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Abstract. In the paper the central limit theorem and the rates of . 
convergence in this theorem in Banach space c,, are considered. Let 
& = (a1', . .., t;'), . ..), i = 1, 2, . . ., be i.i.d. c,-valued random vari- 
ables with Et, = 0 and covariance matrix T. Let p be a zero -mean 
Gaussian measure on c, with covariance matrix T, 

n 

The main result of the paper can be formulated as follows: if 
(<rl < M j  = (In j)-'I2aj, j > j,, where (a j ]  is a n  arbitrary sequence of 
positive numbers tending to zero, then F, converges weakly to p. 
Moreover, if instead of aj we take a slowly increasing sequence . 
(In, j)llZ+", where In, x = ln In,-, x and k 2 2 is a n  arbitrary in- 
teger, then it is possible to construct ti, i > 1, failing the central limit 
t heorern. 

If 15pl < Maj, o; = ~ ( t y ) ) ~  =(ln j)-('+", j 2 2, 6 > 0, and T 
satisfies one additional condition, then we get the estimate 

;yg IF,(llxll < r)-p(llxll < rll = w- '12+1, & > 0. 

1. Iatroduction. In the paper we consider the central limit theorem (CLT) 
and the rate of convergence in this theorem in separable Banach space 

Let 5 be a random variable with values in a separable Banach space 3 
(B-valued r.v.), with distribution F ,  E< = 0, and covariance operator 7'. Let 
ii, i 2 I,, be i.i.d. B -valued r.v.'s with distribution F ,  
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We say that t satisfies CLT (shortly, ~ E C L T )  if there exists a Gaussian 
3-valued r.v. q- with distribution p, mean zero, and covariance operator T 
such that F, - p(= denotes weak convergence of probability measures). By 
W (B)  we denote the class of Gaussian covariances in B, i.e., T E W (3) if there 
exists a Gaussian B-valued r.v. q with the covariance operator T. 

(Bur choice of particular Banach space c, is motivated by the fact that 
this space plays a rather important role in theory of probability on Banach 
spaces. There are many statements (see, e.g., 1131, [15], [27]) which are 
proved for Banach spaces not containing subspaces isomorphic to c, and, as 
a rule, these statements are false in c,. A similar situation is for CLT in 
~ a n a c h  spaces. At present it is well known ([9], [ 5 ] ,  [24]) that in Banach 
spaces of type 2 (and only in such spaces) the condition 

(1.1) E lltIl2 < 
implies E CLT ; in Banach spaces of cotype 2 (and only in such spaces) the 
condition 

(1-2) T E ~ ( B )  
implies < ECLT. (For notions of spaces of some type and cotype we refer the 
reader to [5] and [9].) On the other hand, in 141 it is proved that in spaces 
containing l",uniformly (C(0, 1) and co are examples of such spaces; CIS) 
denotes the space of continuous functions on metric compact S with sup 
norm) there exists a symmetric, bounded random variable satisfying (1.2) but 
not satisfying CLT. The first example of such a kind was constructed in 1969 
in 161, where CLT in C(S) was considered. Later there appeared more papers 
concerning CLT in C(S), but as far as we know none of them was dealt with 
CLT in c,. 

In Section 2 we examine 9(c , )  and CLT in cO. Theorem 2.3 strengthens 
one of the results from [26] about 9(c0). Theorem 2.5 states that if 
coordinates of a eo -valued r.v. < = (t('), . . . , <("), . . .) satisfy the condition 

with M, = (ln n)-'/'a,, where (a,) is an arbitrary sequence of positive 
numbers, tending to zero, then ~ E C L T .  Moreover, using the idea of example 
in [4], we show that it is possible to construct a symmetric co-valued r.v, 
satisfying (1.2) with B = co and (1.3) with 

M, = (In n)- (In, n)ll2 +' 
but not satisfying CLT. Here k 2 2 is an arbitrary integer, E > 0, and In, x 
= In In,-, x. Thus, only the case M, =(In n)-112 remains open. 

