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Abstract. Operators P and D"(u > 0) are defined on i.d.p.m.'s on 
a Banach space in such a way that they stand for some analogues of 
fractional integration and dflerentiation on functions. Further, we 
apply the theory to give a new characterization of stable measures 
and Gaussian measures on Banach spaces. 

I. I n t d ~ t i o n  a d  notation. Throughout the paper* we shall preserve 
the terminology and notation from [13]. In  particular, by X we denote a real 
separable Banach space. Let L , ( X )  be the set of all infinitely divisible 
probability measures (i.d.p.m.'s) on X and La(X)  (or > 0) its subsets as defined 
in [13]. 

In the sequel we introduce operators I" and D" (or > 0) on L , ( X )  which 
satisfy the basic monotonicity and additivity laws and can be considered as 
fractional calculus on i.d.p.m.'s. 

The method of construction of the operators P is based on the well- 
known definition of vector -valued integrals. Namely, they are first defined 
on simple Poisson measures and then are extended to some larger classes of 
p.m.'s. In this context, by a simple Poisson measure we mean a p.m. p of the 
form p = [GI, where 

- .  h 

G = 1 li6.+ for some Ri 2 0 and xi E X  \{O). 
i =  1 

Further, the operators D" are defined via the decomposability 'properties 
of p.m.'s. 

As an application of the study we prove that the only solutions of the 
differential equation D" p = p@ + 6 ,  are stable and Gaussian measures. 

* Partially written during the author's stay at the Wrodaw University (Poland) in the 
academic year 1980/8 1. 
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The value of our results is that they open a new direction in the study of 
decomposability properties of p.m.'s and they are not known even in the 
one - dimensional case. 

The author gratefully acknowledges Professor K. Urbanik for his en- 
couragement and help. 

2. Fractional imtqration on L,(X). Let*Ju(m > 0) be operators on semi- 
finite measures defined by means of (2.4) in 1131. From Proposition 2.1 0 
in [13] it follows that if [GI is a simple Poisson measure on X, then, for 
every a > 0, JaG is a Levy measure on X. 

Modifying the well -known definition of integration with respect to a 
vector -valued measure (cf. [4], p, 239) one can define the foIIowing 
integration : 

Given a simple Poisson measure p = [GI on X and u > 0 we put 

A p.m. p on X is said to be a-integrable if there exist: a sequence .([G,]) 
of simple Poisson measures on X and a vector X E X  such that 

and Ia[G,] converges weakly to some p.m. Define 

(2.3) I"p = lim I" [G,] * tix. 
n-+m 

The limit p.m. Iup is called an integral of p offiactional order a. It should 
be noted, by Lemma 2.1 (below), that if the limit measure lap  exists, then it is 
uniquely determined by p. 

2.1. LEMMA. Let ([GJ) be a sequence of simple Poisson measures on X 
such that 

[ G n ] * 6 x = p = [ ~ , R , G ]  and iu[G,]*6x=v 

for some X E X  and u > 0. Then JUG is a Livy measure, v = [x, 2-"R, JaG] 
I and, consequently, -. 

(2.4) 
- - -  . . 

P [x, R, GI = [x, 2-'R, JaG]. 

Proof.  Let v = [x, R, ,  M I .  Since, by assumption, G, 3 G and 
JaG,* M, we infer from Theorem 2.5 in [13] that 

Further, since M and G are Uvy measures, it folIows, by (2.4) in [13] and 
by a simple computation, that for every 6 > 0 and every y E X * we have 



Fracriona/ calcuIus in probability 175 

and I 

(2.6) (x, y)' M(dx) 

*a 

1 t ( x ,  p)' dt G (dx). 
=.2-. / < r . y ) 2 ~ ( d x ) + ~  j 1 e 2 t u - 1  

On the other hand, by Theorem 1.7 from [ S ]  we have 

(2.8) lirn (x, y ) l  G.(dx) = (RY, y)  
610 n+- Bd 

and 

(2.9) lim G J (x, y)' J"Gn(dx) = (RIY, Y).  
610 n-+= B* 

From (2.9) and (2.7) we get 

lim I (x, y)"aG,,(dx) = lim "' J (x, .~) 'G.(~x)+ 
810 n-'m B6 610 n+cc 4 

for every y EX*, which together with (2.9) implies that R,  = 2-"R and, by 
(2.5), equation (2.4) holds. ~ h u s '  the lemma is proved. 

