PROBABILITY
AND
MATHEMATICAL STATISTICS

Vol. 3, Fasc. 2 (1984), p- 173-189

" FRACTIONAL CALCULUS IN PROBABILITY
BY
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Abstract. Operators I* and D*(x > 0) are defined on i.d.p.m.’s on
a Banach space in such a way that they stand for some analogues of
fractional integration and differentiation on functions. Further, we
apply the theory to give a new characterization of stable measures
and Gaussian measures on Banach spaces.

1. Introduction and notation. Throughout the paper* we shall preserve
the terminology and notation from [13]. In particular, by X we denote a real
separable Banach space. Let Ly(X) be the set of all infinitely divisible
probability measures (i.d.p.m.’s) on X and L,(X) (« > 0) its subsets as defined
in [13]. .

In the sequel we introduce operators I* and D* (a > 0) on Ly (X) which
satisfy the basic monotonicity and additivity laws and can be considered as
fractional calculus on id.p.m.’s.

The method of construction of the operators I* is based on the well -
known definition of vector -valued integrals. Namely, they are first defined
on simple Poisson measures and then are extended to some larger classes of
p.m.’s. In this context, by a simple Poisson measure we mean a p.m. u of the
form u = [G], where

ko '
G=) Ao, for some 4 >0 and x;e X \{0}.
i=1
Further, the operators D* are defined via the decomposability properties
of p.m.s. .
As an application of the study we prove that the only solutions of the
differential equation D" u = uf x5, are stable and Gaussian measures.

* Partially written during the author’s stay at the Wroclaw University (Poland) in the .

academic year 1980/81.
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The value of our results is that they open a new direction in the study of
decomposability properties of p.m’s and they are not known even in the
one -dimensional case.

The author gratefully acknowledges Professor K. Urbanik for his en-
couragement and help.

2. Fractional integration on L,(X). Let"J*(x > 0) be operators on semi-
finite measures defined by means of (24) in [13]. From Proposition 2.10
in [13] it follows that if [G] is a simple Poisson measure on X, then, for
every a >0, J°G is a Lévy measure on X.

Modifying' the well-known definition of integration w1th respect to a
vector -valued measure (cf. [4], p. 239) one can define the following

integration:
Given a simple Poisson measure y = [G] on X and o> 0 we put
@1 | =[Gl

A pm. uon X is said to be o -integrable if there exist a sequence {[G,]}
of simple Poisson measures on X and a vector xe X such that

(22) [Gul*d,=p
and I°{G,] converges weakly to some p.m. Define
(2.3) ‘ Fyu=lim I'[G,] +4,.

The limit p.m. I*u is called an integral of u of fractional order a. It should
be noted, by Lemma 2.1 (below), that if the limit measure I*u exists, then it is
uniquely determined by u.

21. Lemma. Let {[G,]} be a sequence of simple Poisson measures on X
such that

[Gl+d,=u=[x,R,G] and I*[G,]*0,=vV

for some xe X and o > 0 Then J°G is a lévy measure, v =[x, 27 "R J*G]
and, consequently, .. e —

24 ‘ I’[x, R, G] =[x, 27°R, J*G].

Proof Let v=[x,R;, M]. Since, by assumption, G,=G and
-J*G,= M, we infer from Theorem 2.5 in [13] that

(2.9) M = J°G.

Further, since M and G are Lévy measures, it follows, by (2.4) in [13] and
by a simple computation, that for every é > 0 and every ye X* we have"

f <x, y>*M@dx) <0, | <x, y>*G(dx) < o0,
By By
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and

3

(2.6) j {x, y>2 M (dx)

B
.[(x y>2 G (dx) +I"( )J f e 21 x, y)2dt G(dx).
Bj log||x|]/8
’ Cohsequently,
27 e u e (x 2G(dx
(2.7) mr(a)J J > Gldx) =
- B log||x||/3
On the other hand, by Theorem 1.7 from [5] we have
(28) , lim lim § <x, ¥>?G, (dx) = <Ry, y>
410 n~x By
and _
(2.9) lim lim | {x, y)2J°G,(dx) = <Ry, y).
3l0 n—ox B‘?

