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Abstract. This article is concerned with an optimal stopping 
. 

problem of controlled stochastic differential equations. The value 
function up to t provides a unique solution or the bee boundary 
problem of parabolic type (Theorem 1, a little variant of (61). On the 
other hand, the value function provides a ma - linear semigroup 
(Proposition 3) and the Cauchy problem of this generator will be 
considered (corollaries and remarks on uniqueness). 

1. In&oduction. In this paper we treat the optimal stopping problem of 
controlled stochastic differential equations. Let r be a compact convex 
subset of Rk, called a control region. Let B(t), t 2 0, be an n-dimensional 
Brownian motion on a probability space (a, F, P). Put I;, = q ( B )  to be the 
a - field generated by B (s) ,  s < t . An F, - progressible measurable r - valued 
process is called an admissible control. 2l denotes the totality of admissible 
controls. Let a and y be a symmetric n x n matrix valued function and an 
n - vector valued function defined on R" x T, respectively. We assume that 
both are bounded and satisfy 

( 1 . 1 )  . Ih(x,u)-h(x' ,u1)l<KIx-x'J+e(lu-ufl) ,  - 

where K is a positive constant and Q is a continuous function with g(0)  = 0. 
Consider the following controlled stochastic differential equation for 

U E ~ :  

(1.2) d X ( t ) = a ( X ( t ) , U ( t ) ) d B ( t ) + y ( X ( t ) , U ( t ) ) d t ,  X ( O ) = x .  

By (1.1),  equation (1.2) has the unique solution X(t )  = X ( t ,  x, U ) ,  called 
the response for U. Let rn be the totality of Ft-stopping times and put m(T) 
= { r  A Z T E ~ ]  (I) .  

(I)  a A b = min(o, b), a v b = max(a, b). 

2 - Rob. Math Statist. 3 (2) 
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For U €'PI and t ~ r n  the gain is given by 

where X(t )  = X ( t ,  x, U). We assume that e 2 0 and f are bounded and 
satisfy (1.1). 

Lct C be a Banach lattice of the totality of bounded and uniformly 
cotitinuous functions on Rn, with usual order and supremum norm. Put 

VV, x, 44 = sup V ( t ,  x, cp, U). 
UEYI,TE~(I) 

Then V ( t ,  -, p) E C whenever cp E C. Moreover, the operator V (t), defined 
by 

(1.5) Vlt)  pix) = V ( t ,  x ,  rp), 

is a monotone contraction semigroup on C. Putting 

Grp = sup Ep - c'rp + f u  f '), 
U E ~  

where C is the generator of the response for the constant control u E T, i.e. 

we express the generator 8 of V( t ) ,  t 2 0, b y  the formula 

( 1 4 Bcp=OvGq for smooth cp. 

The value function V ( t ,  x ,  rp) is related to the free boundary problem. 
The following theorem will be proved in Section 3: 

THEOREM 1. We assume thar the smooth condition is satisfied, thar is 
a, y ,  c ,  f, and cp are twice contirzuousiy d~xerentiable in x and tlzeir jirst de- 
rivatives are bounded a d  satisfy (1.1) with possibly another K aid Q. 

Moreover, the second derivatives are bounded and satisfy 

wlrere artd A me  positive constants and 8 is a continuous furzctiorz with g(0) 
= 0. Suppose a is uniformly positive definite. 
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Then V(t, x, rp) E W,z (El], [7]) for any large p and V ( r ,  x, q) surislies 
the following free boundary' problem: 

(1.7) W 2 cp in [0, co) x Rn, 

(1.10) - ,  W ( 0 ,  - ) = rp in R". 

Furthermorey h soluriorr ~f (1.7) -(1.10) is unique in Wi,;: ,.,, . 
COROUARY. Under the same condirions as in Theorem 1 ,  V satisfies the 

following Bellman equation : 

(1.11) V(O;)=rp in Rn. 

If inf c ( x ,  u) > 0, then v = lim V ( t )  cp exists in C and 
x,u r t m  

v (x) = sup V ( z ,  x, cp, U ) .  
UeII.r€m 

The limit function v will be considered in Section 4. 

