PROBABILITY
AND
MATHEMATICAL STATISTICS

Vol. 3, Fasc. 2 (1984), p. 143-154 .

FREE BOUNDARY -PROBLEM FOR CONTROLLED
STOCHASTIC DIFFERENTIAL EQUATIONS

, BY :
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Abstract. This article is concerned with an optimal stopping
problem of controlled stochastic differential equations. The value
function up to t provides a unique solution of the free boundary
problem of parabolic type (Theorem 1, a little variant of [6]). On the
other hand, the value function provides a non-linear semigroup
(Proposition 3) and the Cauchy problem of this generator will be
considered (corollaries and remarks on uniqueness).

1. Introduction. In this paper we treat the optimal stopping problem of
controlled stochastic differential equations. Let I' be a compact convex
subset of RY called a control region. Let B(t), t = 0, be an n-dimensional
Brownian motion on a probability space (2, F, P). Put F, = o,(B) to be the
o -field generated by B(s), s <t. An F,-progressible measurable I-valued
- process is called an admissible control. A denotes the totality of admissible
controls. Let a and y be a symmetric nxn matrix valued function and an
n-vector valued functlon defined on R"x I, reSpectlvely We assume that
both are bounded and satisfy

ah - e, w)= e, W)l < K |x—x|+e(u—ul),

where K. is a positive constant and g is a continuous function with ¢(0) =
Consider the following controlled stochastic d1fferent1al equation for
Uei:

(1.2) dX () =a(X(@®), U@®))dB@O+y(X (), U@®)dr, X(0)=x.

By (1.1), equation (1.2) has the unique solution X (f) = X (¢, x, U), called
the response for U. Let m be the totality of F, - stoppmg times and put m(7)
={t AT, tem} (}).

(") @ A b=min(a, b), a v b = max(a, b).

2 — Prob. Math. Statist. 3 (2)
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For Ue and tem the gain is given by

13) V(z,x, 9, U)=E, [j' exp{— j' (X (@), U)dt} f(X(s), U(s))ds+

+exp{— j c(X (0, U@)dt} ¢(X (D)),

where X(t) = X(t, x, U). We assume that ¢ >0 and f are bounded and
satisfy (1.1).

Let C be a Banach lattice of the totality of bounded and umformly
comntinuous functions on R", with usual order and supremum norm. Put -

(14) Vit,x,p)= sup V(1 x, @, U)

Ue¥l,zem(t)

Then V(t, -, p)€ C whenever ¢ €C. Moreover, the operator V(t), defined
by _

(L5) Vo) =V x, ),

is a monotone contraction semigroup on C. Putting

Go =sup Bo—c'o+f* (3,

uel

where I is the generator of the response for the constant control uerl, i..
S S W 1) = 35 1)
_E,EJ: . it (%> 1) &g 5 ox,0x; 4 s ox;’

we express the generator ® of V(f), t > 0, by the formuia
(1.6) ®p =0v Gp for smooth ¢.

The value function V (¢, x, ¢) is related to the free boundary problem.
The following theorem will be proved in Section 3: :

THEOREM 1. We assume that the smooth condition is satisfied, that is
, ¥, €, f and ¢ are twice continuously differentiable in x and their first de-
rivatives are bounded and satisfy (1.1) with possibly another K and .
Moreover, the second derivatives are bounded and satisfy

lh(x, w)—h(x', )] SKIx—X'I"+E(Iu—u’I),

.where K and A are positive constants and § is a contmuous Sunction with g(0)
= 0. Suppose o is uniformly positive definite.

®) B () = h(x, w).
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Then V(t, x, rp)e w2 ([11, [7)) for any large p and V(r x, @) .sam/:e.s
the following free b0undary problem: .

(1.7) ' wWze in[0, oo)xR"
(1.8) GW < oW/t ae. in (0, <) xR",

(1.9) (W —@)(W/0t—GW) =0 ae in (0, ) xR",
(110 W0, =09 in R".

