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Abstract. The probability measures on separable Banach space X
which are stable under the group #(X) of all invertible linear
operators on X are investigated. The characterization of such
measures on finité-dimensional spaces was obtained by Parthasarathy
in [6]. In this paper some generalizations of Parthasarathy’s result are
given.

1. Parthasarathy proved in [6] (see also [3] and [7]) that the probability
measures on the at least two-dimensional Euclidean space R" which are stable
under the group % (R") of all invertible linear transformations of R" onto itself
are precisely the full Gaussian and the degenerate probability measures. Our
aim is to discuss % (X)-stable distributions on a real separable Banach space X .
The main results of this paper are the following: For a Hilbert space X it is
shown that a non-degenerate Gaussian measure is % (X)-stable if and only if it

~is full and completely stable in the sense of paper [4]. Hence we obtain a

characterization of % (X)-stable Gaussian measures on Hilbert spaces in terms
of proper values of their covariance operators. Further, it is shown that a non-
degenerate % (X)-stable probability measure on X (dimX > 2) is a full
Gaussian measure if and only if there exists a non-trivial finite-dimensional
projector in its decomposability semigroup. As an application of this we obtain
a Parthasarathy-type theorem for probability distributions on X, which are
stable under % (X) in some “enough regular” way (for so-called strongly % (X)-
stable distributions). The question whether in the infinite-dimensional case
there are non-Gaussian % (X)-stable probability measures is still -open.

Further in this section we shall introduce basic notions and facts. -

Let ||| be the norm of a real separable Banach space X and let X* be the
topological dual of X.

For a set A = X its norm closure is denoted by A.

By 2(X) we denote the set of all probability measures defined on the class
of Borel subsets of X. The set #(X) with the topology of weak convergence .
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and multiplication defined by the convolution becomes a topological
semigroup. We denote the convolution of two measures 4 and p by A=y, and
by u*" the n-th power in the sense of convolution. If a sequence {u,} of
probability measures on X converges weakly to a ue #(X), we write y, = u.
Moreover, by 3, (x e X) we denote the probability measure concentrated at the
point x.

The characteristic functional of p is defined on X* by the formula

A(x*) = [ ¥ @du(x)  (x*eX*).
X

Given l/.lE,@(X), we define i by _
o H(E) = u(—E), where —E = {—x: xeE}.

The mapping u — Ji is a continuous automorphism of #(X). For any
e 2 (X), p* = uxpu is called the symmetrization of pu.

A probability measure u is said to be symmetric if u = .

A measure p from 2(X) is said to be full if its support is not contained in
any proper hyperplane of X. It is clear that u is full if and only if 1 is full.

Further, 2 (X) will denote the algebra of continuous linear operators on X
with the norm topology. By % (X) we shall denote the group of all invertible
operators from X onto X.

The image and the kernel of 4 € %#(X) will be denoted by Im A4 and Ker 4,
respectively. An operator A is said to be n-dimensional if dimImA = n
(n=1,2,..). By a projector we mean an operator P from #(X) with the
property P2 = P. The zero operator will be denoted by 0, and the unit
operator by 1.

For any Ae #(X) and ue 2(X) let Au denote the measure defined by the
~formula Au(E) = p(A™'(E)) for all Borel subsets E of X. For all, 4 in /3(X)
and p, ve#(X) we can easily check the equations

A(p*v) = Ap*Av,  (AW)" (x*) = A(A* x*),

where A* denotes the adjoint operator. Moreover, it is clear that the mapping
(A, ) = Aufrom #(X) x Z(X) onto #(X) is jointly sequentially continuous
even if Z(X) is provided with a strong operator topology. Consequently, if a
sequence {A4,} of linear operators is sequentially strongly compact, then for
every pe?(X) the sequence {4,u} is compact in 2(X).

For full measures on finite-dimensional spaces the converse implication is
also true. Namely, if the sequence {4, u} is compact in 2(X), where u is full
and 4,e#(X)(n = 1, 2, ...), then the sequence {4,} is compact in Z(X) (see
[11], p. 120).

In the study of limit probability distributions Urbanik [11] introduced the
concept of decomposability semigroups 2 (u) of linear operators associated



¥ (X)-stable measures 55

with the probability measure u. Namely, 2 (1) consists of all operators A4 from
2 (X) for which u = Apu=v holds for a certain probability measure v. It is clear
that 2 (u) is a semigroup under multiplication of operators and 2 (u) always
contains the operators 0 and I. Moreover, 2 () is closed in #(X). It has been
shown that some probabilistic properties of measures correspond to algebraic
and topological properties of their decomposability semigroups (see, e.g., [12]).
The Tortrat representation of infinitely divisible laws on Banach spaces is
an important step in our considerations. We recall that for any bounded non-
negative Borel-measure. F on X vanishing at 0 the Poisson measure e(F)
associated with F is defined as ‘
~ 1
e(F) = e 0 ¥ - F,
peo M
where F*° = §,. Let M be a not necessarily bounded Borel measure vanishing
at 0. If there exists a representation

M = sup F,,

where F, are bounded and the sequence {e(F,)} of associated Poisson measures
is shift compact, then each cluster point of {e(F,)} will be called a generalized
Poisson measure and denoted by &(M). The measure (M) is uniquely defined
up to a shift transformation, ie. for two cluster points, say u, and y,, of
translates of {e(F,)} there exists an element xeX such that u; = u,*d,.

