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Abstract. Given a polynomial chaos £, the main purpose of the
present paper is to estimate the quantity sup {||IX||,; |X|; <1,
X e} as a function of pe]2, oof. The results obtained will then be

- used to .decide L,-convergence of certain random series with partial
sums belonging to 2.

1. Introduction. Consider a probability” space (2, &, P) and a class
@ = (Vjjen of vector subspaces of "L 2(Q, A, P; R) havmg the following
properties:

(@) V,LR, ieN; .

(B) dim V,=d,ieN (1 <d < o); :

(y) the o-algebras o(&¢; E€V), ieN, are stochastically independent.

For any Banach space B=(B,||‘l|) and neN,, we introduce the al-
gebraic sum ' '

Zy¢; By =Y BV.I -V,
IOSr\n'

and let #,(%; B) denote the closure of #4(%; B) in ‘probability, ie. in
Lo(Q, o, P; B). The vector space 2,(%¢; B) is called the n-th B- valued
polynomial chaos generated by €.

In the subsequent sections the quantity

M, (%) = sup [||€]l,; 11€]l2 < 1;'4‘6%) Vil 2<q<wx

will play an important role. To avoid unnecessary repetitions, we will from
now on always assume that ‘
(0) 2<p< is ‘ﬁ_xed and M, (%) < .

5 — Prob. Math. Statist. 3 (2)
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The main aim of this paper is to determine sufficient condltlons on rg and
B to ensure that

,,(‘g B)CL(Q ,oi P; B)
and in that case, to estimate the finite quantlty
| sup {{|Xll,; X1l < 1, X e 2,(¥; B)}.

As an example of an apphcatlon of the L, -estimates obtained for
Z.(€; R), we will discuss L,-convergence of certain_ martmgales in
(fg C(T}) arising-as partial sums of formally given random series.

L, -estimates for polynomial chaos have been studied, among others, by
Bonam1 ([11, p- 366), Schreiber [12], Segal ([13], Corollary 1.1), and the
author ([2], Theorem 4.1, and [3]). In the linear case, that is for n =1, the
list of contributors . is, of course, enormously extensive.

" The papers [17, [13], and [3] are all based on the idea of hypercontracti-

' i/lty In the sequel we will show that this, indeed, is a general principle which

applies to all polynorma] chaos with B = R or even with B = H, where H is
a Hilbert space. Moreover, for an arbltrary Banach space B thé same
_techmque works if M ; (%) < =0, a condition whlch does not seem. possible to
improve very much in general

‘2. Polynomial chaos and coordmates The purpose of the present section is
to introduce some notation and to give a fragmentary discussion of series
expansions of random vectors belonging to a fixed polynomial chaos. The

latter subject is further developed in Section 5.

() =card{ zeN'v(i);éO? vel0, 1, ..., d)¥,
 Npp={ve{0,1,...,d}V; vy < n}, |

- and

Nygo(m) = {veN;,;v(@)=0,i>m}, meN.

Moreover, for fixed ieN, let ¢, ...,'é,,, be an orthonormal basis for V:

i

- let & =1, and introduce the orthonormal family

5" = H éiv(i):‘ VENdn'
0
Note that every X ég“‘(‘%; B) may be wﬁttcn in.the form
| X= 3 ELX&]E
Ngn(m)

for a suitable me N, :
"We wﬂl frequently use the notation L, (B) L (Q o, P, B)




" where.
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THEOREM 21 If .
(2 b | 2.(6:B) S L,(B),
then Jor any Xe2, (Qf B),
 X=lim Y E[X&1& as and in L,(B).
. Nin(m) '

Theorem 2.1 follows at once from the martingale theory and the next
lemma, which will be useful several times below. We postpone the proof of
Theorem 2.1 to Section 5, where a more illuminating result is. given.

Lemma 2.1. The following assertions are equivalent :

1) (2.1) is true;
(ii) L,;(B) induces the same topology on 9” (% ; B) for each q(0<qg<p);
(iii) there exists a constant Ac R, such that :

IXl, < AllXll2, -~ XeP4(%; B).