From (2.9) and (2.7) we get- - -
lim Im | (x, y>?J°G,(dx) = lim lim 27 | (x,.y>*G,(dx)+

80 n—x Bg 810 now By

oL

+lim im [ | e e ldt(x, y»2G,(dx) = 27 (Ry, y>
310 n—o Bj logfl x|l/é

for every yeX* which together with (2.9) implies that R1 = 27*R and, by
(2.5),_equation (2.4) holds. Thus the lemma is proved. '

2.2 CoroLLARY.- For every o > 0, I* is a one-to -one operator Jrom Ly(X)
into L,(X) such that if u, and p, are o-integrable, A is a.bounded linear
operator on X, and y > 0, then :

210 P(Ap] * pg) = (A )" + I” .

Proof. From the definition of I” it follows that I* transforms Ly(X) into
L,(X). Moreover, from Lemma 2.1 and from Theorem 2.9 in [13] we infer
that I* is one-to-one. Formula (2.10) is a simple consequence of (2.5) from
[13] and (2.4). Thus the corollary is proved.

23 LemMa. Let, for n=1,2, ..., }
(2.11) ' i Ga= (8128 _ - 12)-

4 — Prob. Math. ‘Statist. 3 (2)
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Then
(2.12) ' [G,]J=N(@,1)
and, for every a > 0,
(2.13) *[G,]=N(©, 279.

Proof. By the classical central limit theorem we obtain (2.12). Further,
given ¢ >-0, we have, by (2.7) in [13], the formula

(2.19) Ji'G,,({xéR‘: x| >¢&}) = I"(%ﬁ I Iog“lxle'lG,,_(gi_J_c) =0
' o x| >¢

_for-é‘.ufﬁciently large n. On the other hand, for every r > 0 wé have, by (2.8)
in [13], the formula

r

f x2J*G,(dx) =27 J x%G, tdx)+

—-r —r
o0

r? -2 —1ya-1 _ -2
@ ffe (t+1log |x|r= %)~ dtG (dx) = 2

+
|x|>r O

for sufficiently large n, which together with (2.14) . implies that
P[G,}=N(, 27%. Thus the lemma is proved.

2.4. LemMA. Every Gaussian measure ¢ on X is o -integrable (a > 0) and,
Jor some xeX, ’

(2.15) IPg = 0> " %4,.

Proof. We may assume that ¢ is a nondegenerate symmetric Gaussian
measure on X. Let Z be an X -valued r.v. with distribution g. From the
Jain-Kallianpur theorem ([7], Theorem 3) it follows that there exist a sequ-
ence {x} < X \{0} and a sequence {z,} of iid. real valued r.v.’s with

- distribution N (0, 1) such that '

(2.16) ‘ Z =Z x,‘zk,
k .

- where the series is convergent with probability 1. Let g,, (m =1, 2, ...) be the

distribution of Y xz,. We consider ¢, as a measure on the finite-
dimensional space X,,:=lin(x,, ..., x,). Putting, for n, m=1, 2, ...,

(2.17) Gn,m =n kgl (‘sxk/(Zn)llz+5—x,‘/(2n)1/2)

and taking into account Lemma 2.3 we get, foranya >0and m=1, 2, ...,
(2.18) ' ' [Gnm]=0m
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and .
(219) G, ]=0%"

as n—oo. Now, since g,=¢ and o2 “=>p2 " as m— oo, by (2.18)
and (2.19) we can choose sequences {n,} and lm,‘} such that [G,, m]1=>0
and I*[G,,, ,,,k]=>g as k — oo. Thus the lemma is proved.

25. LemMmA. For every a > 0 and for every idpm. u=[x, R, G] on X,
(2.20) | log*||x]l G (dx) < o0

B)

if and onl_}; if ST
@21y J Tog*lixl| u(dx) < co.