In Section 3, estimates of the quantity 
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are given. Now, estimates of this quantity can be obtained in Banach spaces 
with sufficiently smooth norm ([19], [20), [I]) and in spaces C (S) ([a 1, [21]). 
In the last case the finite-dimensional approximation is used, and for the 
space c, we apply also this approximation. (See [23] and [25] where the 
finite - dimensional approximation was used in spaces l,, 2 < p < CQ, and I ,  .) 

It is worth while to mention papers C281 and [29] where the rates of 
convergence in limit theorems are given in any Banach space and are 
expressed by means of so-called ideal metrics. Hn these papers the estimate 
of the quantity . 

.. - 

is given, where 9 is some class of smooth functions on B, e.g., some times 
differentiable in the sense of Frtkhet functions on B. But in contrast with 
finite-dimensional spaces, where the class of differentiable functions is very 
large, in infinite - dimensional spaces the situation is worse, and it is known 
[2] that in some Banach spaces (e.g, in C(0, 1) and 1,) there exists no non- 
trivial differentiable function with bounded support. Moreover, the 
behaviour of differentiable functions in such spaces is rather complicated (see 

[14]), thus in this case quantities of type Sf (x)(F,(dx)- ~ ( d x ) )  are not very 
3 

useful. 
Now we introduce some more notation. If x E cO, then 

Ilxli, = sup Ix'i'l. 
i l m  

We put 

~j = sup (E jr(i)13 (E l ~ ( ~ ) j ~ ) -  3/2), 3 - - sup E l{(i)j3. 
i i 

The letter C stands for an absolute constant, and C(-) denotes a constant 
depending on parameters in the parentheses, not the same in different places. 
If we want the constant to be distinguished, we shalr supply it with an index. 

n measrare h co. For simplicity we write 9 = 9 ( c , ) .  
The covariance operator of a co-valued r.v. can be regarded as an infinite 
matrix and we put T = (ti,)& It will be convenient to set ~72 = tii and, 
without loss of generality, in the whole paper we assume that a; 2 ah, for 
all i. 

Let 9, stand for the class of covariance matrices T such that for every 
E > 0 

m 

(2.1) C ai e x p ( - ~ ; ~ )  < a. 
i= 1 
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Then the result of Vakhania [26J can be formulated in the following 
way : 

THEOREM 2.1 ([26]). g1 c 3 and if tu = 0, i # j ,  then T E  .% e TE &I1. 
Thus diagonal Gaussian covariances (in this case, coordinates of a 

Gaussian c, -valued r.v. q are independent) are completely determined by 
(2.1). The inverse case, where q = (a(')[, . . ., dn'{, . . .) = a[ with a E c, and [ a 
standard normal R, -valued r.v., shows that a; can tend to zero arbitrarily 
slowly if there is a strong dependence between coordinates of q .  In 131 the 
following result is given: 

.THEOREM 2.2. (13 1). If ai2 1 0 (1 denotes monotonic convergence), 

ri = max Itii - tirl 1 0, 
j Q i  

~ 1 2 d  jbr every E > 0 
a. 

(2.2) C e x p ( - ~ r ; l ) <  co, 
i -  1 

then T E ~ .  
It is easy to see that in the case of the diagonal matrix T condition (2.2) 

coincides with (2.1) but in the case q = a i ,  U E C ~ ,  5 being a standard normal, 
(2.1) as a sufficient condition is stronger. 

We show that condition (2.1) is necessary and sufficient in all cases where 
dependence between coordinates of g is weak. By means of the same method 
as in 1261 we prove the following result: 
THEOREM 2.3 Let tij = 0 if l i - j[  > m, where m is any $finite number. Then 

T E & ? - T E ~ & .  
P r o  of. Let g = (pl(lL, . . ., v ( ~ ) ,  . . .) be a Gaussian random vector with cova- 

riance matrix T and let ,u be its distribution (considered as a distribution in 
R"). It is known [26] that ,u(c,) = 1 is equivalent to the condition 

lim p( u fx :  I x ' ~ ) ~  > E)) = 0 for every E > 0. 
"+" k > n  

Since 9, c 9, we need only td prove the necessity of condition (2.1). Let 
us put 