2. Semigroups associated with opiimizatioa. We summarize non-linear 
semigroups on C which are related to optimization problems of controlled 
stochastic differential equations [2]. Let T be a compact subset of Rk. Let 9, 
denote the totality of a r-valued F, - progressible measurable process U such 
that 

U ( t )  = U(k/ZN) for t E [k/2N, ( k  + 1)/2"9, k = 0 ,  1, . . . 
Put 

We call U E '% a switching control. 
For a constant time t we define 

Then we can easily see that Q ( t ,  ., q) EC whenever rp E C. Hence we can 
define the operator Q(t )  by 
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Put 

and 
1 

7'" ( t )  = HU It) + HY (s) f U  (s) ds, 
0 

where W ( t )  is the transition semigroup of the response for u E T  with killing 
rate cu. Hence T(t)-is the semigroup with generator Anq = Eq-cUcp+f". 

howsrr~on 1. Q(t), t 3 0,  is a mnotone contraction semigroup (7 on C ,  
whose generator G is expressed by . -  - 

(2.31 Gcp = sup Crp - cUq + f "  for cp C2. 
l a d  

Moreover : 

(2.4) Y(t)cp<Q(t)cp for all u , t , q .  

(2.5) M i n i m u m  property . I fasemigraup A(t) ,  t20,satisBes 

Y( t )cp  d A ( t ) q  for all u, t ,  p, then A(t)cp 2 Q( t )q .  

P~oposrrro~ 2. Suppose that ci, y,  c, f ,  and cp satisfy the smoothness con- 
dition of Theorem 1. Suppose that there exists C E  F such that cr ( ., ii) is 
uniformly positive dejinite. Then Q( t ,  x, cp) E Wik: for any large p. Moreover, 
~ ' ~ - c ~ ~ + . f " - d Q / i t  is e~sentiall~v bounded on [O, TI x Rn .for any T > 0. 

When F is convex, any admissible control can be approximated by a swiich- 
ing control, i.e. 

sup V ( t ,  x, U, cp) = sup V ( t ,  x ,  U, r p ) .  
U d l  U d l  

. . 

PROP~SITION 3. V ( t )  of (1.5) is a mnotone contraction semigroup on C, 
whose generator 8 is expressed by 

(2.6) B q = O v G r p  for rp€C2. 

Moreover : 

(2.7) Q ( t ) y <  V(t)cp and r p <  V ( t ) q  for ail t ,  rp .  

(2.8) M i n i m u m  p r o  per t  y. If a semigroup A ( r )  instead of V( t )  satisfies 
(2.7), then V ( t )  cp < A(t)  q for all t ,  q. 

(3) The semigroup property means the so-called Bellman principle. 
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Now we prove the former half of Theorem 1. Put = ru ( d } ,  where 
d $ r .  Assume that a(x, d), y(x,  d), c(x, d), and f (x, d) are equal to 0. Hence 
P ( t )  is the identity. In this case, (2.5) and (2.8) imply V ( t )  = Q(t). Therefore, 
it follows from Proposition 2 that V (t, x, q) E ~ 2 2 ,  and EV - cUV + 
+ f "- aV/at is essentially bounded in [0, Tj x R" for any T > 0. 

3. hoof of Theorem 1. For the proof of the latter half of Theorem 1, we 
apply the same method as in [l]. By the definition of V ( t ,  x, rp), (1.7) and 
(1.10) are clear. 

Fix T arbitrarily and put WT (t, X) = W (t, X) = V(T- t) rp(x). Then (2.4) 
.. - 

and (2.7) imply 

Moreover, appealing to the end of Section 2, we see that W; q~$,q,, 
for any compact S of Rn. Let t(t), t 3 0, be the response for a constant 
control u E r. Since a ( ., u) is uniformly positive definite, Ito's formula holds 
for a function of ~,1,.:,,, (see [7]). Hence, using (3.11, we have 

8 e 
w ~ t ,  X) 3 Exrj EXPI-s  c ( t ( ~ ) ,  u)dz1$(t(2), 

0 0 

So, putting 

(3-2) 

we get 
s e 

Integrating both sides from 0 to T-t with measure ~ ' e - ~ d s ,  we have 

Since F is essentially bounded and a(., u) is uniformly positive definite, 
the second term of (3.3) tends to 0 as p oo . On the other hand, the first 
term tends to F(t, x, u) in L,([O, x S) for any compact S of Rn. Therefore, 
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I 
I Letting dW/dxi and i 3 2 W / d ~ i a ~ j  independent of u, we obtain (1.8) from 
I (3.4) by the continuity with respect to u. 