B .
Proof. Without loss of glenerality we may assume that x =0 and R = 0.
Let G, .and G, be restrictions of G to B; and Bj, respectively. Then [G]
= [G,1*[G;] and, by results of Yurinski [15], for every a > 0 we obtain

 log* (I [G;1(dx) < w.
-

Therefore, (2.21) holds lif and only if
§ log*|1x| [G1(dx) < oo.

By
Thus, we may assume further that G is concentrated on B;. Then

(222) flog“llxllu(dx}—e"a‘x’ > i flog"llxn G*"(dx)
k=0

B

‘ and, consequently, (2.21) implies (2.20).

Next, suppose that (2.20) holds. It should be noted that, for any k
= 1, 2, ves and gy, ..., ak > 0,

223) max(l, a; +...+a) < k max(l, a,)...max(1, @).
- Further, for k=1, 2,...,
I log*||x|| G**(dx) = I log® max(1, HXII) G*(dx)

={.. j'log"‘max(l 1%y +.. +xk||)G(dx1) .G (dxy)

X
<f.. j(log k+Z logmax(1, [Ix{)f G(dxy)...G(dx) (by (2.23)
X i=1

k
<f.. j'(k+1)“(log"k+ Z log* max(1, |Ix;|)) G (dx,)...G(dx,)
N X '
= (k+1)*log" kG*(X)+(k + 1 G+~ (X) | log*max(1, |1¢) G (d)
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Consequently,

T o |t G < e,
B)
which together with (2.22) implies (2.21). Thus the lemma is proved.
2.6. CoroLLARY. For every o-integrable pm. yp on X, condition (2.21) is

satisfied.

Proof. Let G be a Lévy measure corresponding to an o« -integrable p.m.
pon X. By Lemma 2.1, J*G is a Lévy measure, and hence G satisfies (2.20).
Consequently, by Lemma 2.5, (2.21) holds, which completes the proof of the
corollary.

"27. LEMMA. Let G be a Iévy measure concentrated on B, for some r
(0 <r <5s). Then [G] is a-integrable for every a > 0.

Proof. Let {[G,]} be a sequence of simple Poisson measures converging
to [G], where G, (n=1, 2,..) are concentrated on B,; and G,=G. By
Proposition 2.10 in [13], J*G, and J*G are Lévy measures. We shall prove
that I*[G,] =I*[G].

Accordingly, by Corrolary 2.4 in [13], we obtain

(2.24) _ J°G,=J*G.
Further, since j |1x]| G (dx) < o0, by Proposition 2.1 ffom [13] we have
By
(2.25) ) ||x||J“G(dx) < 0.

By

Now, by the assumption that G,= G and by (2 8) in [13] we get

lim fim J Il G, (d) = lim Tim fllxllG (dx)+
al0 n—wc 10 n-w
B

6 . . . .
_+lim lim — J fe"‘(t+log Ix]| 6~ 1y~ 1 dtG,(dx)
6l0 n— o F( ) .
B,s 0

= f||x||G(dx)+hm @) J.f e;‘(t+log llxllé‘l)“‘ldtG(dx)

B,;O

= lim f x| J°G(dx) =0  (by (2.25)).
él0
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13

Hence and by (2.24) it follows from Corollary 1.8 in [5] that
I*[G,] = I*[G]. Thus, [G] is «-integrable, which completes the proof of the
lemma.

The following theorem gives a characterization of a-integrable p.m.’s
on X:

2.8. THEOREM. A pm. u=[x, R, G] on X is a-integrable (a > 0) if and
only if J*G is a Lévy measure on X.

Proof. From Lemma 2.1 it follows that if u =[x, R, G] is rx-mtegrable
then J*G is a Lévy measure.

Conversely, suppose that J*Gisa Lévy measure on X, where G is a Lévy
measure corresponding to u =[x, R, G]. Since, by Lemma 2.4, the Gaussian
component [x, R 0] of p is o-integrable, it suffices to show that [G] is a-
integrable. -

Accordingly, for every m=1, 2, ... we put G, = G|By,,,- By Lemma
27, every [G,] is a-integrable. Moreover, it can be seen that [G,]
=[G] and I’[G,]=[J*G] as m— w. For every m=1, 2, ... let [G,,]
(n=1,2,..) be a sequence of simple Poisson measures such that
[Gp..l=[G] and I*[G,,,]=1*[G,] as n— co. Then we can choose sequ-
ences {m,} and {n} of natural numbers such that [G,, ,]=-[G] and
I*[Gp,, nk]:[J“G] as k — oo, which shows that [G] is «-integrable. Thus
the theorem is proved.