Clearly, (M) = &(M,) implies M; = M,. Moreover, if (M) is full, then
so is M.

For each pair &(M), &(N) of generalized Poisson measures and each
Ae#(X) we can easily check the equations

E(M)xZ(N) = E(M+N), AEM) = &(AM),

where AM(S) = AM (S) for all Borel subsets S of X\{0}.

By a Gaussian measure on X we mean a measure ¢ such that, for every
x*e X*, the induced measure x*¢ on R is Gaussian. :

Tortrat proved in [10], p. 311, the following analogue of the Lévy-
Khintchine representation: ue 2 (X)is infinitely divisible, i.e. for every positive
integer n there exists a probability measure u, on X such that y*" = pif and
only if u has a unique representation u = g *&(M), where ¢ is a symmetric
Gaussian measure on X and &(M) is a generalized Poisson measure.

If ¢ is a Gaussian measure on X, then the characteristic functional of ¢
takes the form

8(x*) = explix* ()— Ix*(Rx*)} (x*€X?),

where x is the mean value of ¢ and R is its covariance operator, i.c. a nuclear -
operator from X* into X with the following properties: x}(Rx3)
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= x3(Rx¥) for all xf, x§e X* (symmetry) and x*(Rx*) = 0 (non-negativity)
(see [1]). Clearly, if R is the covariance operator of ¢ and 4 € £(X), then ARA*
is the covariance operator of Ag. Moreover, for any Gaussian measures g; and

* @, with the covariances R; and R,, respectively, the covariance of ¢, * g, is

equal to Rl +R,.
We note that g is full if and only if its covariance operator R is one-to-one.
If X is a Hilbert space, then every Gaussmn covariance is a positive definite,
nuclear operator on X.

2. Let pu be a probability méasure on a real separable Banaéh space X and

: let &7 be a subgroup of % (X). We say that u is o/-stable if for any A, Be .o/

there exist a Ceo/ and a point xe X such that
ApxBu = Cux*d,.

The notion of stability with respect to arbitrary groups of automorphisms
in the case of probability measures on locally compact groups was introduced
by Parthasarathy and Schmidt in [7]. Earlier (in [6]) Parthasarathy
mvestlgated probability distributions on R" which are stable under the group of
all invertible linear transformations of R" onto itself. The theory of .«/-stable
measures. on Euclidean spaces has been presented in [8]. In particular, [8]
contains the Lévy-Khintchine formula for such measures. . :

It is easy to see that if u is o/-stable, then for any finite set 4,, ..., 4, of
elements of .o/ there exist a- C,e«/ and a point x,eX for which

Al H* ... .*An.u = Cn“*éx,,

Consequently, for each positive integer n there are C,e.«/ and x,€ X such
that y*" = C,u+6,,eg pis operator-stable in the sense of Sharpe (see [9]).
For full measures on R" the converse is also true. Namely, a full probability
measure uon R” is operator-stable if and only if u is stable under a one-
parameter subgroup of % (R") (see [9], Theorem 2).
~ 'PrOPOsSITION 2.1. Let o/ be a subgroup of % (X) and let u be a probability
measure on X which is stable under of. Then u is infinitely divisible. Let u

= g% e(M) be the decomposition of u into its symmetric Gaussian part ¢ and its -
generalized' Poisson part €(M). Then both ¢ and (M) are stable under /.

" Proof. The proposition follows immediately from the operator stability of

4 and from the uniqueness of the Tortrat representation.

We note that a generalized Poisson measure &(M) associated with the

‘measure M is stable under «# if and only if for any pair 4, Be o/ there exists a
‘Ce«f such that

@y AM4BM = CM.

'+ Let ¢ be a Gaussian measure with the covariance operator R. It is clear that

e is o/-stable if and only if for any A, Be s/ there is a Ce o/ for which the

equality ARA*+ BRB* = CRC* holds
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Let u be a probability measure on X which is stable under a subgroup .« of

% (X) and assume that A is a real number from (—1, 1) such that AJ € /. Then
~ the operator Al belongs to Z(y). We infer this from the following

ProrosiTiON 2.2. Let p be an </ -stable probability measure on X and assume
that A is an operator from o such that

(i) the sequence {A"} converges strongly to 0;

(ii) A commutes with every element of /.

