A REPRESENTATION OF DISTRIBUTIONS FROM CERTAIN CLASSES $L_{S}^{\text {id }}$

T. RAJBA (Wroclaw)

Abstract. In this paper we define classes L_{S}^{d} of certain infinitely divisible measures on the real line. We get a representation of the characteristic functions of distributions from certain classes $E_{S}^{\text {id }}$. The method of our proof, stimulated by results of Urbanik [5] consists in finding the extreme points of a certain convex set formed by Khintchine measures of distributions from $\dot{L}_{S}^{\text {id }}$. Once the extreme points are found, one can apply Choquet's theorem on representation of the points of a compact convex set as barycenters of the extreme points ([4], p. 19). From Choquet's uniqueness theorem for a metrizable space X we obtain the uniqueness of representation ([4], p. 70).

1. It is well known that the measure P on the real line R is infinitely divisible if and only if its characteristic function \hat{P} has the Lévy-Khintchine representation

$$
\hat{P}(t)=\exp \left\{i b t+\int_{-\infty}^{\infty}\left(e^{i t u}-1-\frac{i t u}{1+u^{2}}\right) \frac{1+u^{2}}{u^{2}} \mu(d u)\right\}
$$

where b is a real constant, and μ is a finite Borel measure on $R([2], \mathrm{p} .309)$, called a Khintchine measure.

Let μ be a finite Borel measure on $[-\infty, \infty]$. We put $\tilde{\mu}(B)=\mu(-B)$, where $-B=\{x:-x \in B\}$. We define the measure p_{μ} as follows:

$$
\begin{gathered}
p_{\mu}\left|(-\infty, 0) \cup(0, \infty)=\frac{1+u^{2}}{u^{2}} \mu\right|(-\infty, 0) \cup(0, \infty) \\
p_{\mu}|\{-\infty, 0, \infty\}=\mu|\{-\infty, 0, \infty\}
\end{gathered}
$$

For every $c \in R \backslash\{0\}$ we denote by T_{c} the mapping $T_{c} x=c x \quad(x \in$ $[-\infty, \infty]$). Given a Borel measure λ on $[-\infty, \infty], T_{c} \lambda$ denotes the measure defined by $T_{c} \lambda(B)=\lambda\left(T_{c}^{-1} B\right)$ for all Borel subsets B of $[-\infty, \infty]$. For Borel measures λ and v on $[-\infty, \infty], \lambda \leqslant v$ if and only if $\lambda(B) \leqslant v(B)$ for all Borel subsets B of $[-\infty, \infty]$. Further, by $\delta_{x}(x \in[-\infty, \infty])$ we denote the probability measure concentrated at the point x.

Let P be an infinitely divisible measure on R. The decomposability semigroup $D^{\text {id }}(P)$ corresponding to P consists of all real numbers s for which there exists an infinitely divisible measure P_{s} such that

$$
\hat{P}(t)=\hat{P}(s t) \hat{P}_{s}(t) \quad(t \in R)
$$

(see [3]). The semigroup operation is simply the multiplication of numbers. It is not difficult to prove that P is non-degenerate if and only if $D^{\text {id }}(P)$ is compact (see [6]). In other words, for non-degenerate $P, D^{\text {id }}(P)$ is a compact subsemigroup of the multiplicative semigroup $[-1,1]$ containing 0 and 1 (see [7]). In [3] we proved that for every compact semigroup S containing 0 and 1 there exists an infinitely divisible measure P such that $D^{\text {id }}(P)=S$. It is not difficult to prove that, for $s \neq 0, s \in D^{\text {id }}(P)$ if and only if

$$
\begin{equation*}
T_{s} p_{\mu} \geqslant p_{\mu}, \tag{1}
\end{equation*}
$$

where μ is a Khintchine measure corresponding to P (see [1] and [2]). Given a compact semigroup S containing 0 and 1 , we say that the probability measure P belongs to a class L_{S}^{d} if $S \subset D^{\text {id }}(P)$.
2. Throughout this paper, S is a compact semigroup containing 0 and 1. Let $M(S)$ or, shortly, M be the set of all finite Borel measures μ on $[-\infty, \infty]$ for which $T_{s} p_{\mu} \geqslant p_{\mu}$ for each $s \in S \backslash\{0\}$. Let M_{0} be the subset of M consisting of measures concentrated on ($-\infty, \infty$). Then, by (1), $\mu \in M_{0}$ if and only if μ is a Khintchine measure corresponding to a distribution from L_{S}^{d}. Let K be the subset of M consisting of all probability measures and put K_{0} $=K \cap M_{0}$. Obviously, the set K is convex. The space of all probability measures on $[-\infty, \infty]$ with weak convergence is a metrizable compact space. We consider the induced topology on K. It is not difficult to show that K is closed. Thus, K is compact.

Theorem 1. M is a convex cone generated by K, and K is a simplex.
Remark. Let X be a compact convex set in a real locally convex space E. Without loss of generality we may assume that X is contained in a closed hyperplane which misses the origin. Put

$$
\tilde{X}=\{\alpha x: \alpha \geqslant 0, x \in X\}
$$

\tilde{X} is the cone generated by X. A cone \tilde{X} induces a translation invariant partial ordering on $E: x \geqslant y$ if and only if $x-y \in \tilde{X}$. Then X is a simplex if
and only if X is a lattice (i.e., each pair x, y in \tilde{X} has the greatest lower bound, denoted by $x \wedge y$, in \tilde{X} (see [4], p. 58-60)).

Theorem 1 is implied by the following
Lemma 1. Let Y_{S} be the set of all σ-finite non-negative measures p on $[-\infty, \infty]$ such that $T_{s} p \geqslant p$ for each $s \in S \backslash\{0\}$. Then Y_{S} is a lattice in its own ordering; for $p_{1}, p_{2} \in Y_{S}$ we have

$$
\begin{equation*}
p_{1} \wedge p_{2}=f \wedge g\left(p_{1}+p_{2}\right) \tag{2}
\end{equation*}
$$

where $f=d p_{1} / d\left(p_{1}+p_{2}\right), g=d p_{2} / d\left(p_{1}+p_{2}\right)$, and $f \wedge g=\min (f, g)$.
Proof. Let $p_{1}, p_{2} \in Y_{S}$ and $p=p_{1}+p_{2}$. Then both p_{1} and p_{2} are absolutely continuous with respect to p, hence have Radon-Nikodym derivatives f and g, respectively. Let $h=f \wedge g$ (this is defined p-a.e.) and let $p_{1} \wedge p_{2}=h p$.

Put $C=\{x: f(x)<g(x)\}$ and $D=\{x: f(x) \geqslant g(x)\}$.
Let $s \in S \backslash\{0\}$ and let B be a Borel subset of $[-\infty, \infty]$. Then

$$
\begin{aligned}
& T_{s}\left(p_{1} \wedge p_{2}\right)(B)=\int_{T_{s}^{-1} B} h d p=\int_{T_{s}^{-1}(B \cap C)} h d p+\int_{T_{s}^{-1}(B \cap D)} h d p=\int_{T_{s}^{-1} \boldsymbol{i}_{B \cap T_{s}^{-1} C \cap C}} f d p+ \\
& +\int_{T_{s}^{-1} B \cap T_{s}^{-1} C_{\cap D}} g d p+\int_{T_{s}^{-1} B \cap T_{s}^{-1} D_{D \cap C}} f d p+\int_{T_{s}^{-1} 1_{B \cap T_{s}^{-1} D \cap D}} g d p
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{B \cap C} f d p+\int_{B \cap D} g d p=\int_{B \cap C} h d p+\int_{B \cap D} h d p=\int_{B} h d p=p_{1} \wedge p_{2}(B) .
\end{aligned}
$$

This shows that $T_{s}\left(p_{1} \wedge p_{2}\right) \geqslant p_{1} \wedge p_{2}$ for each $s \in S \backslash\{0\}$. It follows easily that $p_{1} \wedge p_{2}$ is the greatest lower bound of p_{1} and p_{2}, so Y_{s} is a lattice.