2 2  COROLLARY. Eor every a > 0, I" is a one - to -one operator from Lo ( X )  
into La (X) such that if p, and p2 are a -integrable, A is a bounded linear 
operator on X, and y > 0, then 

Proof .  From the definition of I" it follows that P transforms Lo(X) into 
La(X). Moreover, from Lemma 2.1 and from Theorem 2.9 in t13] we infer 
that I" is one-to-one. Formula (2.10) is a simple consequence of (2.5) from 
[I31 and (2.4). Thus the corollary is proved. 

23 LEMMA. Let, for n = 1, 2, . . ., 

4 - Prob. Math Statist. 3 (2) 
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and, for every a >  0, 
(2.13) I" [Gn] N ( 0 ,  2-'). 

Proof. By the classical central limit theorem we obtain (2.12). Further, 
given s >-0, we have, by (2.7) in 1131, the formula 

(2.14) PO,,({xc R1 : 1x1 > E]) = 
r(lx+l) 

log" 1x1 E -  'G, (dx) = O 
? - -  

1x1 >€ 

for-sufficiently large n. On the other hand, for every r z 0 we have, by (2.8) 
in [13], the formula . - 

r .  r 
n n 

lx[>r 0 

for sufficiently large n, which together with (2.14) implies that 
F [GJ =- N(O, 2 3 .  Thus the lemma is proved. 

2.4. LEMMA. Every Gaussian measure q on X is a -integrable (a > 0) and, 
for some XE X, 
(2.15) PQ = e2-a *S,. 

Proof. We may assume that Q is a nondegenerate symmetric Gaussian 
measure on X. Let Z be an X-valued r.v. with distribution Q. From the 
Jlain-Kallianpur theorem ([7], Theorem 3) it follows that there exist a sequ- 
ence (x,) c X \(O) and a sequence {zk) of 'i.i.d. real valued r.v.'s with 
distribution N ( 0 ,  1) such that 

where the series is convergent with probability I. Let Q, (m = 1,  2, . . .) be the 
m 

distribution of xkzk. We consider em as a measure on the finite- 
. . k= 1 

dimensional space X, : = lin(x,, . . ., xd. Putting, for n, m = 1, 2, . . . , 

and taking into account Lemma 2.3 we get, for any or > 0 and rn = 1, 2, . .., 



and 
(2.1 9) 
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1' C G n . m l 3  Q:-= 

as n + m .  Now, since Q ~ - Q  and g ~ - a * p 2 - - "  as m+m, by (2.18) 
and (1.19) we can choose sequences (n,) and (m,) such that [G,,,] - 9  
and Ia [Gnk,,] * p 2 - a  as k -r m. Thus the lemma is proved. 

23. LEMMA. For every or > 0 and for every i.d.p.m. p = [x, R, G] on X, 

8; 
Proof. Without loss of generality we may assume that x = 0 and R = 0. 

Let G1 .and G2 be restrictions of G to B1 and B; ,  respectively. Then [GI 
= [GI] * [G2] and, by results of Yurinski [15j, for every u > 0 we obtain 

4 
Therefore, (2.21) holds d and only if 

1 hgllxl l  CG,l(dx) < 0,. 
B i 

Thus, we may assume further that G is concentrated on 8;. Then 

B i '4 
and, consequently, (2.21) implies (2.20). 

Next, suppose that (2.20) holds. It should be noted that, for any k 
= 1, 2, ... and a,, ..., a, 2 0 ,  

(2.23) max(1, a, + . . .+a& < k max(1, a,). . . max(1, a,). 