2.9. CoroLLARY. If X is of type p (0 <p<2), then u =[x, R, G] with
(2.26) § 1P G (dx) < o

By
is o -integrable (x > 0) if and only if
221 { log*max(1, ||x|f) u(dx) < co.
X
Proof. Let G be a Lévy measure corresponding to p z;iid assume that
(2.26) holds. Then, by Proposition 2.1 in [13], we have
| IxIIPJ* G (dx) < c0.

B

Moreover, since X is of type p, J*G is a Lévy measure if and only if (2.20)
is satisfied, which, by Lemma 2.5 and Theorem 2.8, implies that u is «-
integrable if and only if (2.27) holds. Thus the corollary is proved.

Since every Hilbert space is of type 2, Corollary 2.9 implies the following

2.10. CoroLLARY. The class of all o -integrable (x > 0) p.m.’s on a Hilbert

space H coincides with the class of all id.pm’s u on H such that

{ log* max (1, ||x|f) #(dx) < oo.
H
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The proof of the following theorem is the same as the proof of Lemma

2.1 and will be omitted.

2.11. TueoREM. Let {u,} be a sequence of o.-integrable (a > 0) pm.’s on X '

such that y,= p and "y, =>v. Then u is o -integrable and, moreover, I*'u = v.

In the sequel, for any u, ve Lo(X) we write p < v if there exists 1€ Lg(X)
such that =t =v. Then < is a partial ordering in Ly(X). In terms of the
relation < we get the following analogue of the Domlnated Convergence

2.12. Tueorem: Let v be an o-integrable (x>0 pm on X and {u,}
a ‘sequence of measures in Lo(X) such that p,=>pu and p,<v for every
n=1,2,... Then u and p, are a-integrable and "y, = I*p.
" Proof. By assumption, u < v, and if Uy = [Xn, R,, G,], 4 =[x, R, G], and
v =[xy, Ry, Go], then J*G, < J*Gy and J°G < J*Gy (n=1, 2, ..). Conse-
quently, J°G, and J*G are Lévy measures on X. Thus, by Theorem 2.8, u,
and p are a-integrable. Moreover, [J°G,] <[J*G,] (n=1, 2, ..)). Hence
and by Theorem 2.2 in [10], the sequence {[J*G,]} is relatively shift com-
pact. Further, by Corollary 1.5 from [5], {[J*G,]} is relatively compact.
Let {[J*G, ]} be an arbitrary convergent subsequence of {[J°G,]}. Since
[G,]1=[G], by Theorem 2.11 we have [J*G, ]1=>1"[G]. Consequently,
G, 1=11[G].

Finally,
Pu, =[x,, 27°R,, 0] * [J*G,] =[x, 27°R, 0]+ [J*G] = I*p,

which completes the proof of the theorem.

The following theorems are concerned with the basic monotonicity and
additivity laws for I°

2.13. THEOREM. Suppose that j is an o -integrable (x > 0) p.m. on X such

" that, for some B> 0, I°u is B-integrable. Then u is (a+ p)-integrable and

(2.28) Iy =Py,

Proof. Let u =[x, R, G]. Then, by (24), we have Iz = [x, 2~°R, J*G].
Further, since I°z is f-integrable, we obtain

IPIu =[x, 27 R, J2J*G],

which, by (2.9) in [13], implies that J**#G is a Lévy measure, and hence yu is
{(x -+ B)-integrable. Moreover, (2.28) holds, which comp]etes the proof of the
theorem. :

2.14. TueoreM. Suppose that X is of type p(0<p<?2), u=[x, R, G] is
(¢ + p) - integrable (o, f > 0), and (2.26) holds. Then u is a-integrable and I*u
is B-integrable.
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Proof. By assumption, J°*#G is a Lévy measure. Hence and by
Proposition 2.10 from [13] we have

_{ log**#||x|| G (dx) < oo,

which 1mphm (2.20). Again by Proposition 2.10 in {13] and by (2.26), J*G is
a Lévy measure. Consequently, by Theorem 2.8, u is a-integrable and I°u
=[x, 27°R, J°G]. Further, since J**#G =JPJ*G and J**#G ja a Lévy
measure, Iy is B-integrable. Thus the theorem is proved.