Proof of Theorem 1. Let $\mu, \lambda \in K$ and $\alpha, \beta>0$. Let $p_{\alpha \mu} \wedge p_{\mu \lambda}$ be defined as in Lemma 1. Then, by Lemma $1, p_{\alpha \mu} \wedge p_{\beta \lambda}$ is the greatest lower bound of $p_{\alpha \mu}$ and $p_{\beta \lambda}$, and $T_{s}\left(p_{\alpha \mu} \wedge p_{\beta \lambda}\right) \geqslant p_{\alpha \mu} \wedge p_{\beta \lambda}$. Since $p_{\alpha \mu} \wedge p_{\beta \lambda} \leqslant p_{\alpha \mu}$, there exists a finite Borel measure v such that $p_{\alpha \mu} \wedge p_{\beta \lambda}=p_{v}$. Then $v \in M$ and v is the greatest lower bound of $\alpha \mu$ and $\beta \lambda$. Thus the theorem is proved.

Clearly, the measures concentrated on the three-point set $\{-\infty, 0, \infty\}$, which have equal masses at $-\infty$ and ∞ if $S \cap[-1,0) \neq \varnothing$, belong to M. Moreover, $\tilde{\mu} \in M$ if and only if $\mu \in M$. Finally, it is easy to see that a measure belongs to M if and only if its restrictions to $(-\infty, 0) \cup(0, \infty)$ and $\{-\infty, \infty\}$, respectively, belong to M. if $S \cap[-1,0)=\varnothing$, then a measure belongs to M if and only if its restrictions to $(-\infty, 0)$ and $(0, \infty)$, respectively, belong to M. Hence we get the following lemma:

Lemma 2. The extreme points of K are measures concentrated on one of the
following sets: $\{0\}, \quad\{-\infty, \infty\}$, and $(-\infty, 0) \cup(0, \infty)$. Moreover, if $S \cap[-1,0)=\varnothing$, then the extreme points of K are measures concentrated on one of the following sets: $\{0\},\{-\infty\},\{\infty\},(0, \infty)$, and $(-\infty, 0)$.

By $e(K)$ we denote the set of extreme points of K.
Lemma 3. If $\mu \in e(K)$, then μ is absolutely continuous (i.e., absolutely continuous with respect to the Lebesgue measure) or singular continuous, or atomic.

Proof. Let $\mu \in e(K)$. Write μ in the form

$$
\mu=\alpha_{1} \mu_{1}+\alpha_{2} \mu_{2}+\alpha_{3} \mu_{3}
$$

where $\alpha_{1}+\alpha_{2}+\alpha_{3}=1, \alpha_{i} \geqslant 0, \mu_{1}$ is an absolutely continuous probability measure, μ_{2} is an atomic probability measure, and μ_{3} is a singular continuous probability measure. Let E_{1}, E_{2}, and E_{3} be sets such that $\mu_{i}\left(E_{j}\right)=0$ for $i \neq j$ and $\mu_{i}\left(E_{i}\right)=1(i, j=1,2,3)$. If $\alpha_{i} \neq 0$, then $\mu_{i}(B)=\mu\left(B \cap E_{i}\right) / \alpha_{i}$ and

$$
T_{s} p_{\mu_{i}}(B)=\alpha_{i}^{-1} T_{s} p_{\mu}\left(B \cap E_{i}\right) \geqslant \alpha_{i}^{-1} p_{\mu}\left(B \cap E_{i}\right)=p_{\mu_{i}}(B)
$$

for all Borel subsets B of $[-\infty, \infty], s \in S \backslash\{0\}$. Thus, if $\alpha_{i} \neq 0$, then $\mu_{i} \in K$. Since μ is an extreme point of K, at most one α_{i}, say α_{r}, is positive. Then μ $=\mu_{r}$. This proves the lemma.

Let λ be a non-negative Borel measure on $[-\infty, \infty]$ and let E be a Borel subset of $[-\infty, \infty]$ such that $\lambda\left(\dot{E}^{\prime}\right)=0$. Then λ is said to be $S-$ invariant on E if $T_{s} \lambda(B)=\lambda(B)$ for all Borel subsets B of E and $s \in S \backslash\{0\}$. It is not difficult to show that if λ is S-invariant on E, then $T_{s}^{-1} E \subset E \lambda$-a.e. for each $s \in S \backslash\{0\}$.

We shall show that if $\mu \in e(K)$, then p_{μ} is S-invariant on some Borel set E. First, we prove two basic lemmas on S-invariant measures.

Lemma 4. Let E be a Borel subset of $[-\infty, \infty]$. Suppose that λ and p are σ-finite measures on $[-\infty, \infty], \lambda$ is S-invariant on $E\left(\lambda\left(E^{\prime}\right)=0\right)$, and p is absolutely continuous with respect to λ (with $d p / d \lambda=f$, say). Then:
(a) if $T_{s} p \geqslant p$ for each $s \in S \backslash\{0\}$, then

$$
\begin{gather*}
f \circ T_{s}^{-1} \geqslant f \text {-a.e. for each } s \in S \backslash\{0\} \tag{3}\\
T_{s}(p-p \wedge \lambda) \geqslant p-p \wedge \lambda \quad \text { for each } s \in S \backslash\{0\} \tag{4}
\end{gather*}
$$

(b) if $f \circ T_{s}^{-1} \geqslant f$-a.e. for each $s \in S \backslash\{0\}$, then $T_{s} p \geqslant p$ for each $s \in S \backslash\{0\}$.

Proof. (a) Let $T_{s} p \geqslant p$ for each $s \in S \backslash\{0\}$. Put

$$
A=\left\{x: f(x)>f\left(T_{s}^{-1}(x)\right)\right\} \cap E \quad \text { for some } s \in S \backslash\{0\}
$$

Suppose that $\lambda(A)>0$. Then

$$
p\left(T_{s}^{-1} A\right)=\int_{T_{s}^{-1} \dot{A}} f d \lambda<\int_{T_{s}^{-1} A} f \circ T_{s} d \lambda=\int_{A} f d\left(\lambda \circ T_{s}^{-1}\right)=\int_{A} f d \lambda=p(A)
$$

which contradicts $T_{s} p \geqslant p$. Thus $f \circ T_{s}^{-1} \geqslant f \lambda$-a.e. for each $s \in S \backslash\{0\}$.

Now we prove inequality (4). Since both p and λ are absolutely continuous with respect to $p+\lambda$, they have Radon-Nikodym derivatives F and G, respectively. Then for all Borel subsets B of $[-\infty, \infty]$ we have

$$
\begin{aligned}
& \int_{\boldsymbol{B}} f d \lambda=p(B)=\int_{\boldsymbol{B}} F d(p+\lambda)=\int_{\boldsymbol{B}} F(f+1) d \lambda, \\
& \int_{\boldsymbol{B}} 1 d \lambda=\lambda(B)=\int_{\boldsymbol{B}} G d(p+\lambda)=\int_{\boldsymbol{B}} G(f+1) d \lambda .
\end{aligned}
$$

Hence $F(f+1)=f \lambda$-a.e. and $G(f+1)=1 \lambda$-a.e. Thus $F=f /(f+1)$, $G=1 /(f+1)$, and $F \wedge G=(f \wedge 1) /(f+1) \lambda$-a.e. Then for all Borel subsets B of $[-\infty, \infty]$ we have

$$
p \wedge \lambda(B)=\int_{B}(F \wedge G) d(p+\lambda)=\int_{B}(f \wedge 1) d \lambda
$$