Further, for k = I ,  2, . .., 

$ log" Ilxlj G*k (dx) = 1 lo$ max (I ,  Ilxll) G*k (dx) 
8 1  X 

I < 1 ., . (log k +  logmax(1, llxill))" G(dx1). . . G(dx& (by (2.23)) 
X X i= 1 

= (k+ 1)" log" kGk (X)  + k (k + lp Gk-I (9 1 log max(1, flxll) G (dx). 
X 
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Consequently, 

log" Ilxll G*k(dx) < m, 

~i 
which together with (2.22) implies (2.21). Thus the lemma is proved. 

2.6 COROLLARY. For every a-integrable p.m. p on X ,  condition (2.21) is 
satisfied. 

Proof. Let G be a k v y  measure corresponding to an u - integrable p.m. 
p on X. By Lemnia 2.1, JaG is a Levy measure, and hence G satisfies (2.20). 
consequently, by Lemma 2.5, (2.21) holds, which completes the proof of the 
corollary. 

2.7." LEMMA. Let G be a G v y  measure concentrated on B,,, for some r 
(0 < r < s). Then [GI is a -integrable ,for every a > 0. 

Proof.  Let { [ G , ] }  be a sequence of simple Poisson measures converging 
to [GI, where G, (n = 1, 2 ,  . ..) are concentrated on B,,, and 6,- G. By 
Proposition 2.10 in [13], JaG, and J"G are Lkvy measures. We shall prove 
that I" [Gn] 3 1" [GI. 

Accordingly, by Corrolary 2.4 in [13], we obtain 

Further, since j Ilxll G(dx )  < a, by Proposition 2.1 from 1131 we have 
81 

(2.25) J Ilxll JaG(dx)  < oc . 
81 

Now, by the assumption that G, =>G and by (2.8) in [13), we get 

Ern J Ilxll JaGn (dx)  = lim 
SIO n-m 

+ lim - ~ i m  - ' 1 J e- ' ( t+ log  ~lxll d t cn (dx )  
610 r(a) 

I l x l l  G(dx)+lim - 1 j e- . ( t  + log 1x1 a-l l . - l  &G (dx)  
a10 r ( a )  

BS Bd 0 

= lim IIxll JaG (dx) = 0 ( b y  (2.25)). 
810 J 
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Hence and by (2.24) it follows from Corollary 1.8 in [S] that 
I" [G,,] * P [GI. Thus, [GI is a - integrable, which completes the proof of the 
lemma. 

The following theorem gives a characterization of a -integrable p.m.'s 
on X: 

2.8. THEOREM. A p.m. p = [x, R, G ]  on X is a - integrable (a > 0) $ and 
only if JaG is a Lkvy measure on X .  

Proof. From Lemma 2.1 it follows that if y = [x, R, G] is a -integrable, 
then JaG is a Livy measure. -- 

Conversely, suppose that"G is a Levy measure on X, where G is a E v y  
measure corresponding to y = [x, R, GI. Since, by Lemma 2.4, the Gaussian 
component [x, R, O] of p is a -integrable, it suffices to show that [GI is or - 
integrable. " 

Accordingly, for every rn = 1, 2, ... we put G, = GJ B ,,,,,. By Lemma 
2.7, every [G,] is a-integrable. Moreover, it can be seen that [G,] 
[GI and Ia [G,] - LPG] as rn + oo . For every rn = 1, 2, . . . let [G,,,] 

(n = 1, 2, . . .) be a sequence of simple Poisson measures such that 
[G,,,] * EGG] and Ia [G,,,] la [G,] as n 4 co . Then we can choose sequ- 
ences {m,} and ink) of natural numbers such that [G,,,,]=.[G] and 
P [G,,.,,] [JQG] as k 4 a, which shows that [GI is cr -integrable. Thus 
the theorem is proved. 

2.9. COROLLARY. If X is of type p (0 < p 4 21, then p = [x, R, GI with 

is a -integrable (a  > 0) if and only $ 

(2.27) l loga max (1, Ilxll) P (dx) < - 
X 

-. 