B, = B,(E) = ( sup Iq"'I > E ) ,  & =  U Bk.  
(2k- l ) m C j < 2 k r n  k > n  

From (2.3) it follows that 

lim P ( U (A, u Bk)) = lim P (A, u B,) = 0 
k > n  n+m 
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and - 

Since the events A,, k 3 1, are independent, using the same argument as 
I in the proof of Theorem 2.1 (cf. [26])  we infer that the condition lim P(&) 

= 0 implies 

. Analogously, we get 

Now for any j ((2k - 2) na < j < (2k  - 1) m) we have 

(2.6) P (A,) 2 P lqti)I > E }  

In the same way we obtain 

(2.7) P(Bk) 

2 (21c)-' /~ min ( 1 ,  ajs-l) exp { - - } ( 2 k I ) m < j < X m .  

i Now it is sufficient to note that if a, 0, a, > 0, then the series 

e x -  and 

converge or diverge simultaneously, since 

a,' anexpi  - $1 = cxp{ -$(I - ;~n a,,)) 

and a: In a, + 0. From (2.4)-(2.7) we get (2.1). Thus the theorem is proved. 
Now we turn to CLT in e,,. 'We want to find the condition; on a c,- 

valued r.v. 5 that imply I;, = p .  The main tool in proving the result of this 
section and the reiults on the rates of convergence is the inequality of large 
deviations for sums of idepeqdent bounded real r.v.'s. The idea of this in- 
equality goes back to Khintchine [12] who proved the expnential inequality ~ for the sum of i.i.d, Rademacher r.v.'s. Later in [7]  such an inequality was 
proved for symmetric bounded r.v.'s. In [22] these results were generalized to 
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the multidimensional case and, moreover, the symmetry assumption was 
removed. We formulate this result: 

THEOREM 2.4 ([22]). Let Xi, i >, 1, be i.i.d. R1 - v a l ~ e d  r.v.'s, EXI = 0, and 
n 

lXIJ < M .  Let Zn = Xi nnd assume that the following condition is satis$ed 
i= 1 

for p > 0:  

(2.81 P(Z,<O)< 1-p, P { Z , > O )  < I - p .  

Then for all t > 0 
.. - 

(2.9)' P { I Z , ~ >  t $1 c @ p-I exp [ - t 2 ( 1 6 M 2 ) - 1 ] .  

The main result of this section is the folfowing 

THEOREM 2.5. Let 5 be a co - ualued r.v. with Et = 0, covariance operator T, 
and l<U'I < Mj for j 2 mo. If for any E > 0 

(2.10) expi -&M,r2) < ao, 
jarno 

' than 5 ECLT.  
Proof. We must show that F , - p ,  where F, is the distribution of 

R 

I ,  y-lI2 1 t i ,  ti being independent copies of t .  Obviously, T € 9 t 1  c 9 
i =  1 

because a; < Mj2 if Jt(j)l < Mi. Since the finite-dimensional distributions of 
F,  converge weakly to the corresponding finite -dimensional distributions of 
y, we need only to show the tightness of the family {F,) .  Using the form of 
compact sets in co (cf., e-g., 1163 or [18]) we see that it is sufficient to show 
that for any E > 0 and 6 > 0 there exist no = no(&, S)  and ko = kg(&, 6 )  such 
that for all n > no 

(2.1 1 )  P:JIS,II,, > 51 -= E .  

We first assume that a c,-valued r.v. 5 is symmetric. Since 

for SI;" we apply Theorem 2.4 with p = 1/2 and we get the estimate 

From (2.12) and (2.10) we deduce (2.11). 
It remains to remove the assumption of symmetry. For this purpose we 

formulate the following result : 
LEMMA 2.1. Let Z,, n 2 1 ,  be a sequence of co - valued r.v.'s satisfying the 
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following condition: for every 8 > 0 and 6 > 0 there exists ko = k , ( ~ ,  6) such 
that for all n 2- 1 and j > ko 

Let G, and b, denote the distributions of 2, and -Z , ,  respectiuely. Then 
the tiahtness of the sequence (G, + E m )  implies the tightness of {G,}. . 