Furthermore, a salunorr of (1.7)-(1.10) is unique in Wz,,“k,c
'CoRroLLARY. Under the same conditions as m Theorem 1, V satisfies. the

Jfollowing BelIman equation:
66_1: =GVvO0ae in (0, oc) x R",

(L1 V@O, )=¢ inR"
If mf ¢(x,u)>0, then v = 11m V(t)p exists in C and

v(x)= sup V(z, x, @, U).

The limit function v will be considered in Section 4.

2. Semigroups associated with optimization. We summarize non-linear
semigroups on C which are related to optlmlzatlon problems of controlled
stochastic differential equatlons [2]. Let I be a compact subset of R Let Ay
denote the totality of a I - valued F, - progressible measurable process U such

that”

U = UR2Y)  for te[k/2Y, (k+1)2%, k=0, 1, ...

Put | . '- -
9a,.

1

-

v
4

N=

We call Ue ¥ a switching control.
For a constant time t we define

@y | QExe=spV(xeU).

Then we can easily see that Q(t, -, ¢) € C whenever ¢ € C. Hence we can
define the operator Q(t) by .

22 (M e(x)=2(, x, 9).
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Put

dp o
-]
0x; Ox;0X;

. C2={¢EC, C: i’j‘=.13.--'9n}

- and

™o = H"(t)+£ H*(s) f*(s)ds,

‘where H*(¢) is the transition semigroup of the response for-ue I with killing

rate ¢*. Hence T*(t) is the semigroup with generator A%p = Lop—c'e +f
ProrosiTioN 1. Q(f), t = 0, is a monotone contraction semigroup (*) on C,
whose generator G is expressed by . R

(2.3) - Go =sup 'p—c*o+f* for peC>
. uel

Moreover:
24) T <Q()e for all u, t, .

(25) Minimum property. If a semigroup A(t), t 20, sdtisﬁes
T () < A({t) o for all u,t; @, then A(t)p = Q(t) .

PropPosITION 2. Suppose that a, y, ¢, f, and @ satisfy the smoothness con-
dition of Theorem 1. Suppose that there exzsrs diel’ such that «(-, @) is
uniformly positive definite. Then Q(t, x, p)e W, ,(,c 2 for any large p. Moreover,
L'0— “Q+f i_90/crt is essentially bounded on [0, TIxR" for any T>0.

When I is convex, any admissible control can be approximated by a switch-

- ing control, ie.

sup Vit x, U, (p)—sup Vit x, U, rp}

Uell

ProrosiTion 3. V(1) of (1.5) is a monotone contractton semigroup on C,
whose generator ® is expressed by

(2.6) Gp=0v Gp. for peC>?
..Moreover: ,
27 QWe<V(Me ad o<V foradlto.

(2.8) Minimum property. If a semigroup A(t) instead of V(r) sansﬁes
(2.7), then V(t)(p S A@) @ for all t, .

(®) The semigroup property means the so-called Bellman principle.
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 Now we prove the former half of Theorem 1. Put I'=I'U {d}, where
d¢TI. Assume that a(x, d), y(x, d), c(x, d), and f(x, d) are equal to 0. Hence
T¢(t) is the identity. In this case, (2.5) and (2.8) imply V(t) = Q(t). Therefore,
it follows from Proposition 2 that V(, x, p)e Wi, and EV—c'V+
+/f%—0V /ot is essentially bounded in [0, T]xR" for.any T > 0.

3. Proof of Theorem 1. For the proof of the latter half of Theorem 1, we
apply the same method as in [1]. By the definition of V(t, x, ¢), (1.7) and
(1.10) are clear. :

Fix T arbitrarily and put Wy (t, x) = W(t, x) = V(T —1t) ¢(x). Then (24)
and (2.7) imply T

(3.1) W, x) = V() V(T—t—3)p(x) > T*(s) W(t+s, ¥).