Put $C=\{x: f(x)>1\}$. If B is a Borel subset of E and $s \in S \backslash\{0\}$, then

$$
\begin{aligned}
(p-p \wedge \lambda)(B) & =\int_{B}(f-f \wedge 1) d \lambda=\int_{B \cap C}(f-1) d \lambda=\int_{B \cap C}(f-1) d\left(\lambda \circ T_{s}^{-1}\right) \\
& =\int_{T_{s}^{-1} \int_{B \cap T_{s}^{-1} C}(f-1) \circ T_{s} d \lambda \leqslant \int_{T_{s}^{-1}}(f-1) \circ T_{s} d \lambda}\left(f \circ T_{s}-1\right) d \lambda \leqslant \int_{T_{s}^{-1} B \cap C}(f-1) d \lambda=\int_{T_{s}^{-1}}(f-f \wedge 1) d \lambda \\
& =(p-p \wedge \lambda)\left(T_{s}^{-1} B\right)=T_{s}(p-p \wedge \lambda)(B) .
\end{aligned}
$$

Thus inequality (4) is proved for Borel subsets B of E. If B is a Borel subset of $[-\infty, \infty]$, then

$$
\begin{aligned}
& (p-p \wedge \lambda)(B)=(p-p \wedge \lambda)(B \cap E) \leqslant(p-p \wedge \lambda)\left(T_{s}^{-1}(B \cap E)\right) \\
& \leqslant(p-p \wedge \lambda)\left(T_{s}^{-1} B\right)=T_{s}(p-p \wedge \lambda)(B) .
\end{aligned}
$$

(b) Suppose $f \circ T_{s}^{-1} \geqslant f \lambda$-a.e. for each $s \in S \backslash\{0\}$. If $\left.s \in S \backslash 0\right\}$ and B is a Borel subset of $[-\infty, \infty]$, then

$$
\begin{aligned}
T_{s} p(B) & =p\left(T_{s}^{-1} B\right)=\int_{T_{s}^{-1} B} f d \lambda \geqslant \int_{T_{s}^{-1} B} f \circ T_{s} d \lambda=\int_{B} f d\left(\lambda \circ T_{s}^{-1}\right) \\
& \geqslant \int_{B \cap E} f d\left(\lambda \circ T_{s}^{-1}\right)=\int_{B \cap E} f d \lambda=\int_{B} f d \lambda=p(B)
\end{aligned}
$$

Thus (b) is proved. This completes the proof.
Lemma 5. Let $\mu \in e(K)$. Suppose that λ is a σ-finite measure on $[-\infty, \infty]$, E_{1} is a Borel subset of $[-\infty, \infty]$ with $\lambda\left(E_{1}^{\prime}\right)=0, \lambda$ is S-invariant on E_{1}, and μ is absolutely continuous with respect to λ. Then there exist a number $a_{0}>0$ and a set E of μ-measure 1 such that p_{μ} is S-invariant on E and $a_{0} \lambda \mid E=p_{\mu}$.

Proof. If μ is concentrated on $\{-\infty, 0, \infty\}$, then the assertion is immediate. In the remaining cases, by Lemma $2, \mu$ is concentrated on
$(-\infty, 0) \cup(0, \infty)$. Thus, it suffices to prove the lemma for measures μ concentrated on $(-\infty, 0) \cup(0, \infty)$.

Let E be a set such that $\lambda \mid E$ is absolutely continuous with respect to μ and $\lambda \mid E^{\prime}$ is singular with respect to μ. It is easy to see that $\lambda \mid E$ is S invariant on E and $\mu(E)=1$. Clearly, $a \lambda \mid E$ is S-invariant on E for each $a>0$.

Suppose that there exists $a_{1}>0$ such that, for a certain Borel set $B_{1}, a_{1} \lambda\left(B_{1} \cap E\right)<p_{\mu}\left(B_{1}\right)$ and, for a certain Borel set B_{2}, $a_{1} \lambda\left(B_{2} \cap E\right)>p_{\mu}\left(B_{2}\right)$. Setting

$$
c=\int_{-\infty}^{\infty} u^{2}\left(1+u^{2}\right)^{-1} d\left(p_{\mu} \wedge a_{1} \lambda\right)
$$

we obtain $0<c<1$. Put

$$
\mu_{1}=c^{-1}\left(1+u^{2}\right)^{-1} u^{2}\left(p_{\mu} \wedge a_{1} \lambda\right) \quad \text { and } \quad \mu_{2}=(1-c)^{-1}\left(\mu-c \mu_{1}\right)
$$

From Theorem 1 it follows that $\mu_{1} \in K$. By Lemma 4 (a), (4), we have $\mu_{2} \in K$. It is clear that $\mu_{1} \neq \mu_{2}$ and $\mu=c \mu_{1}+(1-c) \mu_{2}$, which contradicts the assumption that $\mu \in e(K)$. Thus, for every positive number a and for all Borel subsets B of E either $a \lambda(B) \geqslant p_{\mu}(B)$ or $a \lambda(B) \leqslant p_{\mu}(B)$. Hence there exists a positive number a_{0} such that $a_{0} \lambda(B)=p_{\mu}(B)$ for all Borel subsets B of E. Thus $a_{0} \lambda \mid E=p_{\mu}$ and p_{μ} is S-invariant on E. This completes the proof.

The next two lemmas characterize the extreme points of the set K, which are absolutely continuous measures (i.e., absolutely continuous with respect to the Lebesgue measure) or atomic measures. Throughout the rest of the paper we denote by m the Lebesgue measure.

Let E be a Borel subset of $(-\infty, \infty)$ such that $m(E)>0$ and $T_{s}^{-1} E \subset E$ m-a.e. for each $s \in S \backslash\{0\}$. We define the measure p_{E} by

$$
\begin{equation*}
p_{E}(B)=\int_{B \cap E} \frac{1}{|y|} d y \tag{5}
\end{equation*}
$$

for Borel subsets B of $(-\infty, \infty)$. It is not difficult to prove that p_{E} is S invariant on E. If, moreover, E fulfills the condition

$$
\int_{E}|y|\left(1+y^{2}\right)^{-1} d y<\infty,
$$

then we define the measure m_{E} by

$$
\begin{equation*}
m_{E}(B)=A_{E} \int_{B \cap E}|y|\left(1+y^{2}\right)^{-1} d y \tag{6}
\end{equation*}
$$

for Borel subsets B of $(-\infty, \infty)$, where $\left(A_{E}\right)^{-1}=\int_{E}|y|\left(1+y^{2}\right)^{-1} d y$. It is easy to see that

$$
\begin{equation*}
p_{m_{E}}=A_{E} p_{E} \tag{7}
\end{equation*}
$$

Lemma 6. Let $\mu \in K$ and assume that μ is absolutely continuous (with $d \mu / d m=f_{\mu}$). Let $E=\left\{x: f_{\mu}(x)>0\right\}$. Then:
(a) p_{μ} is absolutely continuous with respect to p_{E} and p_{E} is absolutely continuous with respect to p_{μ};
(b) if $\mu \in e(K)$, then $\mu=m_{E}$;
(c) if $\mu \in e(K)$, then p_{μ} is S-invariant on E.

Proof. (a) is obvious.
(b) Since p_{E} is S-invariant on E and p_{μ} is absolutely continuous with respect to p_{E}, there exists, by Lemma 5 , a positive number a_{0} such that p_{μ} $=a_{0} p_{E}$. Since μ is probability, $a_{0}=A_{E}$. Clearly, a measure p determines uniquely a measure v such that $p=p_{v}$ (if such a measure v exists). Thus, by (7), $\mu=m_{E}$.
(c) follows immediately from (6) and (7). This completes the proof.