Then A belongs to 2 (u).
‘ Proof. Since p is o/-stable and A e o, there exist a sequence {C,} in o/ and

a sequence-{x,} in X such that

ApxA?px ... +Ap = C,uxd,  for all n.
Hence we get the formula
(22 C;leﬂ*C,,_lez,u* o #C A = padeor,, (n=1,2,..).

Since A commutes with C, !, it is easy to obtain from (2.2) the following
equation:

§(2_3) ‘#*5c:;1xn*C;1A"“# = C,,‘lAu*Au*élAC"—lx" n=1,2,..).

' Moreover, from (2.2) and Theorem 5.1, Chapter Il in [5], we infer that the
sequence {C, ' Au} is shift compact and, consequently (by (i) 4" — O strongly),
there exists a sequence {y,} in X for which ’

C,lA™ pxd, = A"C*IAu*é = .

Thus, setting v, = C,; ' A" u+d, and P = Col Ap*d4c-15 4y —co s,
(n =1,2,..), by (23) we have the formula u*v, = Au=*p,, where v, = Jo.
Since in this case the sequence {,} must be compact (see Theorem 2.1, Chapter
I in [5]), it is then clear that there exists a ve #(X) for which u = Au=*v.
- This completes the proof.

. We say that a probability measure ,ue,@(X) is self-decomposable if the
inclusion {AI: A€[0, 1]} = 2(p) holds (see [2]). Thus, if pu is” % (X)-stable,
‘then u is self-decomposable. Moreover, for any Ae(—1, 0) we have also
‘Al € 2(u), and since 9 (p) is closed, the same is true for 1 = — 1. But it is easy
to prove that —IeP(y) if and only if u is a translation of a symmetric
probability measure. Thus, every #(X)-stable measure is in addition a
translation of a symmetric one.

Moreover the following statement is true:
PrOPOSITION 2.3. Let p be a symmetric </-stable probability measure on X.

Then for any finite group % < o/ there exists a Te s/ suchthat (T *AT)u = p
. for all Ae%.

For the proof see [6], Lemma 3.
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Further, we shall need the following lemma:

LemMA 2.1. Let N be an infinite-dimensional subspace of X . Then there exists
an Ae ¥ (X) such that the linear manifold A(N)+ N is dense in X. '

Proof. Let {x,} be a countable dense subset of X. Since N is infinite
dlmenswnal we can find a pair of sequences {y,} in N and {y}} in X* such that
VEWw) = Opm(n, m =1,2,..). Choose a sequence {a,} of positive numbers
such that

for all x #0.

llZayn

If we define the operator S by
Sx = Z a,yix)x, (xeX), ~

n=1
then |IS]] < 1 and Sa, 'y, = x, for all n. Consequently, S(N) > {x,]. Put
A = I+8§. Obviously, A is invertible and A(N)+ N > {x,}. Thus the lemma
is proved.
An application of Lemma 2.1 leads to the following

" THEOREM 2.1. Let p be a non-degenerate % (X)-stable probability measure on
a real separable Banach space X. Then u is full.

Proof. Denote by N the smallest closed subspace of X for which there
exists an element. x, such that u is concentrated on the hyperplane N + x,,.
Since p is # (X)-stable, for any A e fil(X ) there exists an operatgr B e # (X) such
that the formula

(24) A(N)+N = B(N) = B(N)

holds. Under our assumption N # {0}. We shall prove that N = X. Indeed, if
N # X, we can choose an operator A from #(X) in such a way that
A(N) # N. Then from (2.4) it follows that N (and X) must be infinite
dimensional. But in this case A(N)+ N is dense in X for some Ae#(X)
(Lemma 2.1). Hence and from (2.4) we infer that there exists an operator
Be(X) such that B(N) = X, which contradicts the assumption N # X.
. Thus the theorem is proved. '

. A probability measure u on X is said to be completely stable if for any pair
A, Be #(X) there exist Ce Z(X) and xe X such that

(2.5) Ap*Bu = Cu#d,.

We note that any non-degenerate completely stable distribution u on the
Euclidean space R" is full. Consequently, if 4, Be #(R"), then Cu, where C
satisfies (2.5), is also full. Hence C(R") = R", i.e. the operator C is invertible.
Thus, every completely stable measure on R" is # (R")-stable. Since any full
Gaussian measure on R" is completely stable, the converse is also true.
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Completely stable measures on the infinite-dimensional Hilbert: space were
investigated in [4]. In particular, in [4] it is shown that in this case there exist
even completely stable distributions which are not infinitely divisible.
Moreover, a characterization of completely stable Gaussian measures in terms
of proper values of their covariance operators is given. Namely, it is shown (see
[4], Theorem 3) that a non-degenerate Gaussian measure ¢ on the infinite-
dimensional separable Hilbert space H is completely stable if and only’if its
covariance operator has infinitely many positive eigenvalues ¢, = a, > ... (i.e.
¢ is not concentrated on.a finite-dimensional hyperplane of H)" dl’ld the
sequence-a,/a,, (n = 1, 2, ...) is bounded.