Now, by Theorems.2.13 and 2.14 we get the following

2.15. CorOLLARY. A p.m. j on a Hilbert space is (a+ p)- integrable if and
only if it is a-integrable and I'u is B-integrable. In any case, (2.28) holds.

3. Fractional derivative of p.m.’s on X. Since operators I* (x > 0) are one-
to -one, we can define differentiations D* (& > 0) as operations converse to I*.
Thus, D* = I~° Putting, in addition, I°« = u (u€ Ly(X)), we obtain a family
P? (xeR') of operators on Ly(X) with the group property
(3.9) IFPu=r+*y (a, feRY)
whenever Py and I°I®u exist.

Our further aim is to give another approach to the definition of fractional
derivatives. Namely, we introduce fractional derivatives via decomposability

properties of p.m.’s.
For simplicity of the notation we put

A(I"ﬂ) = I‘ﬂ (#ELO(X)s B> 0)
and

o
k

3.1. LemMA. For any a> 0, ce(0, 1), and pe Ly(X), the series
o)

1
. - | o : ,® ol . v
Proof. Since Z k ‘ < oo, the series =* A(u, X ) is convergent for
k=1 ) k=1

every pe Loy (X). Let {z,} be a sequence of X -valued independent, r.v.’s such
: ) (k=1,2,..). Then the series ,?;1 7, is

_Je(@—1)...(a—k+1)
- k!

(3.2 (@>0,k=1,2,..).

o

k.

2]
*

k

—

is convergent.

that z, is distributed as A(u, l

convergent with probability 1. Therefore, for every ce(0, 1) the series ). c*z,
k=1




u.€Ly(X) such that

182 Nguyen Van Thu

is convergent with probability 1 and, consequently, the series
o\ . .

T,A (,u, K ) is convergent. Thus the lemma is proved.

By virtue of Lemma 3.1 we can define operators T* on the whole Ly(X)

a0
*

k=1

by
(33) Tu= * Tud (u, ’ ) ’) (ne Lo (X)),

where o >0 and ce(0,1).

3.2. Lemma. Ler p be a self-decomposable p.m. on X. Then for any
a, ce(0, 1) there exists p,.€Lo(X) such that

B4 po= T Y

Proof. Suppose that «, ce(0, 1) and jeL,(X). Then there exists a p.m.
(; )*72A(M, )*uc
o ol ol

i3]zl [)

*’IZA(M, T )*TZA(uc,ll—’T )*m-

Hence and by a simple induction we get, for n=1,2, ...,

o
1

w=Tp=*p = TZA(#, l—l

= 7o (1

39 w=Ta(m1=3 [*])s * T.a(n
¢ k=1 k k €

" ai\ . o o
Since, by Lemma 3.1, * T,A4 (u, K is convergent to T*u, we infer
k=1

from-(3.5) that there exists Ha,e € Lo (X) such that (3.4) holds, which completes
the proof of the lemma.

From Lemma 3.2 we obtain immediately the following

33. CoroLLARY. For any ce(0,1), «a >0, and peL,(X), where n is
the smallest integer greater than o, there exists a finite sequence
Hics ooy Bu—1,e0 Mg Such that

(36) u= T;-:“ * 1y ,co Hie = LMy c¥Uaes o-es
Hn-2,0 = delln—2.c%* Hp—1,c5 Hn-1,c = 7::‘1_“- lnun—l.c*”a.c."
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Suppose that & >0 and n=[a]+1. A pm. y on X is said to be «-
differentiable if peL,(X) and there exists a weak limit, say D®p,