Let S satisfy the condition

$$
\sum_{s \in S} s^{2}<\infty
$$

Let $E \subset(-\infty, \infty) \backslash\{0\}$ be a non-empty countable set such that $T_{s}^{-1} E \subset E$ for each $s \in S \backslash\{0\}$. We define the measure p_{E} as

$$
\begin{equation*}
p_{E}=\sum_{x \in E} \delta_{x} \tag{8}
\end{equation*}
$$

Clearly, p_{E} is S-invariant on E. If, moreover,

$$
\sum_{x \in E} \frac{x^{2}}{1+x^{2}}<\infty
$$

then we define the measure m_{E} as

$$
\begin{equation*}
m_{E}=A_{E} \sum_{x \in E} \frac{x^{2}}{1+x^{2}} \delta_{x} \tag{9}
\end{equation*}
$$

where

$$
A_{E}=\left(\sum_{x \in E} \frac{x^{2}}{1+x^{2}}\right)^{-1}
$$

Then it is not difficult to prove that (7) holds.
Lemma 7. Let $\mu \in K$ and assume that μ is atomic. Let $E=\{x: \mu(\{x\})>0\}$. Then conditions (a), (b), and (c) of Lemma 6 are fulfilled.

The proof is analogous to that of Lemma 6.
Given S, we say that S fulfills condition (*) if for every singular continuous measure μ from $e(K)$ there exist a set E of μ-measure 1 and a measure λ such that λ is S-invariant on E and μ. is absolutely continuous with respect to λ.

Lemma 8. Assume that S fulfills condition (*) and $\mu \in e(K)$. Then there exists a set E of μ-measure 1 such that p_{μ} is S-invariant on E.

Proof. If μ is absolutely continuous or atomic, then the lemma follows from Lemmas 6 and 7, respectively. In the remaining cases, by Lemma 3, μ is singular continuous. Since S fulfills condition (*), an application of Lemma 5 completes the proof.

Given S, we say that a probability measure μ on $[-\infty, \infty]$ belongs to the set \mathscr{Q} if there exists a set E of μ-measure 1 such that
(a) p_{μ} is S-invariant on E;
(b) for any sets E_{1}, E_{2} such that $T_{s}^{-1} E_{1} \subset E_{1} \mu$-a.e., $T_{s}^{-1} E_{2} \subset E_{2} \mu$-a.e. for each $s \in S \backslash\{0\}$, and $E_{1} \cup E_{2}=E \mu$-a.e., if $\mu\left(E_{1}\right)>0$ and $\mu\left(E_{2}\right)>0$, then $\mu\left(E_{1} \cap E_{2}\right)>0$.

Now we shall prove that if S fulfills condition (*), then the sets $e(K)$ and 2 coincide.

Lemma 9. $2 \subset e(K)$.
Proof. Let $\mu \in \mathcal{Z}$ and let E be the set of μ-measure 1 which fulfills conditions (a) and (b) of the definition of 2.

Suppose that there exist μ_{1} and μ_{2} from K such that

$$
\mu=\alpha \mu_{1}+(1-\alpha) \mu_{2}
$$

where $\mu_{1}, \mu_{2} \in K$ and $0<\alpha<1$. Since both $p_{\mu_{1}}$ and $p_{\mu_{2}}$ are absolutely continuous with respect to p_{μ}, they have Radon-Nikodym derivatives f and g, respectively. Then

$$
\begin{aligned}
\int_{B} 1 d p_{\mu} & =p_{\mu}(B)=\alpha p_{\mu_{1}}(B)+(1-\alpha) p_{\mu_{2}}(B) \\
& =\alpha \int_{B} f d p_{\mu}+(1-\alpha) \int_{B} g d p_{\mu}=\int_{B}(\alpha f+(1-\alpha) g) d p_{\mu}
\end{aligned}
$$

for all Borel subsets B of $[-\infty, \infty]$. Hence

$$
\begin{equation*}
\alpha f+(1-\alpha) g=1 \mu \text {-a.e. } \tag{10}
\end{equation*}
$$

By Lemma 4 we have
(11) $f \circ T_{s}^{-1} \geqslant f$ and $g \circ T_{s}^{-1} \geqslant g \mu$-a.e. for each $s \in S\{0\}$.

Setting $A=\{x: g(x)>1\}$ and $C=\{x: f(x)>1\}$, by (11) we get

$$
\begin{equation*}
T_{s}^{-1} A \subset A \text { and } T_{s}^{-1} C \subset C \mu \text {-a.e. for each } s \in S \backslash\{0\} \tag{12}
\end{equation*}
$$

Put $D=\{x: f(x)=1\}$. By (10), $D=\{x: g(x)=1\}$. Clearly, the sets A, C, and D are mutually disjoint. By (11), we have

$$
T_{s}^{-1} D \subset(C \cup D) \cap(A \cup D) \mu \text {-a.e. for each } s \in S \backslash\{0\}
$$

Taking into account the equality $(C \cup D) \cap(A \cup D)=D$ we obtain

$$
\begin{equation*}
T_{s}^{-1} D \subset D \mu \text {-a.e. for each } s \in S \backslash\{0\} . \tag{13}
\end{equation*}
$$

Since μ_{1} and μ_{2} are probability measures, we get

$$
\begin{equation*}
\mu(A)>0 \quad \text { if and only if } \quad \mu(C)>0 \tag{14}
\end{equation*}
$$

Setting $E_{1}=E \cap A$ and $E_{2}=E \cap(C \cup D)$, by (12) and (13) we have $T_{\mathrm{s} .}^{-1} E_{1} \subset E_{1}$ and $T_{s}^{-1} E_{2} \subset E_{2} \mu$-a.e. for each $s \in S \backslash\{0\}$.

Suppose that $\mu(A)>0$. Then, by (14), $\mu(C)>0$. Consequently, $\mu\left(E_{1}\right)>0$ and $\mu\left(E_{2}\right)>0$. Since $E_{1} \cap E_{2} \subset A \cap(C \cup D)$ and $A \cap(C \cup D)=\varnothing$, we have $\mu\left(E_{1} \cap E_{2}\right)=0$. This contradicts the assumption that $\mu \in \mathscr{2}$.

Thus $\mu(A)=0$, and taking into account (14) wa get $\mu(C)=0$. Hence f $=g=1 \mu$-a.e. Consequently, $\mu_{1}=\mu_{2}=\mu$, which completes the proof.

Lemma 10. Let S fulfill condition $(*)$. Then $e(K) \subset \mathscr{Q}$.
Proof. Let $\mu \in e(K)$. By Lemma 8 there exists a set E of μ-measure 1 such that p_{μ} is S-invariant on E. Suppose that there exist two sets E_{1} and E_{2} such that $T_{s}^{-1} E_{1} \subset E_{1}$ and $T_{s}^{-1} E_{2} \subset E_{2} \mu$-a.e. for each $s \in S \backslash\{0\}, E_{1} \cup E_{2}$ $=E \mu$-a.e., $\mu\left(E_{1}\right)>0, \mu\left(E_{2}\right)>0$, and $\mu\left(E_{1} \cap E_{2}\right)=0$. Then

$$
\mu=\alpha \mu_{1}+(1-\alpha) \mu_{2}
$$

where $\alpha=\mu\left(E_{1}\right), \mu_{1}(B)=\alpha^{-1} \mu\left(B \cap E_{1}\right), \mu_{2}(B)=(1-\alpha)^{-1} \mu\left(B \cap E_{2}\right)$. Since $\mu_{1}, \mu_{2} \in K, \mu_{1} \neq \mu_{2}$, and $0<\alpha<1$, this contradicts the assumption that $\mu \in e(K)$. Thus, if $\mu \in e(K)$, then $\mu \in \mathscr{Q}$. This completes the proof.

Now, we are ready to prove the representation of the characteristic functions of distributions from the classes $\dot{L}_{S}^{\text {d }}$ for which S fulfills condition (*).

Theorem 2. Let S fulfill condition (*). An infinitely divisible measure P belongs to the class $\dot{L}_{S}^{\text {id }}$ if and only if its characteristic function \hat{P} has the representation

$$
\begin{equation*}
\hat{P}(t)=\exp \left\{i b t+\int_{2_{0}}\left[\int_{-\infty}^{\infty}\left(e^{i t y}-1-\frac{i t y}{1+y^{2}}\right) \frac{1+y^{2}}{y^{2}} \mu(d y)\right] v(d u)\right\} \tag{15}
\end{equation*}
$$

where b is a real constant, \mathscr{Q}_{0} is the set of all probability measures from $\mathscr{2}$ concentrated on $(-\infty, \infty)$, and v is a finite Borel measure on \mathscr{Q}_{0}. Moreover, the function \hat{P} determines b and v uniquely.