Moreover, appealing to the end of Section 2, we see that We it rxs

for any compact S of R" Let £(t), t = 0, be the response for a constant
control ueI'. Since a(-, u) is uniformly positive definite, Ito’s formula holds
for a function of Wi2,.. (see [7]). Hence, using (3.1), we have

s (/]
Wi(t, x) = E, [g exp{—(j; c(é(2), u)dz} f(E(2), u)do+

+exp{— } c(&(2), u)dz} W (t+s, £(9))]-
4]

So, putting " '

(3.2)

: ow
FT(t’ ¥, u) ='F(ts Y, u) =a_t(ts y)+EW(t’ Y)“C(.V, u) W(ts .V)+f(y’ u)’
we get -
s (4 .
0>E, [exp{—[ c(é(z), u)dz} F(t+0, £(6), u)df..
0 0
_ Integrating both sides from 0 to T—t with measure u2e”*ds, we have
(3.3 ,
T-t ]
0=E, § u exp{——,u exp[(—_[ c(¢(2), u)dz)ln 9] F(t+0, £(6), u)do—
0 0

— pe~MT-9E_ j‘ exﬁ{-; c(f(z), u)dz} F(t+86, £(6), u)do.
) o - '

Since F is éssentially bounded and a(-, ) is uniformly positive definite,
the second term of (3.3) tends to 0 as u1oco. On the other hand, the first
term tends to F(¢, x, u) in L,([0, T] x S) for any compact S of R". Therefore,

(34) . F(t,x,u)<0 ae. in [0, T]xR"
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Letting 0W/dx; and 62W/6x 0x; independent of u, we obtam (1. 8) from
(3.4) by the continuity with respect to u.

For (1.9) we use the random stopping. Let R be the totality of non-
negative and bounded F, - progressible mcasurable processes. r€*R gives the
following random stopping:

P(stop at(t, t+dt) | non-stopping before t) = r(r) exp {— | r(s)ds} dt.
. 0
" For re®R and Ue, the gain is given by

(3.5) J(T, x, ¢, U, r) = j'I(t x, @, U)r(t) exp1—j'r(s)ds}dt+

X T
+I(T, x, @, U) exp {— | r(s)ds},
: ! 3T

where

L

I(t, x, 9, U) = 5) exp {—J ¢(X(6), U(0))db} f(X(s), U(s))ds+

V]
: A
+exp {~ gc(X(O), U(0))d0}<a(X(t))
and X(t) = X(t x, U) In the same way as in [1] we ‘can show that

(36) - V(Doe(x)= sup EJ(Tx ¢, U, 7).

Uell,reR

Using again Itos formula we obtam 3. 6) in the form
(3.7) '

0= sup [E jexp,—j[c(X(s), U(s))+r(s)]ds‘F(r X(1), U(t))dt+

. UE‘I[ re®
+E, g exp {—£ [c(X (SJ, U(S))+r(SJ] .dS}r(t)(qo(X (t))—

C—W(, X(0))dt].
The set ,

D(T)—1(t X)E[O T]xR"; V(T t)(P(X) <P(x)+£}

is closed Thus for (0, y)¢D (T) there exist positive d and d such that

[0, d1x S(y, d) = D,(TY, where S(y, d) is the sphere with origin y and radius
d. By virtue of (1.7) and (1.8) each term of (3.7) is non—posmve SO we can

reptace T by T A 1.
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‘ Let xeS(y, d) and let (U,, r), k=1, 2, ..., be an approximate optimal
sequence. Since

39 o(X(O)=W(t, X)) < —& for 1 <1,

we get, as kT o0,

T At
39 E, j : exp {— j'rk(s)ds} r(t)dt =0
and -

e . Tay
3.100 -- E, | F(, X.(2), Up(t))dt — 0,
0

where X, is the response for U,. Since « and y are bounded, for x¢S(y, d)
we can choose ¢ = c¢(x) > 0 so that

inf P.(t >¢c)> 0.
v

Therefore, by (3.9), we see that
' Tar

(3.11) exp {— j' re(s)ds}—>1in P as k— 0.