. @, —— 1 1t
(3'7) D n= 1:111}31 ﬂa,c ’

where for ¢ = e~ "€(0, 1) the measure y, is defined by (3.6). In particular, for
a = 1, 1-differentiable p.m.’s are called differentiable. The limit measure D™y
in (3.7) is said .to be a derivative of u of fractional order o

34. TuEOREM. For every a-differentiable p.m. 'u on X, D®u is a-
integrable, 7 s o :

(3.8) C PD®u=p
and, consequently,
(39 D®y = D*u.
Proof. Given a >0, t = —log ¢ > 0, and a Lévy measure M, we put
(3.10) AEME) =Y (*1)"(2) T, M(E) .
k=0

for every Borel subset E of X such that 0¢ E, where
.
=1
(5)

(a ) _ale—1)...(a—k+1)

and, for k=1, 2, ...,

k k!

By an easy computation it follows that for every ¢ =e 'e(0, 1) the
measure y,, given by (3.6) is of the form

(3.11) Moo = [(1—e™"x, (1—e" 2R, A2M].

In particular, 47M is a Lévy measure if u =[x, R, M] is [a]+1 times
self - decomposable. Further, suppose that D®u = [x,, R,, G]. Then, by the
definition of D®yu and by Theorem 1.7 from [5] we obtain

(3.12) ltlll(r)l tT*(1—e""x V=>x = Xy,
(3.13) limt™*A'M = G
0

and, for every yeX*, _
G149 Ry, yd=limlm ™ | {x, pd? ATM(dx)+
‘ él0 tl0 Bs

+1im t7*(1—e*f*<Ry, y>.
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On the other hand, since peL,(X) and a <n, we infer that peL,(X) -
and, by (3.11) and by Theorem 2.9 in [13], we get

(3.15) M = J*G.
We shall prove that, for every yeX*¥,

: : —-a 2 Aa —_

(3.16) , lalﬁ)l l‘lfg t l{s {x, > A,.M(dx) =

~-In fact, let m (t > 0) be the signed measures defined by (2.14) and (2.16)
in [13] Then, by (2 4) in [13], (3.15), and by some computation, we get

(3.17) t™¢ _f {x, y)2A‘M(dx) j j' 15,(e™"x)e™ 2 <x, y)> m§ (du) G (dx)
0 -
for every 6 > 0, which implies
(3.18) t7* | {x, y)*A7M (dx)
By

= [ [ m@ 2 6@+ ] [ e mmidi)Cx, yY G(dy.

B . log{|x||/&
] B}

(=]

By Lemma 2.6 from [13], m{ have a common finite variation, say K, and
m? | do as t 0. Hence for any xe X and ye X* we get

|°f e” 2m (du)| < K/2

and

[+ o3

2 e""m}‘(du)lsKﬁzllyllz,

log|| x|{ /8

which, by (3.18) and by the Dominated Convergence Theorem, 1mp11es (3.16).
Now, by (3.14) and (3. 16) we get

(3.19) o R, =2R,

which together with (3.12) and (3.13) implies that D®y is a-integrable and
(3.8) and (3.9) bold. Thus the theorem is proved.

In the sequel we shall give some sufficient condmons for the existence of
D®u. Namely, we get the following

3.5. THEOREM. Suppose that X is of type p (0<p<2), oz>0 and u
=[x, R, M]eL,(X), where n is the smallest integer greater than a and

(3.20) § lIxllP M (dx) < co.
. By

Then p is a-differentiable.
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Proof. Without loss of generality we may assume that x =0 and R = 0.
Given ¢ =e” ", t > 0, define p,, by (3.6). Then, by (3.11), we get

(3:21) Ha,e = [4EM].
Further, since peL,(X) and a < n, there exists Ge M (X) such that
(3.22) M =J"G,

which, by assumption and by Proposition 2.10 from [13] implies that G is a
Lévy measure. Moreover by (3.22) and by Theorem 2.9 in [13] we' obtain