Proof. By Lemmas 9 and $10, e(K)=\mathscr{2}$. Now, we can apply Choquet's theorem on representation of the points of a compact convex set as barycenters of the extreme points ([4], p. 19). Consequently, for every measure $\tau \in K$ there exists a probability measure λ on 2 such that for all continuous functions on $[-\infty, \infty]$ we have

$$
\begin{equation*}
\int_{[-\infty, \infty]} f(y) \tau(d y)=\int_{\mathscr{Q}}^{[-\infty, \infty]}\left(\int_{[-\infty} f(y) \mu(d y)\right) \lambda(d \mu) . \tag{16}
\end{equation*}
$$

Moreover, the measure τ assigns zero mass to the set $\{-\infty, \infty\}$ if and only if λ has zero mass at every μ from 2 which is not concentrated on $(-\infty, \infty)$. Further, formula (16) holds for all bounded continuous functions on $(-\infty, \infty)$ whenever $\tau \in K_{0}$. Hence we get the following statement: $\tau \in M_{0}$ if and only if there exists a finite Borel measure v on $\mathscr{2}_{0}$ such that

$$
\begin{equation*}
\int_{-\infty}^{\infty} f(y) \tau(d y)=\int_{2_{0}}\left(\int_{-\infty}^{\infty} f(y) \mu(d y)\right) v(d \mu) \tag{17}
\end{equation*}
$$

for all continuous bounded functions f on $(-\infty, \infty)$. Setting

$$
f_{t}(y)=\left(e^{i t y}-1-\frac{i t y}{1+y^{2}}\right) \frac{1+y^{2}}{y^{2}}
$$

into (17), we obtain the formula

$$
\int_{-\infty}^{\infty} f_{i}(y) \tau(d y)=\int_{2_{0}}\left[\int_{-\infty}^{\infty}\left(e^{i t y}-1-\frac{i t y}{1+y^{2}}\right) \frac{1+y^{2}}{y^{2}} \mu(d y)\right] v(d \mu)
$$

which implies representation (15).
Since K is a simplex (see Theorem 1), from Choquet's uniqueness theorem for a metrizable space X we infer that v is determined uniquely ([4], p. 70). Hence b is also determined uniquely. This completes the proof.
3. Using Theorem 2 we give the representation of the characteristic functions of distributions from the classes $L_{S}^{\text {d }}$ in two cases: for $m(S)>0$ and in the special case of a discrete semigroup S.

The following lemma implies that if $m(S)>0$, then S fulfills condition (*).

Lemma 11. Let P be an infinitely divisible measure. If the decomposability semigroup $D^{\text {id }}(P)$ has the positive Lebesgue measure, then the Khintchine measure corresponding to P is except on $\{0\}$ absolutely continuous with respect to the Lebesgue measure.

Proof. Given a finite Borel measure λ on R, we put

$$
\bar{p}_{\lambda}(B)=p_{\lambda}(\exp \{B\})
$$

for all Borel subsets B of R. Then, by (1), we have the inequality

$$
\begin{equation*}
\dot{\bar{p}}_{\lambda}(B+\log s) \geqslant \bar{p}_{\lambda}(B) \tag{18}
\end{equation*}
$$

for all Borel subsets B of R and for each positive number s from a decomposability $D^{\text {id }}(Q)$ of an infinitely divisible measure Q for which λ is a Khintchine measure.

Let μ be a Khintchine measure corresponding to P. Clearly, it suffices to
prove the lemma in the case of μ concentrated on $(-\infty, 0) \cup(0, \infty)$. Then, by Theorem 1.2 in [3], p_{μ} is non-atomic. Suppose that

$$
\begin{equation*}
p_{\mu}=\alpha p_{\tau}+(1-\alpha) p_{v} \tag{19}
\end{equation*}
$$

where $0<\alpha<1, p_{\tau}$ is absolutely continuous, and p_{v} is singular continuous. Since $\alpha<1$, there exists $x_{0} \neq 0$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{0<h<1 / n} \frac{p_{v}\left(\left(x_{0}, x_{0}+h\right)\right)}{h}=\infty . \tag{20}
\end{equation*}
$$

Without loss of generality we may assume that $x_{0}>0$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{0<h<1 / n} \frac{\bar{p}_{v}\left(\left(\log x_{0}, \log x_{0}+h\right)\right)}{h}=\infty . \tag{21}
\end{equation*}
$$

Since \bar{p}_{v} is singular continuous and finite on bounded sets, we have

$$
\begin{equation*}
\lim _{n \rightarrow x} \sup _{0<h<1 / n} \frac{\bar{p}_{v}((\log x, \log x+h))}{h}=0 \quad m \text {-a.e. } \tag{22}
\end{equation*}
$$

If $s \in D^{\text {id }}(P) \cap(0,1)$, then by (18) we obtain

$$
\begin{equation*}
\bar{p}_{v}\left(\left(\log x_{0}+\log s, \log x_{0}+h+\log s\right)\right) \geqslant \bar{p}_{v}\left(\left(\log x_{0}, \log x_{0}+h\right)\right) . \tag{23}
\end{equation*}
$$

Then by (21) and (23) we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{0<h<1 / n} \frac{\bar{p}_{v}((\log x, \log x+h))}{h}=\infty \tag{24}
\end{equation*}
$$

for $x \in x_{0}\left(D^{\text {id }}(P) \cap(0,1)\right)$. Since $m\left(x_{0}\left(D^{\text {id }}(P) \cap(0,1)\right)\right)>0$, equality (24) contradicts (22). Thus $\alpha=1$. This completes the proof.

From Lemma 11 it follows that in the case of $m(S)>0$ the set of extreme points of K which are singular continuous measures is empty. Thus condition ($*$) is fulfilled. In this case \mathscr{Q}_{0} consists of δ_{0} and of all probability measures m_{E} (defined by (6)), where $E \in X$ and X is the set of all Borel subsets E of $(-\infty, \infty)$ satisfying the following conditions:

$$
\begin{equation*}
0<\int_{E}|y|\left(1+y^{2}\right)^{-1} d y<\infty ; \tag{25a}
\end{equation*}
$$

(25b) $\quad T_{s}^{-1} E \subset E m$-a.e. for each $s \in S \backslash\{0\}$;
(25c). for all sets E_{1}, E_{2} such that $T_{s}^{-1} E_{1} \subset E_{1}, T_{s}^{-1} E_{2} \subset E_{2} m$-a.e. for each $s \in S \backslash\{0\}$, and $E_{1} \cup E_{2}=E m$-a.e., if $m\left(E_{1}\right)>0$ and $m\left(E_{2}\right)>0$, then $m\left(E_{1} \cap E_{2}\right)>0$.

Since $X \cup\{0\}$ is homeomorphic to \mathscr{Q}_{0} up to m-null sets $\left(E \rightarrow m_{E}, 0 \rightarrow \delta_{0}\right)$, we obtain the following theorem as a corollary to Theorem 2:

Theorem 3. Let $m(S)>0$. An infinitely divisible measure P belongs to the class $L_{S}^{\text {d }}$ if and only if its characteristic function \hat{P} has the representation

$$
\hat{P}(t)=\exp \left\{i b t-\frac{G t^{2}}{2}+\int_{X}\left(\int_{Z} \frac{|y|}{1+y^{2}} d y\right)^{-1} \int_{Z}\left(e^{i t y}-1-\frac{i t y}{1+y^{2}} d y\right) v(d Z)\right\}
$$

where b is a real constant, G is a non-negative real constant, X consists (up to m - null sets) of all Borel subsets B of R which satisfy conditions (25), and v is a finite Borel measure on X. Moreover, the function \hat{P} determines b, G, and v. uniquely.