The proof of Lemma 2,1 goes along the lines of the proof of Lemma 2 
from Ill] and is omitted. 

Now, if we put fi = (-51, where is an independent copy of ti, then 
from the first hart of the proof we infer that the sequence of measures 
induced ' by 

n 

is tight (recall that I@)) < 2Mj) .  Further, by ~ h e b ~ s c h e a s  inequality, for any 
E > 0 and S > 0 we have 

P ( I ~ ~ I  > 6) G S - Z E  lsl;')12 = S- l ~ ( g y 1 ) ~  g r 2 ~ j 2  6 E 

for all j > ko = ( i d  rn: M: < &S2 for all n > m) .  Therefore, (2.13) is satisfied 
and from Lemma 2.1 we get (2.11) in a general case. Thus the theorem is 
proved. 

Remark. The result of Theorem 2.5 can be obtained by using operators 
of type 2. (see a joint paper with A. Raclcauskas and V. Sakalauskas *). 

Now we construct a co -valued r.v. mentioned in the Introduction. 
PROPOSITION 2.1. There exists a symmetric co - valued r.v. 5 having indepen- 

dent coordinates, covariance operator T E  g1 , satdying (1.3) with 

(2.14) M, = (In n)- ' t 2  (ln, n)'l2 + ', 
where k 2 2 is an arbitrary integer and E > 0, but not satisfying CLT. 

PI o o  f.' w e  follow the construction from [4], but our evaluation is more 
precise. Let < = (t('), ..., e("', . . .) with independent coordinates 5'"' and let 

P it(') = an) = p { t ( m )  ')= - a,) = pa, P it(" - - 0) = 1 - 2p,, 

where a, = (ln n)- (ln,, +", p, = ( l q  n)- ', k 2 1 is some fixed 
number, E > 0, and n > no(k) in order that all expressions be correctly de- 
fined. For the first coordinates C("), n 6 no(k), we can take p, and a,  arbit- 
rary. For example, we can take an = 1 and p, = 1/2, and this does not affect 
our evaluations, since we deal with limit behaviour of sums 

~ u i  = n - l / z  e-ii 

i= 1 

* This paper appeared in Litovsk. Matem. Sb, 23, 1 (1983), p. 163-174 (in Russian). 
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for large values of j and n, where ti are independent copies of e .  It is easy to 
see that 

t$ = affi =(In j ~n,j)-~(ln,+, j)'"', 

which implies T E  W,, Thus it remains to show that { does not satisfy CLT 
and for this reason we show that the sequence Sn is not bounded in pro- 
bability. Consider the events 

- -- A, = n [{p' = a,) and A, = CJ A* 
i= 1 jeN, 

and. choose N, = e @ { ~ n  In, n}, C > 1. We have 

Now we show that 

(2.15) P (A , )+1  as n ~ o o .  

For this purpose we use the estimate 

(2.1 6) 
- n cxpCnlnkn) n (1 - P 6 (1 - P (AN,)),,"' = (1 -(ink - , (Cn in, n)) ) 

j S N n  

Since it is easy to verify that for every C > 1 

(2.17) (ln,-, (en lnk n))-"exp { ~ n  In, n) -, oo as FI -r m, 

we derive (2.15) from (2.16) and (2.17). 
Now let ~ E A , .  Then 

n 

sup C {?(m))l 2 nn'12aNn. 
j < N n  i= 1 

But we have 
(In, (Crz In, n))'t2 +' 

b, = nI/2aNn = -+oo a s n + a ,  
C(ln, n)lI2 

for every E > 0. Therefore, we infer that for sufficiently large n we have 
I/S,I1 > bn with probability close to 1 and does not satisfy CLT. 