For (1.9) we use the random stopping. Let 9 be the totality of non- 
negative and bounded F, - progressible measurable processes. r E 93 gives the 
following random stopping : 

t 

 stop at (t, t +dt) 1 non -stopping before t )  = rlt) exp (-J r(s)ds) dt. 
0 

For re  3 and U E N, the gain is given by 
. . 

where 

and X ( t )  = X(t, x, U). In the same way as in [I] we can show that 

Using again Ito's formula, we obtain (3.6) in the form 

(3.7) 

The set 

D,(T) = (It, x)ECO, x R n ;  V(T-t)cp(x) < cp(x)+~} 

is closed. Thus for (0, y)#D,(T) there exist positive 2 and d such that 
[ O ,  a x S ( y ,  d )  c Dz (p? where SCy, d)  is the sphere with origin y and radius 
d. By virtue of (1.7) and (1.8) 'each term of (3.7) is non-positive, so we can 
replace T by T A T. 
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Let x € S ( y ,  6) and Iet (U,, r,), k = 1, 2, . . . , be an approximate optimal 
sequence. Since 

(3.8) ~(x( t ) ) -W(t ,X( t ) )<  - E  for t < r ,  

we get, as k 1 w,  
T n r k  f 

and - 

T A %  

I (3.10) - i i  I o F(17Xk(t), U k ( t ) ) d l + o ,  

where X, is the response for U,, Since a and y are bounded, for x$  SCy, d) 
we can choose c = c(x) > 0 so that 

Therefore, by (3.31, we see that 
T nrk 

(3.11) e x p i -  j r,(s)ds)+lin P as k + m .  
0 

Let M = M,,, be the set of all (A, R) which satisfy the following 
conditions : 

. (3.12) A is an n,x n symmetric matrix valued F, - progressible measurable 
process with 

I I 

IA(t,m)l<K and 2 Aij(t,o)BiBj~11012 for anyw, t ,8 .  
i,j= 1 

(3.13) R is an IF, - progressible measurable n - dimensional process with 
- IR{ t ,w) l<Kforanyo , t .  

Put 

W ( t ,  x ;  k, P, K, 19.6) 
(T-t)nr s s 

= sup E j e-%(c + s, x+ J AdB+ ~dB)ds, 
(A,R)EM o 0 0 

where z is the hitting time for aS(0, 6). Then for any p 3 (1 + 2 ~ ) / d '  and p 
2 2n+ 2 we have 

with R = R(n, K, A). 
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Putting sup F T ( t ,  x, u) = M T ( t ,  x),  w e  infer from (1.8) that for any T  > 0 
 WE^ 

Therefore, by (3.1 O), we have 
T h r  I f 

(3.15) sup E J M,( t ,  x+J A ~ B + [  Rd0)dt =O. 
(A.WEM 0 0 0 

- Replacing T by T - s ,  we obtain 
.. " 

t 

(3.1 6) sup E IT-;*' M ~ - ~ ( L ,  ~ + i  A ~ B + S  ~ d 8 ) d f  = 0. 
(A,RI€M 0 0 a 

From the- definition of M ,  we get M ,  (t + s, x) = M T - , ( t ,  x ) .  Hence 

( T - s ) n r  t I 

(3.17) sup E 1 M T ( t + s , x + j A d B + j ~ d O ) d t = O .  
(A,R)€M 0 o 0 

Since MT ,< 0 a.e. and A is positive definite, we have 

( 2 - s ) ~ ~  I t 

(3.18) sup E j j i e - " ~ , ( t + s ,  x + j  A ~ B + S  Rd0)dt = 0. 
(A.R)EM 0 0 0 

As p + co, we get MT = 0 a.e. b y  virtue of (3.14); namely, 

(3.19) 
a 
- V(t)cp = GV(t)cp a.e. in (T-d, T) x S b ,  d);  
at 

clearly, [ O , J + B )  xSCy, d) c D,(T+OY for any 6 > 0. Hence (3.19) holds in 
( T - 2 ,  T+@ x S(y, d). As E 10, we get (1.9). This completes the proof. 

' 

Now w e  prove the uniqueness of solution. Let WE W2;:2,10c be a solu- 
tion. Fix T > 0 arbitrarily and put v ( t ,  x )  = W ( T - t ,  x). We can choose 
a r-valued Bore1 function u(r, x)  so that 

Moreover, the stochastic differentia1 equation 

has a weak solution ( [5] ,  [7]). Put 

Then &/at + Gv = 0 a.e. in LF. Let be  a weak solution and z the hitting 
time for D of the process ( t ,  { ( t ) ) .  By the definition of D, we have z < T. 
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Since v E Wi~z, putting U (t) = tk ( t ,  < (t)) and using Ito's formula we obtain 

= E j exp ( - j c (C (s), u (s)) drj (av~at ( t  , t 01) + et)v ( t ,  t (t)))  d t .  
0 0 

For T 2 T, v (T A a,  ( T  A a))  is cp([ (T A a)). Hence (3.21) turns out 

and r =.t A T. 
On the other hand, for any r -valued Brownian 8 - non - anticipative 

process U, we consider the controlled stochastic differential equation 

Then for any at (X, B) -stopping time a with a < T we have 

Hence (3.22) and (3.23) imply the uniqueness of the solution W; namely 

(3.24) WW(T x) = sup Ex [exp ( - j' c (X(s), U (s)) ds]  q (X(T))+ 
U , t < T  0 

Remark. The Markovian policy u (i.e, a r-valued Bore1 function) 
defined by (3.21) and the hitting time for D give an optimal policy. 