Setting $S=[0,1]$ in Theorem 3, we obtain as a corollary the Urbanik theorem ([5], p. 209).

Theorem 4. P is a self-decomposable distribution (i.e., $[0,1] \subset D^{\text {id }}(P)$) if and only if its characteristic function \hat{P} has the representation

$$
\hat{P}(t)=\exp \left\{i b t+\int_{-\infty}^{\infty}\left(\int_{0}^{t u} \frac{e^{i v}-1}{v} d v-i t \arctan u\right) \frac{1}{\log \left(1+u^{2}\right)} v(d u)\right\}
$$

where b is a real constant, v is a finite Borel measure on R, and the integrand is defined as $-\frac{1}{4} t^{2}$ when $u=0$.

In fact,

$$
X=\{[x, 0]: x \in(-\infty, 0)\} \cup\{[0, x]: x \in(0, \infty)\}
$$

up to m-null sets and the mapping $[x, 0] \rightarrow x,[0, x] \rightarrow x$ is a homeomorphism between X and $(-\infty, 0) \cup(0, \infty)$.

Setting $S=[q, 1]$, where $-1 \leqslant q<0$, in Theorem 3 we obtain
Corollary 1. Let $S=[q, 1]$, where $-1 \leqslant q<0$. An infinitely divisible measure P belongs to the class $\dot{L}_{s}^{\text {d }}$ if and only if its characteristic function \hat{P} has the representation

$$
\begin{array}{r}
\hat{P}(t)=\exp \left\{i b t+\int_{0}^{\infty} \int_{u / q}^{q u}\left(\int_{v}^{u} \frac{e^{i t y}-1}{|y|} d y-i t \arctan u-i t \arctan v\right) \times\right. \\
\left.\quad \times \frac{1}{\log \left(1+u^{2}\right)\left(1+v^{2}\right)} v(d u, d v)\right\}
\end{array}
$$

where b is a real constant and v is a finite Borel measure on the set $\{(u, v): 0 \leqslant u<\infty, u / q \leqslant v \leqslant q u\}$. Moreover, the function \hat{P} determines b and v uniquely.

Now we give the representation of the characteristic functions of distributions from the classes $L_{S}^{\text {d }}$ if S is a semigroup of the form

$$
\begin{equation*}
\left\{(-1)^{n_{j}} S_{0}^{k_{j}}\right\}_{j=0}^{\infty} \cup\{0\} \tag{26}
\end{equation*}
$$

where $0<s_{0}<1, k_{j}$ is an increasing sequence of positive integers, $k_{0}=0$, and $n_{j} \in\{1,2\}$. Without loss of generality we may assume that for sufficiently large j either $k_{j+1}=k_{j}$ or $k_{j+1}=k_{j}+1$.

Theorem 5. Let S be a semigroup of the form (26). An infinitely divisible measure P belongs to the class L_{S}^{d} if and only if its characteristic function \hat{P} has the representation

$$
\begin{aligned}
& \hat{P}(t)= \\
&+ \int_{Y \times\{1, \ldots, n\}} \\
&\left.\left\{\left(\sum_{s \in S_{k}} \frac{s^{2} u^{2}}{1+s^{2} u^{2}}\right)^{-1} \sum_{s \in S_{k}}\left[\left(e^{i t s u}-1-\frac{i t s u}{1+s^{2} u^{2}}\right) \frac{1+s^{2} u^{2}}{s^{2} u^{2}}\right]\right\} v(d(u, k))\right\}
\end{aligned}
$$

where b is a real constant, G is a non-negative real constant, $Y=(0, \infty)$ if $-1 \in S$ and $Y=R \backslash\{0\}$ if $-1 \notin S, n$ is an integer greater than or equal to $1, v$ is a finite Borel measure on $Y \times\{1, \ldots, n\}$, and the sequence $\left\{S_{k}\right\}_{k=1}^{\infty}$ such that $S \subset S_{k}$ and $T_{s}^{-1} S_{k} \subset S_{k}$ for each $s \in S \backslash\{0\}$ is defined in the following way:
(i) if there exists a sequence of positive integers $\left\{m_{j}\right\}$ such that S $=\left\{s_{1}^{m_{j}}\right\}_{j=0}^{\infty} \cup\{0\}$, then $\left\{S_{k}\right\}_{k=1}^{\infty}$ consists of all the sets of the form $\left\{s_{1}^{l_{j}}\right\}_{j=0}^{\infty} \cup\{0\}$, where $s_{1}=s_{0}$ or $s_{1}=-s_{0}$, and $\left\{l_{j}\right\}$ is a sequence of positive integers;
(ii) in the remaining cases, $\left\{S_{k}\right\}_{k=1}^{\infty}$ consists of all the sets of the form

Moreover, the function $\hat{\hat{P}}$ determines b, G, and v uniquely.
Proof. Let $\mu \in e(K)$. If μ is concentrated on $\{0\}$, then $\mu=\delta_{0}$. If μ is concentrated on $\{-\infty, \infty\}$ and $S \cap[-1,0)=\emptyset$, then $\mu=\delta_{-\infty}$ or $\mu=\delta_{\infty}$. If μ is concentrated on $\{-\infty, \infty\}$ and $S \cap[-1,0) \neq \varnothing$, then $\mu=\frac{1}{2} \delta_{-\infty}+$ $+\frac{1}{2} \delta_{\infty}$. In the remaining cases, by Lemma $2, \mu$ is concentrated on $(-\infty, 0) \cup(0, \infty)$.

Let us consider the case $S=\left\{\left(-s_{0}\right)^{m_{j}}\right\}_{j=0}^{\infty} \cup \dot{\cup}\{0\}$. Put

$$
A(u, v)=\bigcup_{k=-\infty}^{\infty}\left(v\left(-s_{0}\right)^{2 k+2}, u\left(-s_{0}\right)^{2 k}\right] \cup \bigcup_{k=-\infty}^{\infty}\left[u\left(-s_{0}\right)^{2 k+1}, v\left(-s_{0}\right)^{2 k+3}\right)
$$

where $v>0$ and $u \in\left(v s_{0}^{2}, v\right)$.
Suppose that there exist real numbers $v_{0}>0$ and $u_{0} \in\left(v_{0} s_{0}^{2}, v_{0}\right)$ such that $0<\mu\left(A\left(v_{0}, v_{0}\right)\right)<1$. Put

$$
c=\mu\left(A\left(u_{0}, v_{0}\right)\right), \quad \mu_{1}=c^{-1} \mu \mid A\left(u_{0}, v_{0}\right), \quad \mu_{2}=(1-c)^{-1}\left(\mu-c \mu_{1}\right)
$$

It is clear that $\mu_{1} \neq \mu_{2}, \mu_{1}, \mu_{2} \in K$, and $\mu=c \mu_{1}+(1-c) \mu_{2}$, which contradicts the assumption that $\mu \in e(K)$.