Remark. It is easy to verif that in this way we can prove the props- 
ition with M m  = (In n)-lI2 (d(n)F2+',  where d ( n )  is a monotonically increasing 
sequence, lim d(n)  = oo, and d (n) satisfies the following condition: there 

n+m 

exist C > 1 and b(n) -, oo such that for all n > no 

For simplicity, in Proposition 2.1 we have taken d(n)  = In, n. 
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3. The rates of converpemce in CLT i m  c,. To  formulate the results we 
need some more notation. Let e be a co -valued r,v. with distribution F, Ec 
= 0, and covariance matrix T. Let ti, i 2 1,  be i.i.d. co - valued r.v.'s with the 
same distribution F. By T,, we denote a covariance matrix of the random 
vector (((''a; ', . . . , ('"'a, l )  and let Aim), k = 1 ,  2 ,  . . . , my stand for the 
eigenvalues of T,,,. Moreover, without loss of generality we assume that Aim' 
2 AI,Y1 for all k and m. In this section we assume that 

Of course, we can change the quantities a:, i < i,, and since we deal with 
the estimates of the form A, = O(f (n)), such a change affects only the const- 
ants in the last relation, 

We say that < satisfies condition ( B ,  dm), where dm 40, if 

(3.2) S U P  p IIISnll, > dm) < $1 
n 

and 5 satisfies condition A(ko,  no, p), where p > 0, if for all j > k, and n > no 

The main result of this section can be formulated as follows: 
THEOREM 3.1. Assume that for all j 2 1 and m 3 1 

(3.3) ltb31 < Mq, 

(3.4) A$) > ((In m) 
- (a1  -a)  , d l > S .  

Then for suflciently large n 

where v > 0 and the constant in (3.5) tends to injnity as v + 0. 
Remark.  If (3.3) is replaced by the condition 

(3.6) lcti)l < M QIn j) 
- ( l  +a- 12)/2 

Y 6, < 6 ,  

then estimation (3.5) remains valid, but the constant changes and tends to 
infinity if 6 ,  -, 6. 

THE&M 3.2. I f  5: satisjis condition (B,  dm) with dm = (In m)-",O < u 
< 6/2, 83 or f13 is jnite,  a d  

then 

(3.8) A, = 0 ((ln n)-2x+y1), 

where yl > 0 is arbitrarily small, but the constant in (3.8) tends to injinity. if y ,  
-+ 0. 
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Before proceeding to the proofs of the theorems we formulate some 
lemmas which contain the main steps of the proofs. We begin with the basic 
inequality in the estimation of A , .  

LEMMA 3.1. For any m 2 1 and E > 0 we have 

where 

Aqm = SUP Arqm(x), d,,,(x) = (P (max 1$i"1 < x } - P  
X l a m  

Proof. We havii--- 

(3.10) An < max ( sup An(x ) ,  sup A,(x) )  
OCSQE x ~ e  

< max [PIIISnII < -4 +P{Il111 < 4, SUP An(x)) 
x > E  

+IP :I(qII c x }  - P {max J S ~  < x)l. 

It is easy to see that 

Inequalities (3.10)-(3.13) yield (3.9), so the lemma is proved. 
For the estimation of A , ,  we shall use the following result from [17]: 
LEMMA 3.2. (1171). Let X i ,  i 2 1 ,  be i.i.d. R,-valued r.v.'s with E X l  = 0, 

unit covariance matrix, and 

Then 

where !Dl is the class of all convex Bore1 sets in R, and cp a standard 
lidimensional normal distribution. 
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I By means of this lemma and the estimate 

after simple considerations we get the following resuIt : 
LEMMA 3.3. Let AF1 > 0 for all m 3 1. Then 

(3.14) A , ,  < Cm5I2(;lF))- 3/2 D3n- i/2, 

(3.15) - dsm < CmSI2 (6: AI,m)}-31Z B3n- '1'. 