Further, by H we denote a real separable Hilbert space with the inner
product (-, ->. We shall prove that the non-degenerate Gaussian measures on
H which are # (H)-stable are precisely the full Gaussian completely stable
measures. The problem of characterization of # (X)-stable Gaussian measures
on an arbitrary Banach space is still open.

The following propositions are true:

ProprosITION 2.4. Let a; = a, = ...and by = b, > ... be the sequences of
eigenvalues of covariance operators S and ASA* (A€ A(H)), respectively. Then
the inequality b, < ||A||*a, (n = 1, 2, ...) holds. In particular, if Ac ¥ (H), we
also have a, < ||A™Y|*b, for all n.

For the proof see [4], Lemma 2.

ProOPOSITION 2.5. Let S, and S, be one-to-one covariance operators with the
corresponding - sequences of eigenvalues a, > a, = ..., respectively. Then
S, = AS, A* for some AU (H) if and only if the sequence {max {a,/b,, b, a,}}
is bounded.

Proof. The necessity follows from Proposition 2.4. To prove the sufficiency
we assume that e,, e,, ... (f;, f2, ...) is an orthonormal basis of eigenvectors
of S, (S,) corresponding to the eigenvalues a,, a,, ... (b, b;, ..3), respectively.
Further, let U be the unitary operator on H such that Uf, =¢, (U e, = 1)
for all n. Put

&

Hyx = i Jadb e, fi5 fy (xeH).

Since the sequence rrnax {a, /b,,, b,/a,}} is bounded, H, is a well-defined
linear operator from 4% (H). Obviously, H, is a Hermitian operator.
Consequently, setting A = UH, we-have Ae%(H) and A* = HU . Now it
is easy to verify the equation AS, A*e, = S,¢, (n = 1, 2, ..)), which shows
that AS, A* = §,. Thus the proposition is proved.

ProposITION 2.6. Let S be a one-to-one covariance operator on H and
A, Be (H). If there exists an operator C from #(H) such that ASA* + BSB*
= CSC*, then we can find an invertible operator with the same property.
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Proof Put §, = ASA* 4+ BSB*. Obviously, the covariance operator S, is

. also one-to-one. By our assumption, S; = CSC*. Hence, by Proposition 24,

we have the formula
(2.6) b, <lICl*a, (m=1,2,..),

where a;, > a, > ... and b, > b, > ... are the sequences of eigenvalues S
and §,, respectively. We note that (S, x, x) > (ASA*x, x> and {S; x, x)

.= {(BSB*x, x) for all x. Consequently, if ¢; > ¢, > ...and d; > d, > ...

are the sequences of cigenvalues of ASA* and BSB¥*, respectively, then .

27 b, > max {c,,d,} (n=1,2,..).
‘ Bl.‘lrt‘“ by Proposition 2.4 we get :
(28) ’ C,, ? “A_lnzan, dn ? ”B_luzan

for all n. From (2.7) and (2.8) we obtain the inequality

b, = max {|[47Y|*a,, |B~|*a,} (n=1,2,..)
which, together with (2.6) and Proposition 2.5, completes the proof.
THEOREM 2.2. Let ¢ be a non-degenerate Gaussian measure on a real

completely stable measure.

Proof. It follows from Proposition 2.6 that every full Gaussian completely
stable probability measure on H is % (H)-stable. Conversely, suppose that ¢ is a
non-degenerate Gaussian measure on H which is # (H)-stable. By Theorem 2.1,
¢ is full. Obviously, we may assume that H is infinite dimensional. Let § denote
the covariance operator of ¢ and let a, > a, > ... be the sequence of
eigenvalues of S. Using the same arguments as in the proof of Theorem 1 in
[4], we infer from % (H)-stability of ¢ that the sequence {a,/a,,} is bounded.
But in this case g is completely stable (Theorem 3 in [47). Thus the theorem 18

Remark 2.1. Let ¢ be a full completely stable Gaussian measure on an
infinite-dimensional Hilbert space H. Then the sequence a; > a, > ... of
eigenvalues of its covariance operator fulfils the condition sup a,/a, < .
Put -

a = sup a,/a,,.
n

" Let A, Be#(H). Then there exists an operator C such that

‘Ag*Bg = Co*d,

for some xe X and ||C|| < a(||4||+]|B|[). Namely, the operator C constructed
in the proof of Theorem 2 in [4] has this property. Moreover, the proof of
Proposition 2.6 shows that for A, Be % (H) we can find an invertible operator
with the same property.
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3. Let u be a probability measure on X and suppose that P is a projector
belonging to 2 (u). Then, by Proposition 1.5 in [11], I — P also belongs to Z(u)
and the equality