Proof of the  Corollary. Since a solution is unique, (3.24) means that 
W(T, x) is increasing in T. Put 

D = ((t, x)E[O, m) xR' ;  W(t,  x)  = q(x)). 

Then we have 
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Hence 

Since dW/dt and dW/dt- GW are non -negative, from (3.25) we obtain 
dW/& = 0 v GW a.e. This completes the proof of the Corollary. 

Remarks o n  uniqueness of so lu t ion  of (1.11). Suppose that there 
exists a compact set E c Rn such that supp cp c E and supp f (-, tc)  c E for 
nny U E ~ .  Put 

.. - -  

C,(or LL,,,) = ( $ ~ C ( o r  L,); lim I@(x)l = 0) 
lxltm 

I (i) V ( t ,  )E Co and 0 v Grp E L,,, for almost all t ; 
(ii) the operator 0 v G :  D + L,,, is dissipative; 

I (iii) V is a unique solution of (1 .11)  if 0 v GV( t ,  .) is almost separably ~ valued; namely, there exists a mil set M c [0, a) such that {O v G(F/, .), 
1 t E [O, a) \N} is a separable set of L,,,. 
t 

i For example, since C, is separable, V is a unique solution if 
0 v GV(t, .)EC, for almost all t .  

Proof. (i) is easy by the routine method. 
(ii) We recall the proof of [4]. For 9, $ED, 

I J(&) = ess inf (0 v Gq(x)-0 v G$(x))  < 0 v ess inf (G~(x)-G$(x)) 
I x - Z i b a  Ix-ZI G E  

where u(x )  is a Bore1 function such that 

Pxbp (x) = sup Crp (x)  = G q  (x)  . 
U E ~  

Since E(") is a uniformly elliptic operator with bounded coefficients, 
Bony's maximum principle [3] implies that if q-$ has a positive maximum 
at 2, then 

I essinf @(")(rp - $) x ,< 0 for any E > 0. 
1%- XI < E  

I 

Hence J ( E )  < 0 for any E > 0. Consequently, 
I 

I 
I which completes the proof. 
i 
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(iii) Since 0 v GV(t, x) is a bounded Borel function of (I, x), 
[ 0 v GV(t, x)p (dx) is a Borel function of t for any p E E ,  (Rn), i.e., 
O v G V (r, - ) is weakly measurable. Hence, by the Pettis theorem, the con- 
dition of (iii) implies that 0 v GV(t, -) is strongly measurable. Consequently, 

I 

V ( t ,  x) = j 0 v GV(s, x)ds 
0 

can be regarded as a Bochner integral. This means that V ( t ,  .) is strongly 
differentiable and 

- dV 
-(t;;) = O v GV(t, -) for almost all t. 
dt 

Therefore, by (ii) we obtain (iii). 

4. Limit 'fwmtit~sl. Suppose inf c(x, u) > 0. Then 
X. u 

exists in C and v ,is the least Q (t) -superharmonic majorant of q ; namely, 

(4.1) q < v  and Q(t)v<vfor any t, 

(4.2) if  YE C satisfies (4.1), then v < if. 
Since u is the value of the optimal stopping problem, v is related to the 

free boundary problem. Now we recall the following 
THEOREM 2. Under the same conditions as in Theorem 1, v E WAC for any 

large p a d  u satisjies the following free boundary problem: 

Gv < 0 a.e. in R': 

(v - q) Gv = 0 a.e. in R". 

Moreover, (4.3) - (4.5) has the unique solution in w&+ 2,10c. 

Since (4.4) is equivalent to 0 v Gv = 0 a.e., we have 
COROLLARY. v satisfies the following Bellman equation with (4.3): 

(4.6) 0 v Gv = 0 a.e. in Rn. 
Equation (4.6) with (4.3) has many solutions. For example, we replace f 

by f +k, where k is a positive constant. Then its optimal value i7 satisfies 
(4.3) and 

(4.7) GV"+ k < 0 a.e. in Rn. 
Since k is positive, v' is a solution of (4.6). Equation (4.6) means that u is 

Q (t) - superharmonic. Thus, the solution of (4.3) -(4.5) is the minimum one of 
(4.3) and (4.6). 
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