Hence for every positive number v and for every number $u \in\left(v s_{0}^{2}, v\right)$ we
have either $A(u, v)=0$ or $A(u, v)=1$. Consequently, μ is atomic and there exists a real number $x \neq 0$ such that

$$
\mu\left(\left\{x\left(-s_{0}\right)^{k}\right\}_{k=-\infty}^{\infty}\right)=1 .
$$

Since for sufficiently large j we have $k_{j+1}=k_{j}+1$, Lemma 7 and Lemma 6 (b) imply that there exists an integer j_{1} such that

$$
\sup _{-\infty<k<\infty}\left\{\left|x\left(-s_{0}\right)^{k}\right|: \mu\left(\left\{x\left(-s_{0}\right)^{k}\right\}\right)>0\right\}=\left|x\left(-s_{0}\right)^{j_{1}}\right|
$$

and $\mu=m_{w_{1} s_{i_{1}}}$, where $w_{1}=x\left(-s_{0}\right)^{j_{1}}, 1 \leqslant i_{1} \leqslant n$.
In the case $S=\left\{s_{0}^{m_{j}}\right\}_{j=0}^{\infty} \cup\{0\}$, we put

$$
B(u, v)=\bigcup_{k=-\infty}^{\infty}\left(v s_{0}^{k+1}, u s_{0}^{k}\right] \quad \text { for } v>0, u \in\left(v s_{0}, v\right)
$$

and

$$
C(u, v)=\bigcup_{k=-\infty}^{\infty}\left[u s_{0}^{k}, v s_{0}^{k+1}\right) \quad \text { for } v<0, u \in\left(v s_{0}, v\right) .
$$

Then, either for every $v>0$ and for every $u \in\left(v s_{0}, v\right)$

$$
\mu(B(u, v))=0 \quad \text { or } \quad \mu(B(u, v))=1
$$

or for every $v<0$ and for every $u \in\left(v, v s_{0}\right)$

$$
\mu(C(u, v))=0 \quad \text { or } \quad \mu(C(u, v))=1
$$

(because either $\mu((0, \infty))=1$ or $\mu((-\infty, 0))>1)$.
Hence there exists a real number $y \neq 0$ such that $\mu\left(\left\{y s_{0}^{k}\right\}_{k=-\infty}^{x}\right)=1$. By Lemma 7 and Lemma 6 (b) there exist $w_{2} \neq 0$ and $i_{2} \in\{1, \ldots, n\}$ such that μ $=m_{w_{2}} s_{i_{2}}$.

Assume now that S is not of the form (i). Put
$D(u, v)=\bigcup_{k=-\infty}^{\infty}\left(v s_{0}^{k+1}, u s_{0}^{k}\right] \cup \bigcup_{k=-\infty}^{\infty}\left[-u s_{0}^{k},-v s_{0}^{k+1}\right) \quad$ for $v>0, u \in\left(v s_{0}, v\right)$.
Then for every $v>0$ and for every $u \in\left(u s_{0}, v\right)$ either $D(u, v)=0$ or $D(u, v)=1$. Hence there exists $z \neq 0$ such that $\mu\left(\pm\left\{z s_{0}^{k}\right\}_{k=-\infty}^{\infty}\right)=1$. By Lemma 7 and Lemma 6 (b) there exist $w_{3} \neq 0$ and $i_{3} \in\{1, \ldots, n\}$ such that μ $=m_{w_{3}} s_{i_{3}}$.

Further, we note that if $-1 \in S$, then $m_{-w S_{i}}=m_{w S_{i}}$, and if $-1 \notin S$, then $m_{-w s_{i}} \neq m_{w s_{i}}$. Thus the mapping $m_{\left(w, s_{i}\right)} \rightarrow(w, i)$ is a homeomorphism between the extreme points of K which are measures concentrated on $(-\infty, 0) \cup(0, \infty)$ and $Y \times\{1, \ldots, n\}$. Therefore, Theorem 5 follows from Theorem 3.

Setting $S=\left\{s^{k}\right\}_{k=0}^{\infty} \cup\{0\}$, where $0<|s|<1$, in Theorem 5 we obtain

Corollary 2. Let P be an infinitely divisible measure and $0<|s|<1$. Then $s \in D^{\text {id }}(P)$ if and only if the characteristic function \hat{P} of P has the representation $\hat{P}(t)$
$=\exp \left\{i b t+\int_{-x}^{x}\left(\sum_{k=0}^{x} \frac{s^{2 k} u^{2}}{1+s^{2 k} u^{2}}\right)^{-1} \sum_{k=0}^{x}\left[\left(e^{i s^{k} k_{u}}-1-\frac{i t s^{k} u}{1+s^{2 k} u^{2}}\right) \frac{1+s^{2 k} u^{2}}{s^{2 k} u^{2}}\right] v(d u)\right\}$
where b is a real constant and v is a finite Borel measure on R. Moreover, the function \hat{P} determines b and \dot{v} uniquely.
4. In Lemmas 6 and 7 we considered S-invariant measures which were either absolutely continuous or atomic. Now we prove the lemma on S invariant singular continuous measures.

Let $m(S)=0$. Given $0<\varepsilon<1$ and a Borel subset B of R, we put

$$
B_{\varepsilon}=\bigcup_{x \in B \cap[0, \infty)}\left[x \varepsilon, x \varepsilon^{-1}\right] \cup \bigcup_{x \in B \cap(-\infty, 0)}\left[x \varepsilon^{-1}, x \varepsilon\right] .
$$

Let E be a perfect and nowhere dense subset of R such that $T_{s}^{-1} E \subset E$ for each $s \in S \backslash\{0\}$ and $E \subset(-a, a)$ for some $a>0$. Note that $T_{s}^{-1} E_{\varepsilon} \subset E_{\varepsilon}$ for each $s \in S \backslash\{0\}$. Choose $\varepsilon_{n} \uparrow 1$. Since the set of probability measures on $[-\infty, \infty]$ is compact, without loss of generality we may assume that ($m_{E_{\varepsilon_{n}}}$ \} is convergent as $\varepsilon_{n} \uparrow 1$ (by passing to a subsequence if necessary). Let m_{E} be the limit of this sequence.

Lemma 12. Let $m(S)=0,0<\varepsilon_{n}<\varepsilon_{n+1}<1$, and $\varepsilon_{n} \rightarrow 1$. Let E be a perfect and nowhere dense m-null subset of R such that $T_{s}^{-1} E \subset E$ for each $s \in S \backslash\{0\}$ and $E \subset[-1,1]$. Suppose that m_{E} is the limit of $\left\{m_{E_{\varepsilon_{n}}}\right\}$ as $n \rightarrow \infty$. Then $m_{E}(E)=1$ and $p_{m_{E}}$ is S-invariant on E.

Proof. Clearly, $p_{m_{E}}$ is non-atomic. Let \mathcal{N} be the set of all Borel subsets of E. Put

$$
\mathscr{G}=\{[a, b] \cap E: a<b, 0 \notin[a, b]\} .
$$

Then $\mathscr{C}_{\sigma}(\mathscr{G})=\mathscr{N}$. Put $E_{n}=E_{\varepsilon_{n}}, p=p_{m_{E}}$, and $p_{n}=p_{m_{E_{n}}}$. Let

$$
\mathscr{K}=\left\{B: B \subset E \text { and } T_{s} p(B)=p(B) \text { for each } s \in S \backslash\{0\}\right\}
$$

We prove that $\mathscr{G} \subset \mathscr{K}$. Choose and fix positive numbers $a<b$ and ε_{k}. Put $C=[a, b] \cap E$ and $C_{n}=C_{\varepsilon_{n}}$. Then
$\limsup _{n \rightarrow \infty} p_{n}\left(\left[a \varepsilon_{k}, a\right) \cup\left(b, b \varepsilon_{k}^{-1}\right] \cap E_{k}\right)=\limsup _{n \rightarrow \infty} p_{n}\left(\left[a \varepsilon_{k}, a\right] \cup\left[b, b \varepsilon_{k}^{-1}\right]\right)$

$$
\leqslant p\left(\left[a \varepsilon_{k}, a\right] \cup\left[b, b \varepsilon_{k}^{-1}\right]\right)=p\left(\left[a \varepsilon_{k}, a\right) \cup\left(b, b \varepsilon_{k}^{-1}\right]\right)
$$

Since $\left[a \varepsilon_{k}, a\right) \cup\left(b, b \varepsilon_{k}^{-1}\right] \downarrow \emptyset$ as $k \rightarrow \infty$ and $p\left(\left[a \varepsilon_{k}, a\right) \cup\left(b, b \varepsilon_{k}^{-1}\right]\right)<\infty$ (because of $0 \notin\left[a \varepsilon_{k}, b \varepsilon_{k}^{-1}\right]$), we have

$$
p\left(\left[a \varepsilon_{k}, a\right) \cup\left(b, b \varepsilon_{k}^{-1}\right]\right) \rightarrow 0 \quad \text { as } k \rightarrow \infty
$$