Proof. Let G be a Ikvy measure corresponding to p and assume that 
(2.26) holds. Then, by Proposition 2.1 in [13j, we have 

- .  

f JJxJJPJaG(Bx) < co. 
E l  

Moreover, since X is of type p, JUG is a Lkvy measure if and only if (2.20) 
is satisfied, which, by Lemma 2.5 and Theorem 2.8, implies that p is a-  
integrable if and only if (2.27) holds. Thus the corollary is proved. 

Since every Hilbert space is of type 2, Corollary 2.9 implies the following 

210. COROLLARY. The class of all u -integrable (a  > 0) p.m.'s on a Hilbert 
space H coincides with the class of all i.d.p.m.'s p on H such that 
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The proof of the following theorem is the same as the proof of Lemma 
2.1 and will be omitted. 

2.11. THEOREM. Let (p,,) be a sequence of a -integrable (a > 0) p.m.'s on X 
such that p, =- p a d  Iap, = v .  Then p is cr - integrable a t 4  moreover, lap = v. 

In the sequel, for any p, V E  L,(X) we write p < v if there exists T F  LO(X)  
such that p * r = v .  Then < is a partial ordering in Lo (X). In terms of the 
relation < we get the following analogue of the Dominated Convergence 
Theorem for ordinary integrals: - 

212. THEOREM;. Let v be an a -integrable (a  > 0) p.m. on X and {p,> 
a 'sequence of measures in L o ( X )  such that p,, p and fin  < v for etrery 
n = 1, 2, . . . Then p and p, are a-integrable and IZp,  == Imp. 

Proof. By assumption, p < v ,  and if p, = [xn ,  Rn, GJ, p = [x, R ,  GI, and 
v = [xo, R,, Go] ,  then JUG, < JUG, and JUG G JQC, (n  = 1 ,  2, .. .). Conse- 
quently, JUG, and JQG are Lkvy measures on X. Thus, by Theorem 2.8, p, 
and p are a -integrable. Moreover, [JUGJ 4 [JUGo] (n = 1, 2, . . .), Hence 
and by Theorem 2.2 in [lo], the sequence [[JaG,]) is relatively shift com- 
pact. Further, by Corollary 1.5 from [5], {[JUG,]) is relatively compact. 
Let {[JUG,,]) be an arbitrary convergent subsequence of [[Ja~,]). Since 
[G,] =.[GI, by Theorem 2.11 we have [JQG,] *Iu [GI. Consequently, 
[JaG,] * I" [GI. 

Finally, 

lap,, = [x,, 2-'R,, 01 * [JUGn] - [x, 2-aR, 01 * [JUG] = Iap, 

which completes the proof of the theorem. 
The following theorems are concerned with the basic monotonicity and 

additivity laws for ia. 

213. THEOREM. Suppose that p is an or - integrable (a > 0) .p.m. on X such 
that, for s o w  8 > 0, P p  is 8 -integrable. Then p is (a +fi) -integrable and 

Proof.  Let p = [x, R, GI. Then, by (2.4), we have iap = [x, 2-"R, JaG]. 
Further, since l a p  is -integrable, we obtain 

which, by (2.9) in [13], implies that J = + ~ G  is a U v y  measure, and hence p is 
(or + 8) -integrable. Moreover, (2.28) holds, which completes the proof of the 
theorem. -- 

214. THEOREM. Suppose that X is of type p (0 < p < Z), p = [x, R, G] is 
(a +fi) - integrable (a, B >  O), and (2.26) holds. Then p is a -integrable and Zap 
is 8 - integrable. 



Proof. By assumption, Jm+''G is a Uvy measure. Hence and by 
Proposition 2.10 from [13] we have 

$ log+811xll G(dx) < 03, 
B1 

which impiies (2.20). Again by Proposition 2.10 in [I31 and by (2.26), J"G is 
a L6vy measure. Consequently, by Theorem 2.8, p is a-integrable and Iap  
=[x, 2-"R,JaG].  Further, since J a f b ~ =  J'PG and 3"'" Ga a Levy 
measure, Imp is #I - integrable. Thus the theorem is proved. 