(3.23). S A*M=G as t]0.
Our further aim is to prove that
(324) lim im | |Ix|IPt™* 42 M (dx) =
810 11O B

which, by Corollary 2.8 from [S]Hand by (3.23) should- imply that
. 1o
lglg)l Ma,c - [G]a

and then the theorem should be proved.
Accordingly, for any ¢t = —log ¢ > 0 and 6 > 0 we have, by (24) in [13]
and (3.13), the formulas

o IKP 4 M) =7 § 1P (—1)*( ; )ws(dx)
B; . B k=0

fs o]

= | | e ™ng (du)||xlI° G (dx)+ | OJ? e | |x|[? m (du) G (dx),

B; O B log|| x|/

where nf is defined by (2.14) and (2.16) in [13].
Since, by Lemma 2.6 in [13], the signed measures m{ (t > 0) have a
common finite variation, say K, and m{ =4, as t |0, we get

IJ e~ mf (du) < K/p

and - -

o

WP | e ™mi(du)| <K

log || x[| /8
which, by the above formulas and by the Dominated Convergence Theorem,
implies (3.24). Thus the theorem is proved.
From Theorem 3.5 we get the following corollaries:

3.6. COROLLARY. Suppose that X is of type p (0 < p < 2). Then every self-
decomposable pm. u =[x, R, M] on X satisfying (3. 20) is dljferentlable




i '

186 Nguyen Van Thu

3.7. CorOLLARY. Every n times (n =1, 2, ..) self-decomposable p.m. on a
Hilbert space is o -differentiable (0 < a < n).

4. A characterization of stable measures on X. From Lemma 24 it follows
that every Gaussian measure u = [x, R, 0] on X is a -integrable (« > 0) and,
by (3.11), there exists a limit

C8) lim jf* = [x, ¥R, 0],
t .

where, for c =e™* (t > 0), p, is defined by (3.6). I

The same is true for-stable measures on X. Namely, we get the following

4.1. THEOREM. Let u=[M] be a stable pm. on X with index p (0 <p
< 2). Then, for every a > 0, u is a-integrable,

42 Fu=p™,
and there exists a limit (in the weak sense)
@43) lim " = 7,

where, for c =e”" (t > 0), py is defined by (3.6).

Proof. It is well known [3] that u =[M] is a stable p.m. on X with
index p (0 < p < 2) if and only if there exists a finite measure m on the unit
sphere S of X such that

@4 . M(E)= f f 1E(ux)%m(dx) (E < X).

Further, by (24) in [13] and by some computation we get

(4.5) J’M(E) =% J'J‘ J‘ IE(e_"ux)ua_l‘ldv u;lfl m(dX)
S§0 0

=p "M(E) (EcX).

Consequently, by Theorem 2.8, u is a-integrable and (4.2) holds.
Now, from (4.4) it follows that for every a > 0,

. (4.6) , T, u=u”.

'

Therefore, for any a > 0 and t = —log ¢ > 0 the measure iy, defined by
(3.6) is of the form '

(47) | Hoe = A(l" kio (_ l)k ( Z )e—pkt) = A(ﬂs (1 __e"m)ﬂ),

which implies that (4.3) holds. Thus the theorem is proved.
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The following theorem together with Theorem 4.1 gives a full description
of stable measures on X.

4.2 THEOREM. Suppose that p€ Lo(X) and, for some B > 0, a e R' \{0}, and
ze X, we have

(4.8) Iu=pf+6,.
Then u is a stable pm. on X wzth index p 0<p<2), where
49). . p=p1

Proof. Since operators I* (x€R') are one-to-one, we may assume that

(4.8) holds for some a > 0. Let u =[x, R, M] be nondegenerate. By (2.4),
equation (4.8) is equivalent to the following:

4100 x =px+z,
(4.11) 27*R = BR,
and

(4.12) J*M = BM.