G.1) p=Pux(I-P)p

holds.
Let u be in addition infinitely divisible. Then from (3.1) and the uniquenesé
of ‘the Tortrat representation of u one can obtain the following = -
ProrosITION 3.1. Suppose that p = g+&(M), where ¢ is a symmetric

. Gaussian measure with the covariance operator R and (M) is a generalized

_Poisson measure. Moreover, let P be a projector on X. Then:
(i) Pe2(p) if and only if Pe 2 (W) 2(E(M)); - . : ;

(iiy Pe2(o) if and only if R(Im P*) ¢ Im P and R(Ker P*) < Ker P;

(iii) Pe2(&(M)) if and only if the measure M is concentrated on
ImPuKerP. '

The following lemma is a crucial step in our considerations:

LemMa 3.1. Let X be a real separable Banach space of dimension at least two
and let €(M) be a non-degenerate generalized Poisson measure on X. If there
exists a non-trivial finite-dimensional projector P belonging to 2 (&(M)), then
g(M) is not U(X)-stable. :

Proof. Clearly, by Theorem 2.1 it is sufficient to prove the lemma under
the assumption that (M) is full. Then the measure M is also full

Suppose that P, and P, are projectors from & (E(M)). We infer from
Proposition 3.1 that M is concentrated on the set

(Im P, UKer P,) n(Im P, uKer P,).

Consequently, the restrictions M |Im P, and M|Ker P, are concentrated
on the unions

(Im P, nIm P;) U(Im P, nKerP;), (Ker P, nImP,)u(Ker P, nKer P,),

respectively. Hence, since M is full, Im P, is equal to the direct sum of
Im P, ~Im P, and Im P, nKer P,, and Ker P, is equal to the direct sum of
Ker P, nIm P, and Ker P, n Ker P,. Consequently, P, P, = P, P,.

Let k be the least positive integer for which there exists a k-dimensional
projector belonging to 2 (2(M)) and let #, denote the set of all k-dimensional
projectors from 2 (€(M)). Consider Py, P,€ #,, P, # P,.Since P; commutes
with P,, the operator P, P, is a projector from % (2(M)). Moreover, the
dimension of P, P, is less than k. By the definition of k, this implies P, P,
= P,P, = 0.

Hence, in particular, we infer (note that, for any Pe #,, M (Im P)>0 and
M is o-finite) that #, is a countable set.
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Contrary to the assertion of the lemma, suppose that (M) is # (X)-stable.
Then, by (2.1), given an arbitrary 4e#(X) we can find Be#(X) such that

(3.2) AM+M = BM.

Now let P be a projector from & (€(M)). Then the projector BPB~! belongs
to %(Bé(M)). Consequently, since AM < BM and M < BM by (3.2,
Proposition 3.1 implies BPB™'e Z(Ag(M))n Q(E(M) (note that &(BM)
= B&(M) and &(AM) = Ag(M)). Hence BPB‘ , AT'BPB™! Ae 7 (2(M)).
Obviously, if Pe ., then also BPB™', A" BPB ' Ae ¢,. Thus the set ¢,
has the following property: for any 4 EJ?/ (X) there exists a P, € #, such that
A ' P, Ae #,. Fix Pye #,. Let A be an arbitrary operator from # (X) and let
A"'P,Ae ¢, for Pye ¢,. If P, # P,, then P, P, = 0 and, consequentl}},
A 'P,AA™! PyA = 0. Hence, since A"'P,Ae ¢,, we obtain

(3.3) A '(ImPy) = (U KerP.

Pey &

If P, =P, then A~' P, Ac ¢, and, consequently,

(3.4) A" (ImPy) = | ImP.
Pey,

Since A is arbltrary, (3.3) and (3.4) together imply that

U (KerPuImP) X,

Pe,ﬂ'k
which contradicts the fact that _#, is a countable set. The lemma is thus proved.

