [5] K. R. Parthasarathy, Probability measures on metric spaces, New York-London 1967.
- [6] Every completely stable distribution is normal, Sankhyā, Series A, 35 (1973), p. 35-38.
- [7] and K. Schmidt, Stable positive functions, Trans. Amer. Math. Soc. 203 (1975), p. 161-174.
- [8] K. Schmidt, Stable probability measures on R^o, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 33 (1975), p. 19-31.
- [9] M. Sharpe, Operator-stable probability distributions on vector groups, Trans. Amer. Math. Soc. 136 (1969), p. 51-65.
- [10] A. Tortrat, Structure des lois indéfiniment divisibles dans un espace vectoriel topologique (séparé) X, Symposium on Probability Methods in Analysis; p. 299-328 in: Lecture Notes in Math. 31, Berlin-Heidelberg-New York 1967.
- [11] K. Urbanik, Lévy's probability measures on Euclidean spaces, Studia Math. 44 (1972), p. 119-148.
- [12] Operator semigroups associated with probability measures, Bull. Acad. Polon. Sci., Sér. Sci. Math., Astronom. Phys., 23 (1975), p. 75-76.

Institute of Mathematics, Wrocław University pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

Received on 3. 4. 1980

Ž.