LEMMA 3.4- Let q b e - ~  Gaussian eo-valued r.o. satisfying (3.1). Y 
(3.16) e2(ln m)d > 2, 

then 

(3.17) P (Ildlm > E ]  6 C 

Proof. The proof consists of the following two elementary inequalities: 

LEMMA 3.5. Let t h  eigenvalues A:) satisfy condition (3.4). Then for any 
x > 0 and E ~ ( 0 ,  E*),  where 

EO =$O(X, dl) = max 
I t 

9 

we have 

In the case of the diagonal matrix T (the case S, = 5 )  instead of (3.18) we 
can use the followiq inequality valid for all E (0 < E < 1): 

Proof. Let us start with the case of the diagonal matrix T. In [lo] the 
following estimate is given: 
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Substituting to this estimate the values a, from (3.1) we get the series 

Let no = exp{~-~ / ( '+*) ) .  Then for n < no we have 

1 
ex~{--~~(ln-n]~' ']  2 2 e l l 2  and 1 +s(ln < 2. , 

Hence we obtain - . 

, ,  which implies (3.19). 
In the general case we use the estimate 

' 
Now we choose k = [~-"]+l  and using a rather rough estimate 

C lnln j < k l n I n  k 
j= 3 , 

after simple calculations for all s (0 < E < E ~ )  we derive (3.18). Thus the lemma 
is proved. 

The estimates of the term P [llS.llm > E )  are given in the following two 
lemmas : 

LEMMA 3.6. If condition (3.3) is satisjed and 

then for n > no 

(3.21) P{IIS,IJ,>E)<C 
/ 

m - [ ~ 2 ( l " m j * / 1 6 ~ 2 -  11 
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Pr  oo f. By (3.3) we can assume that < satisfies condition A (1, no, 1/41 
with sufficiently large no .  Then we can apply Theorem 2.4, and from (2.9) we 
get 

Now, ' using (3.1) we obtain (3.21). 

Remark. If instead of (3.3) we have (3.61, then in (3.20) and (3.21) we 
must replace d by 6-Sty 

LEMMA 3.7. If ( satisjies condition ( B ,  dm), then for any p ( I  < p < 2) 

Proof. First, in the same way as in the proof of Proposition 2.1 from 
[24] we can show that for all u > 26, 

Now, for 1 < p < 2, from (3.23) we get 

0 

2dm 

= f J + j )up-' p (IIS.llm > u )  < C(p)dL 
0 Zd, 

which together with the inequality P [IISnJl, > E )  < E - ~ E  IIS,,ll; implies (3.22). 
We can now proceed to the proofs of the theorems. 

I I 

. Proof of Theorem 3.1. We put rn = [na] in (3.9), where o! is some 
parameter which will be chosen later. Then from (3.4) and (3.14) we get 

Without loss of generality we can assume that M > I in (3.3). Now set 

where y > 0 will also be chosen later. It is easy to check that conditions 
(3.16) and (3.20) are satisfied. Therefore, by (3.17) and (3.21) we have 

(3.25) P { 1 1 ~ 1 [ ~  > 9) d C(y, M) n-ay, 

(3 -26) P{tlS,IIm > E} < C y - ' n - a Y .  
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Now we estimate the term P{(llgll < 8 ) .  Setting x = 2/6 in (3.18) for 
n > no, where no depends on M, u, y,and S, we have 

Thus all terms in (3~9)  are estimated. Now, let us choose a small number 
v > 0: Then we find $ and a such that for n > i&, 

n5a/a(ln n) 3(a1-4  < nY. 

Then we set y = 1/h and from (3.24)-(3.27) we infer that (3.5) holds for 
n > max (no, ED). Thus the theorem is proved. 

Proof of Theorem 3.2. We start again with (3.9) and put m = [n"], 
where 0 < ol < 1/5. Then from (3.14) or (3.15) it follows that A,, tends to 
zero as some negative power of n. Therefore 

A,, = o((ln n)-'"). 

Now setting E = (In n)- y2,0 < y, < 6/2, from (3.17) and (3.18) we infer 
that P((jqll < E )  and P {llqllm > E )  tend to zero as some negative powers of n. 
Finally, for the estimate of P [)1S,Jl, > e) we use lemma 3.7 with p = 2- y,. 
From (3.22) we get 

P{IlSJI, > e] < C(y,)(ln n)-2X+Y', 

where C(y3) = Cy; ', yl = y3x+(2- y3)y2, and this quantity can be made 
small if y3 and y2 are chosen to be small. Thus the proof is complete. 
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