We note that for any Gaussian measure ¢ on X (dim X > 2) there are non-
trivial finite-dimensional projectors in & (g). For instance, if ¢ is a full Gaussian
measure with the covariance operator R, then every projector of the form
x*(-)(Rx*/x*(Rx*)) (x*e X*) belongs to %(g) (this follows, by a simple
" computation, from Proposition 3.1). Thus, combining Proposition 2.1 and
Lemma 3.1 and taking into account Theorem 2.1, we obtain

THEOREM 3.1. Let X be a real separable Banach space of dimension at least
two. Then a non-degenerate ¥ (X)-stable probability measure on X is a full
Gaussian measure if and only if there exists a non-trivial finite-dimensional
projector in its decomposability semigroup

4. Before proceeding to state and prove the main results of this paper we
shall establish auxiliary propositions.

ProvrosiTiON 4.1. Suppose that, forn = 1, 2, ..., p,e 2(X) and ‘A,,,, {B,}
are two sequences of linear operators on X . If rhe sequences {A, u, and B,, U
are condirionally compact, then so are the sequences {(A,+B,)u, and
{(A,— B,) u,}. Moreover, if A,u, = v for some ve P(X) and B, p, => d,, then
(A, + By = v.
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Proof. Since {4, u,} and {B, u,} are conditionally compact, it follows from
Theorem 6.7, Chapter II in [5], that given & > O there exist compact sets K}
and K? such that

paix: AyxeK!) > 1—¢/2, p,{x: B,xeK?} > 1—¢/2
for all n. Then we have
U, ix: A,xeK}! and B,xeK?! > 1—¢.
We h_ote that .- -
{x: A,xeK! and B,xeK?)} < {x: (4,+B)xeK!+KZ}.
Consequently,
y,,-{x:v(A,,+B,,)xeK,1+K3} > 1—¢ for all n.

Since K!+K? is compact and ¢ is arbitrary, it follows once more from
Theorem 6.7, Chapter 11 in [5], that {(4,+B,)u, is compact.

If A is an operator from #(X), then (—A)u = Au for any pe2(X).
Hence and from the continuity of the operation — we infer that the
compactness of {B, u,} implies the compactness of {(— B,) | . Consequently,
the sequence {(4,—B,)u,} is also conditionally compact.

Let A,u, = v and B, u, = do. By the inequality

((An+Bo) ) (6%) = (An ) (¥)] = [in(AF X%+ B x%)— i (A3 x¥)
< [ =™ Ndp,(0) = [[1-e=FdBp, (n=1,2,...; x*eX¥
X X

we get
li'rln ((A,,+B,,)/1,,)A(x*) = lim(4, )" (x*) = 6(x*) for all x*eX*.

Moreover, by the first part of the proposition, the sequence (A4, + B,) i, is
compact. Hence (4,+ B,) 1, = v. The proposition is thus proved.

ProposITION 4.2. Let {T,} be a sequence of one-dimensional operators from
A(X), let p,e?(X) (n =1,2,..), and assume that

(l) n”n = #E?(X)a u # 50’

(ii) the sequence of norms {||T,|} is bounded.

Then the sequence {T,} is sequentially compact in the strong operator
topology.

Proof. Let T, be given for each n by the formula 7, = x}()x,, where
x*e X* and x, is the element of X with ||x,|| = 1. From (ii) it follows that the
sequence {x*} is bounded and, consequently (X is separable), o(X*, X)-
compact. Thus, to prove our statement it is enough to verify that the sequence
{x,} is compact.

El
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There exist a >0 and b > 0 such that for sufficiently large n we have
@y | ta{x: I Xll > b} > a.

Indeed, if no such a and b exist, then for any b > 0 there exists a
subsequence of {T.}, say {7, }, such that

lim (2 1Ty, x| > b} = lim T, i {x: [IX]] = b} = 0.

But, by (i), 7, u,, = u. As i # J, this leads to a contradiction. Moreover,
since {T, u,} is conditionally compact, it follows from Theorem 6.7, Chapter II
in [5], that given ¢ > O there exists a compact set K, such that

42 - Tot(K) = po{x: T,xeK,} > 1—¢

for all n. By (4.1) and (4.2) we can find a compact set K and b > 0 such that for
sufficiently large n, say n > N, we have

U {x: ||7;,x|| > b and T,xeK} > 0.

~ Consequently, since || T, x|| = |x¥(x)|(n = 1, 2, ...), there exists a sequence
{yny in X with [x¥(y,)] > b and x¥(y,)x,€K for n > N. But this implies the
compactness of {x,}. The proposition is thus proved.

ProOPOSITION 4.3. Let p be a full measure on X, let P be a one-dimensional
projector from #(X), and C,e #(X) (n = 1, 2, ...). If the sequence {C, Pu} is
compact in P(X), then the sequence {C, P} is compact in B(X). In particular, if
C,Pu = &y, then ||C,P}| - 0.

Proof. First we prove the second part of the proposition. Let P = x%(*) x,,

where x§ e X¥, xoe X, x¥(xo) = 1, and ||xg|| = 1. Thus C,Px = x§(x)C,x,
(xeX; n=1,2,..). Moreover, it is easy to see that if b < Er;llcnxoll,
then the inequality . n

@3 pl{x: kECIb > af < Eu{x- |x% () 1Cy Xoll > a}

holds for any a > 0. Suppose that C Pu = 8,. Hence for each a > 0 we
- obtain

lim C,Pu{x: ||x}| = a} = 0.