Let M=M,; be the set of all (4, R) which satisfy the following.
condmons

(3.12) A is an nxn symmetric matrix valued F,-progressible measurable
process with '

|A(t, ) <K and 2 Ay(t, )66, > A101*  for any o, 1,0.°

hj=1
‘(3.13') R 'is an F,-progressible measurable n- d1mens1ona1 process with
IR(t, w)| € K for any w, t.
Put
W(t, x; h, u, K, 4, d)

. (T- At ' ’ s s .
= sup E _f e *h(r+s, x+j AdB+_f Rdb)ds,
(4,R)eM

where 7 is the hlttmg time for 0S5 (0, d). Then for any u > (1+2K)/n)~2 and p
> 2n+2 we have

. e .
(3.14) W [LP(IO,T] xS(0.d) € ; [l ILp({o, T] xS(0,d))

with R=R(n, K, 2.




150 ~ ' M. Nisio

Putting sup Fr(t, x, u) = My (t, x), we infer from (1.8) that for any T > 0
uel’ )

-Mgp(t,x)<0 ae. in(0, T) XR",
Therefore, by (3.10), we have

T At

(3.15) sup E j M (t, x+jAdB+[Rd9)

(A,R)yeM

“-Replacing T by T s, we obtain
- (T s)r\t

(3.16) . sup E j My_(t, x+jAdB+de9) =0.

(A,R)eM

- From the deﬁmtxon of MT we get MT(t+s x) M,- s(r x). Hence

(T~s)at

(3.17) sup E _f MT(t+s x+j'AdB+_[Rd0) =0.

(A R)yeM

Since M; <0 ae. and A4 1s positive definite, we have

(d S)AT

(3.18) sup E j ue-ﬂ'MT(r+s,x+j'AdB+j Rd6)dt = 0.
’ 0 o

(A R)eM

As p— 0, we get My =0 ae. by virtue of (3.14); namely,
(319 ‘%V(t)(p =GV(t)o ae. in (T—d, T)xS(y, d).;,

clearly, [0, d+6) xS(y, d) = D,(T+0) for any 6 > 0. Hence (3.19) holds in’
(T—d, T+0) xS(y, d). As £,0, we get (1.9). This completes the proof.
" Now we prove the uniqueness of solution. Let We W2, be a solu-

tion. Fix T > 0 arbitrarily and put »{t, x) = W(T r, x) We can- choose
a I'-valued Borel function u(r, x) so that N ,

(3.20) L3y — it Xy (¢, x) 4109 (x) = Gu(t, x).
_Moreover, the stochéstic differential équation
dE(t) = a(E(), u(t, E(0)dB@+7(E(), ule, £@))dt
¢(0) = x
has a weak solution ([5], [7]). Put |
D = {(t, x)e[0, TIxR"; v(t, x) = o(x)}.

Then dv/6t+Gv = 0 ac. in D-. Let £ be a weak solution and 7 the hitting
time for D of the process (t, £()). By the definition of D, we have t < T.
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Since ve W}2, putting U (1) = u(t, £(1)) and using Ito’s formula we obtain

(3.21) Efexp {—tj c(&(s), U(9)ds} vz, E@)—0(0, E(T))]

=E j exp {-—} c(E(s), U(s))ds}{(0v/ae (e, E@®)+ L9 (t, E(1)))dr.
For T>1, v(T A1, &(T A1) is @(£(T A 7)). Hence (3.21) turns out

(32 W(T,9=E[exp (] ¢, U)ds} o (¢ @)+

] exp (] (), UG)ds} £ (E@), U)di]
0 0

and 1=t AT
On the other hand, for any I'-valued Brownian B-non-anticipative
process U, we consider the controlled stochastic differential equation .

dX @) =a(X (), UW)BO+y(X (), UW)dr,
| X(0)=x. . |
Then for any o,(X ,- B)-stopping time 7 with 1< T we have

T

(3.23) W(T, x) = E[exp {—[ c(X (s), U(s))ds} (X (’c)).+
SR °
+fexp {— [ (X, UE)ds}f (X0, U @®)di].
)

Hence (3..22) and (3.23) imply the uniqueness of the solution W; namely

T

324 W(T9= sup Efexp {~]c(X(), UG)ds}o(X@)+

0 .

+fexp {— J (X, Uo)ds} (X, U (0)ae].