Mow, by Theorems.213 and 2.14 we get the following 

~ ~ ~ . ' C O R O L L A R Y .  A p.m. p on a Hilbmt space is (a +PI - integrable if and 
only if ia is a -integrable and IUp is 8 -integrable. In any case, (228) holds- 

3. Frastioml deGva~ve of p.m.'s in X. Since operators I" (or > 0) .are one - 
to -one, we can define differentiations D" (a > 0) as operations converse to P. 
Thus, 1)" = I-".  Putting, in addition, 1 O P  = p (p  E LO (X)), we obtain a family 
I" ( a € R 1 )  of operators on L,(X) with the group property 

whenever I@p and PPp exist. 
Our fin-ther aim is to give another approach to the definition of fractional 

derivatives. Namely, we introduce fractional derivatives via decomposability 
properties of p.m.'s. 

For simplicity of the notation we put 

and 

3.1. LEMMA. For any or > 0, CE(O, 1)' and ~ ~ E L ~ ( ; Y ) ,  the spies 

" 
OD 

* ( 1 1) is convergent for Proof.Since <mytheser ies  * A p, 
h= 1 k= 1 

every p E Lo (X). Let (2,) be a sequence of X - valued independent, r.v.'s such 
m ( I IZ 1) (k = 1, 2, ...). Then the series z, is that z, is distributed as A p, 

k =  1 
m 

convergent with probability 1. Therefore, for every c ~ ( 0 ,  1) the series 22, 
k= 1 
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is convergent with probability 1 and, consequently, the series 
m 

* ~ A ( , u .  1 1) is convergent. ~ h u s  the lemma is proved. 
k =  1 

By virtue of Lemma 3.1 we can define operators 7 on the whole L, (X)  
by 

where a > -0 and c -. ~(0, 1). 

'3.2 LEMMA. Let p  be a self-decomposable p.m. on X. Then for any 
u, c ~ ( 0 ,  1) tlzere exists E L,(X) such that 

. - 

Proof.  Suppose that a, c ~ ( 0 ,  1) and B E L ,  (XI. Then there exists a p.m. 
4 E Lo (X) such that 

Hence and by a simple induction we get, for n = 1, 2, .. ., 

Since, by Lemma 31, $A(p, I 1) is eomerient to T p ,  we infer 
k =  1 

from (3.5) that there exists E Lo (X) such that (3.4) holds, which completes 
the proof of the lemma. 

From Lemma 3.2 we obtain immediately the following 

33. COROLLARY. For arzy c ~ ( 0 ,  I), a > 0, and ~ E L , ( X ) ,  where n is 
the srnallest integer greater than a, there exists a finite sequence 
p l , C ,  ' " 7  p"- 1 , ~ .  &,C '''IZ that 

(3.6) ,U = TP * PI,=, PI,C = T,PI.~ * ~ 2 , ~ ~  . .-. 
u - n + l  

P n - 2 , c  = X P n -  2,c *f in-  1.c. P n - 1 . c  = Tc Pn- l , c  *&.em 
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Suppose that u > 0 and n = [u]+l. A p.m. jt on X is said to be a -  
diferentiable if p€L,(X) and there exists a weak limit, say D(")jt, 

where for c = e-'€(O, 1) the measure H , ~  is defined by (3.6). In particular, for 
u = 1, 1 -differentiable p.m.'s are called diflerentiable. The limit measure D(")p 
in (3.7) is said to be a derivative of p offractional order n. 

3.4 THEOREM. For every u-differentiable p.m. p on X, D("lp is or - 
integrable, 7 . . - 

and, consequently, 

(3 -9) D("'p = Wp. 