But we have

C.Pu{x: Ixl = a} = p{x: pEE) ICuxoll = a}  (n =1,2,..),
which together with (4.3) implies that if b < fim [IC,xq]l, then
p{x: |x§(x)b > a} =0 for :my a> 0.
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Since p is full, the last relation shows that ||C, xo|| - 0 and, consequently,
lim ||C, P|| = 0.

n

Now assume that the sequence {C, Pu} is compact in #(X). In order to -
establish that the sequence {C,P} is compact in #(X) it is enough (by
Proposition 4.2 and the second part of Proposition 4.3) to show that the
sequence of norms {||C, P|)} is bounded. But the last assertion follows easily
from the fact that if the sequence {C, Pu} is compact, then for every-sequence
{a,} chosen so that a, >0 and 11m a, = 0 we have a,C,Pu = §, and,

consequently (by the second part of the proposition), ||a, C, P|| — 0. Thus the
proof is completed.

5. Let o/ be a subgroup of % (X) and let ¢ be a map from &/ x o7 into <.
We say that o is continuous at 0 if for any pair of sequences {4,} and {B }in o
which converge to 0 we have a(4,, B,) — 0.

Let u be a probability measure on X which is stable under o#. For each
(A, B)esf xof let (A, B) denote the subset of .o/ consisting of those
operators C from & for which

Ap*By = Cuxd, for a certain xeX.

If there exists a selector ¢ on & x & with o(4, B)e¥ (4, B) for any,
A, Be s/, which is continuous at 0, then u is said to be strongly </-stable. .
- Remark 5.1. Let u be an &/-stable measure on X and assume that for any
pair of sequences {4,} and {B,} in «/ which converge to 0 we can find a
sequence {C,} in &/ such that

) Ayp*Byp = C,pu*é, for some x,eX (n=1,2,..)
and -
11mC = 0

Then u is strongly ./-stable.
For example, given A, Be « it is enough to take as ¢ (4, B) an operator C -
from #(A, B) such that

|l =48 < 14ll,  where r,, = inf {C]|: Ce¥(4, B)}.

Remark 5.2. Let u be a full </-stable measure on a ﬁmte-dlmensmnal
space. Then u is strongly .o-stable.

To see this we note that for full measures y on the finite-dimensional space

X the convergence A,u = d, for A,e #(X) implies

limA, =0

(it is a simple consequence of statement (i), p. 120, in [11]).

5. — Prob. Math. Statist. 3(1),
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Moreover, it is clear that any p which is stable must also be strongly
{al: a > 0}-stable.
ProrosiTiON S.1. Let u be a probability measure on X which is strongly
% (X)-stable and let A,, B,e%(X) (n = 1, 2,...). If the sequences of norms
{Il4,1} and { IIB,,II} are bounded, then we can ﬁnd a sequence {C,} in U (X) such
that
Au*B,u = ,,,u*éxn for some x,€X n=1,2,..)

and {ICl} is bounded.

Proof. Let u be a strongly % (X)-stable measure. leen A, Be¥U(X) we
put rap = inf {||C||: Ce% (A4, B)}. Then for any pair of sequences {A } and
{B’} in #(X) which converge to 0 we have

limry g = 0.
n

Let {4,}, {B,} be two sequences of operators from % (X) with
sup {|l 4| +[[Bl} < oo

Then, for any sequence of positive real numbers {a,} which converge to 0,
we have
lim r,,nAm,,nB" = O.
n

We ‘note that for each a > 0 and 4, Be%(X) we have r, .5 = ar,p.
Consequently, a,r, 5 — 0 as n — oo for every sequence {a,} chosen so that
a, > 0and lim a, = 0. Hence

n

suprap < 0.
n :

For each n we choose an operator C, from %(4,, B,) such that
. |||C,,|l —r A.,-B..I < 1. It is clear that the sequence {C,} has the required proper-
ties. The proposition is thus proved.

Now, we are ready to prove the main result of this paper.

THEOREM 5.1. Let X be a real separable Banach space of dimension at least
two and let p be a non-degenerate probability measure on X which is strongly
U (X)-stable. Then p is full Gaussian.

Proof. Let u be a non-degenerate and strongly % (X)-stable measure on X.
It is clear that the symmetrized distribution y° is also strongly % (X)-stable. In
this case for any 4, Be@l (X) there exists a Ce%(X) such that

(51) A,u *Byf = Cit.

If we prove that u* is Gaussian, then it will follow from Cramer’s theorem
- that so is u. By Theorem 2.1, u and, consequently, p* are full. For simplicity of
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the notation we put v = pu°. According to Theorém 3.1 it will be sufficient to
show that there is a one-dimensional projector P in 2 (v).