. _ ]
Remark. The Markovian policy u (ie, a I'-valued Borel function)
defined by (3.21) and the hitting time for D give an optimal policy.
Proof of the Corollary. Since a solution is unique, (3.24) means that
W(T, x) is increasing in T.  Put:
D = {(t, x)€[0, o) xR"; W(t, x) = (x)}.

Then we have
GW ae. in DS,

oW/ot = .
0 ae. in D.
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Hence

ow (oW ,

Since 0W/dt and 6W/Bt;-GW are non-negative, from (3.25) we obtain
cW/ot =0 v GW ae. This completes the proof of the Corollary.

Remarks on uniqueness of solution of (1.11). Suppose that there
exists a compact set E — R" such that supp ¢ < E and supp f (-, w) < E for
any uel. Put

Co(or Lm‘o) = {yeC(or L,); Illi—IPw W (x)| = 0}
and ' : -
o D={yeConWiin: 0V GYyeL, o}
Then

() V(t, )eCq and O v GPELy,, for almost all t;
(i) the operator O v G: D — L, is dissipative; :
(i) V is a unique solution of (1.11) if 0 v GV (t, ‘) is almost separably

* valued; namely, there exists a null set N < [0, o0) such that {0 v G(V, "),
te[0, w0) \N} is a separable set of L.

For example, since C, is separable, ¥V is a.  unique solution if
0 v GV(t, -)eC, for almost all t.

Proof. (i) is easy by the routine method.

(ii) We recall the proof of [4]. For ¢, tﬁeD _

J(g) = ess inf (0 v G(p(x) 0v Gl/l (x)) 0 v ess inf (Go (x) Gy (x))

|x=%| <e |x—X| <e

<0v Iess mf E“"’((p l//)(x)

‘where u(x) is a Borel functlon such that

L9 (x) = sup Lo(x) = th (x)

-Since '™ is a uniformly elliptic operator with bounded coefficients; ‘
Bonys maximum principle [3] implies that if @— has a positive maximum -
at X, then v

ess 1nf l‘.“"’((p W)x 0 for any &> 0.

|x—~X|<e
Hence J(¢) <0 for any ¢ > 0. Consequently,
&18 J@E <0

~which completes the proof.



-

Stochastic differential equations 153

(iii) Since O0v GV(t,x) is a bounded Borel function of (¢, x),
[0V GV(, x)u(dx) is a Borel function of ¢ for any peL,(R"), ie,
0 v GV (t, -) is weakly measurable. Hence, by the Pettis theorem, the con-
dition of (iii) implies that 0 v GV (t, -) is strongly measurable. Consequently,

Vi, x).= 3' 0 v GV(s, x)ds
0

can be regarded as a Bochner integral. This means that V (¢, -) is strongly
differentiable and

d
“K(t Y=0v GV(t,-) for almost all z.

Therefore, by (ii) we obtain (iii). _
4. Limit function. Suppose inf ¢ (x, u) > 0. Then
v=lim V(@)
exists in C and v is the least Q(t)-superharmonic majorant of ¢; namely,
41) oe<vand Q(t)v<v for any ¢,

42 if veC satisfies (4.1), then v < 7.

Since v is the value of the optimal stopplng problem, v is related to the
free boundary problem. Now we recall the following :

THEOREM 2. Under the same conditions as in Theorem 1, ve W3, for any

“large p and v sat:sﬁes the following free boundary problem:

43 ¢<v inR,
4.4) Gv <0 ae in R",
4. 5) . (v—9)Gv = 0 ae. in R"

Moreover (4.3)-(4.5) has the umque solution in W2, 3 10
Since (4.4) is equivalent to 0 v Gv =0 ae., we have
COROLLARY. v satisfies the following Bellman equation with (4.3):

4.6) OvGyv=0ae inR"

Equation (4.6) with (4.3) has many solutions. For example, we repﬁce f
by f +k, where k is a positive constant. Then its optimal value 7 satisfies
(4.3) and :

@7 ' Gi+k<0 ae. in R"

Since k is positive, 7 is a solution of (4.6). Equation (4.6) means that v is
Q () -superharmonic. Thus, the solution of (4 3)-(4.5) is the minimum one of
- (4.3) and (4. 6). ,
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