Proof. Given a > 0, t = -log c > 0, and a Livy measure My we put 

for every Bore1 subset E of X such that o $ E ,  where 

and, for k.= 1, 2, . . ., 

By an easy computation it follows that for every c = e - ' ~ ( 0 ,  1) the 
measure A ,  given by (3.6) is of the form 

(3.11) &,c - - [(I -emt)olx, (1 -e-'t)ol R, A;m. 
In particular, d:M is a Evy measure if p = [x, R, is [u]+l times 

self- decomposable. Further, suppose that D(")p = [x,, R1, GI. Then, by the 
definition of W)p and by Theorem 1.7 from [ 5 ]  we obtain 

(3.12) - - - lim t-" (1 -e-3. x = x = x,, 
t l 0  

(3.13) lim t-"A:M = G 
tl'J 

and, for every y E X*, 
- 

(3.14) <Rly, y) = lim lim t-" j (x, y)' A:M (dx)+ 
d l 0  r10 

I Bcs 

+lim t-"(1 -e-"Y (Ry, y). 
il0 
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On the other hand, since ~ E L , ( X )  and a 6 n, we infer that ~ E L , ( X )  
and, by (3.11) and b y  Theorem 2.9 in [13], we get 

We shaH prove that, for every y EX*, 

lim lim t-" j {x, y )2  A:M(dx) = 0. 
& l o  rJ0 "a 

- In fact, let m# ( t  > 0)  be the signed measures defined by (2.14) and (2.16) 
in [13]. Then, by (2.4) in 1131, (3,15), and by some computation, we get 

m 

(3.17) t -" j { x ,  y ) 2  A:M(dx) = j 1B,(e-"x)e-2"(x, y)2$(du)G(dx) 
Ba X 0 - 

for every S > 0, which implies 

By Lemma 2.6 from [13], @ have. a common finite variation, say #, and 
I# 16, as t 0. Hence for any x E X and y E ZY* we get 

and 
m 

(x, Y > ~  1 j e -  2u e(d4I s Kd2 IIYII~, 
losllxll /a 

.which, by (3.18) and by the Dominated Convergence Theorem, implies (3.16). 
Now, by (3.14) and (3.16) we get 

which together with (3.12) and (3.13) implies that P l y  is a-integrable and 
(3.8) and (3.9) hold. Thus the theorem is proved. 

In the sequel we shall give some sufficient conditions for the existence of 
Dta)p. Namely, we get the following 

3.5. THEOREM. Suppose that X is of type p (0 < p < 2), a > 0, and p 
= [x, R ,  A4l E L,(X), where n is the smallest integer greater than a and 

(3.20) j IlxflpM(dx) < OD- 

. 81 

Then p is a - difientiable. 
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Proof. Without loss of generality we may assume that x = O and R = 0 .  
Given c = e-: t > 0, define A ,  by (3.6). Then, by (3.11), we get 

Further, since p€L, (X)  and a < n, there exists G E M ( X )  such that 

which, by assumption and by Proposition 2.10 from [13] implies that G is a 
Livy measure. Moreover, by (3.22) and by Theorem 2.9 in [13] we obtain 

Our further aim is to prove that 

(3 -24) tim E&i j IlxJIP t-" A: M (dx)  = 0, 
810 r10 J9& 

which, by Corollary 2.8 from ES] and by (3.23) should imply that 

lim did = [a, 
tJ0 

and then the theorem should be proved. 
Accordingly, for any t = -log c > 0 and S > 0 we have, by (2.41 in [I31 

and (3.13), the formulas 

rD cc.' 

= 1 e-P"@(du) IlxllPG(dx)+ j e-P" llxllP@ (du) G(dx), 
86 0 Ba Cl l x l i / a  

where r@ is defined by (2.14) and (2.16) in 1131. 
Since, by Lemma 2.6 in [,l3], the signed measures @ (t > 0) have a 

common finite variation, say K, and 4 *do as t 10, we get 

and - 

which, by the above formulas anct by the Dominated Convergence Theorem, 
implies (3.24). Thus the theorem is proved. 