Hence

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \limsup _{n \rightarrow x} p_{n}\left(\left(\left[a \varepsilon_{k}, a\right) \cup\left(b, b \varepsilon_{k}^{-1}\right]\right) \cap E_{k}\right)=0 . \tag{27}
\end{equation*}
$$

A similar argument shows that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \limsup _{n \rightarrow \infty} T_{s} p_{n}\left(\left(\left[a \varepsilon_{k}, a\right) \cup\left(b, b \varepsilon_{k}^{-1}\right]\right) \cap E_{k}\right)=0 \tag{28}
\end{equation*}
$$

Taking into account (27) and (28) we obtain

$$
\begin{aligned}
p(C)= & p\left(\bigcap_{k \rightarrow \infty} C_{k}\right)=\lim _{k \rightarrow \infty} p\left(C_{k}\right) \geqslant \lim _{k \rightarrow \infty} \limsup _{n \rightarrow \infty} p_{n}\left(C_{k}\right)=\lim _{k \rightarrow \infty} \lim _{n_{j} \rightarrow \infty} p_{n_{j}}\left(C_{k}\right) \\
= & \lim _{k \rightarrow \infty} \lim _{n_{j} \rightarrow \infty} p_{n_{j}}\left(E_{k} \cap[a, b]\right) \\
& -\lim _{k \rightarrow \infty} \lim _{n_{j} \rightarrow \infty} p_{n_{j}}\left(T_{s}^{-1} E_{k} \cap T_{s}^{-1}[a, b]\right) \\
= & \lim _{k \rightarrow \infty} \lim _{n_{j} \rightarrow \infty} p_{n_{j}}\left(T_{s}^{-1} E_{k} \cap T_{s}^{-1}[a, b]\right) \\
= & \lim _{k \rightarrow \infty}\left(\lim _{n_{j} \rightarrow \infty} p_{n_{j}}\left(T_{s}^{-1} E_{k} \cap T_{s}^{-1}[a, b]\right)+\right. \\
& \left.+\limsup _{n_{j} \rightarrow \infty} p_{n_{j}}\left(T_{s}^{-1}\left(E_{k} \cap\left[a \varepsilon_{k}, a\right) \cup E_{k} \cap\left(b, b \varepsilon_{k}^{-1}\right]\right)\right)\right) \\
\geqslant & \lim _{k \rightarrow \infty} \limsup _{n_{j} \rightarrow \infty} p_{n_{j}}\left(T_{s}^{-1} C_{k}\right) \\
\geqslant & \lim _{k \rightarrow \infty} \liminf _{n_{j} \rightarrow \infty}\left(T_{n_{j}}^{-1}\left(T_{s}\right) \geqslant \lim _{k \rightarrow \infty} \liminf _{n_{j} \rightarrow \infty} p_{n_{j}}\left(\text { int } T_{s}^{-1} C_{k}\right)\right. \\
\geqslant & \lim _{k \rightarrow \infty} p\left(\operatorname{int} T_{s}^{-1} C_{k}\right)=p\left(\bigcap_{k \rightarrow x} \operatorname{int} T_{s}^{-1} C_{k}\right)=p\left(T_{s}^{-1} C\right) .
\end{aligned}
$$

Thus $p(C) \geqslant p\left(T_{s}^{-1} C\right)$. Repeating this procedure we prove that $p\left(T_{s}^{-1} C\right)$ $\geqslant p(C)$. Thus $p(C)=p\left(T_{s}^{-1} C\right)$ for $C \in \mathscr{G}$.

It is not difficult to verify that the class \mathscr{K} is closed under finite disjoint unions, and if $A_{1}, A_{2}, \ldots \in \mathscr{K}, A_{1} \subset A_{2} \subset \ldots$, then $\bigcup_{n} A_{n} \in \mathscr{K}$. Clearly, the class \mathscr{G} is closed under intersections. Taking into account that, for Borel subsets B of R,

$$
p(B)=\lim _{n \rightarrow \infty} p\left(B \backslash\left(-\varepsilon_{n}, \varepsilon_{n}\right)\right) \quad \text { and } \quad p\left(B \backslash\left(-\varepsilon_{n}, \varepsilon_{n}\right)\right)<\infty,
$$

it not difficult to prove that if $A_{1}, A_{2} \in \mathscr{K}$ and $A_{1} \subset A_{2}$, then $A_{2} \backslash A_{1} \in \mathscr{K}$. Since \mathscr{G} is closed under intersections, we have $\mathscr{C}_{\sigma}(\mathscr{G})=\mathscr{K}$.

For the rest of the proof we see that

$$
m_{E}(E)=m_{E}\left(\bigcap_{n \rightarrow \infty} E_{n}\right)=\lim _{n \rightarrow \infty} m_{E}\left(E_{n}\right) \geqslant \lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty} m_{E_{k}}\left(E_{n}\right)=1
$$

(because if $\varepsilon_{k}>\varepsilon_{n}$, then $m_{E_{k}}\left(E_{n}\right)=1$), which completes the proof.
In [3] (Theorem 1.2) we proved that for every infinitely divisible measure
P there exists Q with atomic Khintchine measure for which $D^{\text {id }}(P)=D^{\text {id }}(Q)$ if and only if

$$
\sum_{s \in \in D^{\text {id }}(P)} s^{2}<\infty
$$

Further, for every infinitely divisible measure P there exists Q with absolutely continuous Khintchine measure such that $D^{\text {id }}(P)=D^{\text {id }}(Q)$ ([3], Theorem 1.3). If $m\left(D^{\text {id }}(P)\right)>0$, then the Khintchine measure of P is except on $\{0\}$ absolutely continuous (see Lemma 11). From the next theorem it follows (setting $S=D^{\text {id }}(P)$) that if $m\left(D^{\text {id }}(P)\right)=0$, then there exists Q with singular continuous Khintchine measure such that $D^{\text {id }}(Q) \supset D^{\text {id }}(P)$.

Theorem 6. Let $m(S)=0$. Then there exists an infinitely divisible measure Q such that the Khintchine measure corresponding to Q is singular continuous and $D^{\text {id }}(Q) \supset S$.

Proof. Clearly, there exists a perfect and nowhere dense m-null set E such that $T_{s}^{-1} E \subset E$ for each $s \in S \backslash\{0\}$ and $E \subset[-1,1]$. By Lemma 12 there exists a probability measure m_{E} on R such that $m_{E}(E)=1$ and $p_{m_{E}}$ is S-invariant on E. From the proof of Lemma 12 it follows that m_{E} is singular continuous.

Let B be a Borel subset of R and $s \in S \backslash\{0\}$. Then

$$
p_{m_{E}}\left(T_{s}^{-1} B\right) \geqslant p_{m_{E}}\left(T_{s}^{-1}(B \cap E)\right)=p_{m_{E}}(B \cap E)=p_{m_{E}}(B) .
$$

Hence it follows that if Q is an infinitely divisible measure for which the corresponding Khintchine measure is equal to m_{E}, then $D^{\text {id }}(Q) \supset S$. This completes the proof.

References

[1] M. Loève, Nouvelles classes de lois limites, Bull. Soc. Math. France 73 (1945), p. 107-126.
[2] - Probability theory, New York 1955.
[3] T. Niedbalska-Rajba, On decomposability semigroups on the real line, Colloq. Math. 44 (1980), p. 347-358.
[4] R. P. Phelps, Lectures on Choquet's theorem, New York 1966.
[5] K. Urbanik, A representation of self-decomposable distributions, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom., Phys., 16 (1968), p. 209-214.
[6] - Operator semigroups associated with probability measures, ibidem 23 (1975), p. 75-76.
[7] - Some examples of decomposability semigroups, ibidem 24 (1976), p. 915-918.

Institute of Mathematics, Wroclaw University
pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

Received on 11. 10. 1979