Given a projector P, we put P* = I—P. It is obvious that {I, P— P} isa
finite subgroup of % (X). Consequently, by Proposition 2.3 there exists a one-
dimensional projector P, such that (P,—Pg3)v = v. Put

1 | 1
Ay = Po+-P§, B, =Pi+-Py (n=1,2,.).
- Po

Obvioﬁsly, the operators A, and B, belong to %(X). By (5.1) for every -
integer n we can find an operator C, in %(X) such that

(5.2) A,vxB,v = C,v.

We note that the sequences of norms {||4,l} and {||B,|} are bounded.
Consequently, by Proposition 5.1 we may assume that also the sequence {[|C,||}
is bounded. From (5.2) we obtain

(5.3) C;'A,vxC;'Byv=v (n=1,2,..).

Hence, by Theorem 2.2, Chapter II in [5], the sequences {C, ' 4,v} and
{C; ! B,v} are shift compact. Since 7(x*) >0 for all x*e X*, we infer that.
{C,1A,v} and {C;!B,v} are compact. Applying the formula (P,— P3)v
= v and Proposition 4.1 it is easy to prove that for any sequence {T,} in #(X)
the compactness of {7, v} implies the compactness of {T, Pov} and {T, P§v}.
Hence, in particular, the sequences {C,'A,P,v} and {C,'B,Pyv} are
compact. Consequently,
1 R 1
~Cy'A4,Pov =6, and ~C,'B,Pjv=6,.
n _ n

But for n = 1,2, ... we have

1

n

Cn_lAn=Cn_1P0+ Cn—IP(l)’ Cn_an=C;1PJO_+;C;1P09

C;'A4,Py = C;'P,, C;'B,Pt=C;'Ps.

Thus (5.3) can be rewritten in the form
1
(54) (C;1P0+;C;1Pé)v*(c;‘P$+£C;‘P0)v =v (n=1,2,..),

where the sequences {C,'P,v} and {C,!P§v} are compact. Passing, if
necessary, to subsequences we may assume without loss of generality that these
sequences are convergent. Moreover, we have

lim1

: 1
—'C"_lPi])-U:lim—C"_lPoU:éo.
vn n n
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Hence and from Proposition 4.1 we get
: 1
lim C;lpov = lim(cn_lpo'f'—c;lPé)U,
(5.5) " " " |
1
limC, ' Pjv = lim(C,,‘lP$+;C,,’1Po)v.

On the other hand, from (5.4) by a simple computation we obtain
- I | o1
C,'PoCov= C,TIPOU*;C,,_IPOU, C,lP;C,v= C,,'IP(%v*;C,,‘1 Piv
m=1,2,.)

and, ébnsequently, '

(5.6 im C;'P,C,v=1lmC; Pyv, limC;!PsC,v=lim C;' Piv.

Thus (5.4)-(5.6) together imply that
(5.7 lim C; 1Py C,vo*lim C;* Pz C,v = v.

Since {C, ! P, v} is convergent, we infer from Proposition 4.3 that {C, ' P,}
is compact. Consequently, by the assumption on the sequence {||C,|} the
norms ||C, *P,C,| (n =1, 2,..) are bounded in common. This together
with the convergence of {C, ' P,C,v} proves (by Proposition 4.2) that the

“sequence {C; ! P,C,} has a strongly convergent subsequence. Denoting by

P its limit, by (5.7) we have
Pv*lim C; 1 P§C,v = v,

) which shows that Pe % (v). Obviously, P is a projector from #£(X) of

dimension at most one. Moreover, P # 0. Indeed, if P = 0, then there exists
a subsequence of indices n, < n, < ... for which {C,'P,C,} converges
strongly to 0 and, consequently, : ‘

lim C;!IP()U_ = lim C,,_‘EIPOVCW‘U = 60.
k k

~ But Proposition 4.2 then implies that’llC,“,,‘,‘1 Pyl| —» 0, which contradicts
the fact that the sequence {||C,||} is bounded. The theorem is thus proved.
Remark 5.3. In the statement of Theorem 5.1 we have assumed that u is
strongly % (X)-stable. However, it is enough to assume that y is % (X)-stable
and has the property proved in Proposition 5.1.
'From Remark 2.1 it follows that if H is a Hilbert space, then every % (H)-
stable Gaussian measure g is also strongly % (H)-stable. Thus, combining

- Theorems 2.2 and 5.1 and taking into account Theorem 3 in [4], we get a
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characterization of strongly % (H)-stable measures on the infinite-dimensional
Hilbert space.

THEOREM 5.2. Suppose that the Hilbert space H is infinite dimensional. Then
a non-degenerate probability measure p on H is strongly % (H)-stable if and only
if u is full Gaussian and the sequence a >a; = ... of elgenvalues of its
covariance operator fulfils the condition sup a,/a3, < 00.
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