From Theorem 3.5 we get the following corollaries: 
I 3.6. COROLLARY. Sunpose that X is of type p (0 < p < 2). Then every self- 

decomposable p.m. p = [x, R, MI on X satisfving (3.20) is dirnentiable. 
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3.7. COROLLARY. Every n times ( n  = 1, 2, .. .) self-decomposable p.m. on a 
HiIbert spuce is a -di&entiabb (0 < a < n). 

4. A chracterizaaioa of stable m m  on X. From Lemma 2.4 it follows 
that every Gaussian measure p = [x, R, 0] on X is a -integrable (a > 0) and, 
by (3.1 I), there exists a limit 

(4.1) lim dim = [x? 2'R, 01, 
'10 

where, for c = e-' (t > O), k ,  is defined by (3.6). -- . 
The same is true for stable measures on X. Namely, we get the following 

4.1. THEOREM. Let p = [w be a stable p.m. on X with index p (0 < p 
< 2). Then, for aery o! > 0, p is a - integrable? 

(4.2) I m p  = ,Fa, 
and there exists a limit (in the weak sense) 

where, for c = e-' (t > O), A, is defined by (3.6). 
Proof. It is well known [3] that p = [m is a stable p.m. on .X with 

index p (0 < p < 2) if and only if there exists a finite measure m on the unit 
sphere S of X such that 

du 
(4.4) M(EI = JJ lE(YX) m(dx) (6 c X). 

I I 

S 0 

Further, by (2.4) in [13] and by some computation we get 
m m 

Consequently, by Theorem 2.8, p is a-integrable and (4.2) holds. 
Now, from (4.4) it follows that, for every a > 0, 

. (4.6) ~ , p  = /is. 

' Therefore, for any a > 0 and t = -log c > 0 the measure k,c defined by 
(3.6) is of the form 

which implies that (4.3) holds. Thus the theorem i; proved. 
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The following theorem together with Theorem 4.1 gives a full description 
of stable measures on X. 

4.2 THEOREM. Suppose that p G Lo (XI a d ,  for s a w  p >  0, a E R1 \{0), and 
Z E X ,  we haw 

14.8) I=$= p#*S,. 

Then p is Q stable p.m. on X with index p (0 < p d 2), whme 

Proof. Shce operators I" ( a € R 1 )  are one-to -one, we may assume that 
(4.8) holds for some a > 0. Let p = [x, R, MI be nondegenerate. By (2.4), 
equation (4.8) is equivalent to the following: 

and 

(4.12) 

Consider equation (4.12). Applying successively operators Ju we get, by 
(2.9) in [13], the formula 

which, by the definition of classes L,(X) (y > 0), implies that p€L,(X) for 
every n = 1, 2, . . . Hence p is completely self-decomposable. Recall ([I21 
formula (6.8)) that p is completely self-decomposable if and only if its Livy 
measure M is of the form 

(4.14) 
m m 

B 0 0 

where B is the open unit ball in X, rn a finite measure on B vanishing at 0, 
and 9 a weight function on X in the Urbanik sense [14]. Moreover, for a 
fixed weight function 9 the representation (4.14) is unique. 

From (2.4) in [I31 and (4.14) it follows that for every Bore1 subset E of X 
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where, for X E B ,  

(4.1 6) 
dt 

0 

Therefore, by (4.12), (4.15), and by the uniqueness of the representation 
(4.14), we get the equation 

(4.1 7) (2 /lxll)-" rnldx) = Bm(dx), 

It should be notectthgt (4.17) holds if and only if either m = 0 or m # 0 
and m.is concentrated on some sphere Sr of X with-radius r (0 < r < I). In 
the latter case we get 

Hence and by (4.141, for every Bore1 subset E of X we obtain 

Proceeding successively, we infer from (4.10) - (4.1 2) and (4.18) that either 
R # 0, jl = 2--", and p is a Gaussian measure, or R = 0, M # 0, M is of the 
form (4.19), and p is a stable measure with index p = 2r. Thus, in any case, p 
is a stable measure with index p (0 < p < 2), where p is given by (4.9). Thus 
the theorem is proved. 

1 . 1  I 

From 3!heorem 4.2 we obtain immediately the following 
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