.. Consider equation (4.12). Applying successively operators J* we get, by
(29) in [13], the formula

(4.13) J"M =M @m=12,..),

which, by the definition of classes L,(X) (y > 0), implies that peL,,(X) for
every n=1,2,... Hence u is completely self-decomposable. Recall ([12],
formula (6.8)) that u is completely self - decomposable if and only if its Lévy
measure M is of the form

(4.14)

' ds - /2 N
0 o
where B is the open unit ball in X, m a finite measure on B vanishing at 0,
and @ a weight function on X in the Urbanik sense [14]. Moreover, for a

~ fixed -weight function ¢ the representation (4.14) is unique.
From (24) in [13] and (4. 14) it follows that for every Borel subset E of X

ds
(4.15) J*M(E) = T )JJ f 1c(e'sx) 2~ 1h(x)dt PIETESY m(dx)

- f f 150 s QI h09m(d),
B O
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where, for xeB,

e2)

(4.16) h(x)~* =J D (tx) ;znf%-

[

Therefbre, by (4.12), (4.15), and by the uniqueness of the representation
(4.14), we get the equation

@.17) - Q@IxID* m(dx) = pm{dx).

It should be noted that (4.17) holds if and only if either m = 0 orm#0
and m.is concentrated on some sphere S, of X with-radius r (0 <r<1). In
the latter case we get

@18 . - @) =8.
Hence and by (4.14), for every Borel subset E of X we obtain

(4.19) M(E) ff 1z(s%) 5= 2T h(x) m{dx}).

Proceedmg successively, we infer from (4.10)-(4.12) and (4 18) that either
R#0, § =277 and u is a Gaussian measure, or R =0, M # 0, M is of the
form (4.19), and u is a stable measure with index p = 2r. Thus, in any case, u
is a stable measure with index P (0 < p < 2), where p is given by (4.9). Thus
the theorem is proved.

" From Theorem 4.2 we obtain immediately the fol]owitig

4.3. CoroLLARY. A pm. p on X is Gaussian if and only if, for some
xR \{0} and zeX,

S ‘ Pu=p*""%8,.

References

[1] J. H. Barret, Differential equations of non-integer order, Canad. J. Math. 6 (1954), p. 529 -
541.

[2] P. L. Butzer and U. Westphal, An access to. fractional dzﬁ“erennatwn via fractional
difference quotients, Lecture Notes in Math. 457 (1975), p. 116-145.

[3] E. Dettweiler, Stabile Masse auf Badrikinaschen Réumen, Math. Z. 146 (1976),
p. 149-166.

[41 N. Dunford and J. T. Schwartz, Linear operators, Part 1, General theory, New York
1958.

[5] E. Giné, A survey on the central limit problem in Banach spaces, Séminaire Maurey -
Schwartz, 1977/78, Exposé 25.

[6] G. G. Hamedani and V. Mandrekar, Lévy- Khinchine representanon and Banach spaces
of type and cotype, Studia Math. 66 (1980), p. 299 -306.




Fractional calculus in probability ' 189

[7] N. S. Jain and G. Kallianpur, Norm convergent expansion for Gaussian processes in
Banach spaces, Proc. Amer. Math. Soc. 25 (1970), p. 890-895.

[81 A. Marchaud, Sur les dérivées et sur les différences des fonctions de variables réelles, J.
Math. Pures Appl. 6 (1927), p. 337-425.

[9] M. Mikoldas, On the recent trends in the development, theory and apphcatlans of ractional
calculus, Lecture Notes in Math. 457 (1975), p. 357-375.

{10] K. R. Parthasarathy, Probability measures on metric spaces, New York — London 1967.

[11] N. V. Thu, Limit theorems for random fields, Dissertationes Math. 186.

[12] — Multiply self-decomposable probability measures on Banach spaces, Studia Math. 66
(1979) p- 161-175.

[13] =-Universal multiply self - decomposable probability measures on Banach spaces, Probablhty
and Mathematical Statistics. 3 (1982), p. 71-84.

[14] K. Urbanik, Lévy’s measures on Banach spaces, Studia Math. 63 (1978), p. 284 -308.

{151 V. V. Yurinski, On infinitely divisible distributions, Theor. Probability Appl. 19 (1974),
p- 297-308. .

Hanoi Institute of Mathematics
P.O. Box 631, Bo-ho
Hanoi, Vietnam

Received on 30. 10. 1980