~ Clearly, the proof of Lemma 2.1 is very simple, so we just state some

" informative . remarks.  First note that the canomcal translatlon invariant

Lo (B)-metric is given by
| - 1 Xllo = ELIXIAL+IXI1],

and hence L,(B) is a Fréchet space. The implication (i)s(ii) now follows

~ from the closed graph theorem. Further, the implication (ii) = (iii) is trivial

and the remaining implication (iii) = (i) is a consequence of the Holder and
M1nkowsk1 1nequa11t1es ([11], Lemme 11) '

‘3. Hllbert space valued polynomlal chaos. Throughout this section H
stands for an arbitrary Hilbert space.

Tueorem 3.1. 2,(H) < L,(H). In addition, there exists a finite constant A,

. whzch depends only on @, n) such that, for any Xe2, (‘6 H),

@31 Ll IIXIIp AP"’ZM(X)IIXIIz,

M(X) = sup lllf“llp, E[X¢"] # 0, V& Ny} }
Grantmg the vahd1ty of Theorem 3.1 with H replaced by the scalar field

“of H it is simple to show (3.1) with n replaced by n+1 for any H. However,

Theorem 3.1 seems to_ glve some .new information on scalar valued poly-
nomial chaos as well. - :

~ We recall that a random vector is said to be symmetric. if its d1str1but10n
law is invariant under reflection with respect to the orlgln Below we use the
notation

i % Sv@, veNa.
. ‘ 0 o :
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THEOREM 3.2. Let 0, be a positive root of the equation
1—-6% 1
=—— (k=0,1).
1-6>  p-1 ( , )
Then, for each X € #,(¢; H),

X7 < Y 6r 2'"'”6"“,, IE [X&

Ndn

4k02

and, moreover, if any Ee|) V; is symmetric, then, in fact,
: TLEEY

XN < Y, 002 IR IIELXE TN

Nan T

During the past decade there has been an intensivé search for hy-
percontractive maps (i.e. norm < 1) between special L, -spaces and, as is well
known, this work has resulted in a series of important articles (see, e.g., [14],
[9], and the papers referred to therein). If &, =1, &, &,, ... is an or-
thonormal basis for L,(R), then Theorem 3.2 shows, in particular, that the
Fourier multipliers

(“éj||p(4;_3)j/é)jelv :

. induce a hypercontractive map from L,(R) into L,(R). Note here that

essentially no restrictions are made on the distribution of the random vector
({)jen- Indeed, the idea of hypercontractivity is a general probabilistic
principle. -

The proofs of Theorems 3.1 and 3.2 are based on several lemmas.

LemMA 3.1. Let KeL,(2xQ, 4@/, PR®P; R) and set ,
N,(K; B) =sup{||f K(*, ) X (1)dP()ll,; I Xll. < 1, XeLz(Q s/, P; B),
If K>20and N,(K; R)< 1, then N,(K; B) <

Lemma 3.1 follows at once from the Jensen inequ‘ality and needs no
proof. It should be emphas1zed that Lemma 3.1 does not extend to signed
kernels.”

LeMMA 3.2. For any a,beH,
~ 4llla—biP+lla+blP] < Cllall® +(p— D 116112

We assume familiarity with Lemma 3.2 for H = R (see [1], p. 378, [5]
Theorem 3, and [10], p. 75). '

Proof. Consider the probability space
(Q, .,d, P) = ({— 15. 1}, 2{- 1’1}3 (6—1 +5+1)/2) :
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and introduce the kernel

K, 7)=1+(p—-1)""w1, o,1eQ.

Since K>0 and N,(K;R)<1, Lemma 3.1 gives N,(K;H)<1.
However, if a, be H, then

| K(w, )(a+(p—1)"?b1)dP(r) = a+bw, weg,
and Lemma 3.2 follows at once.
"Lemma 3.3. Let 1,¢,, ..., {eL,(Q, o/; R) be an orthonormal sequence
in Ly(R), suppose A =(Ay, -y A)eRe, and set ,
.. _ y
K; =14} 4(&®¢).
1 .
Then
(3.2) N,(K;; H) <1 if 4(p—1) Y A IIEN7 < 1.
1
If the random vector (£))] is symmetric, then
. . \ - d
33 N(Ki; H)S1 if (p=1) Y Al; < 1.
1
Proof. We first prove (3:2). To this end let (£)i be a stochastically

independent copy of the random vector (¢;)4 and set n; =¢,—¢&},j=1,...,d,
and K : o .

' d N
. K'A(w’ T)=1+ Ziﬂl(w)fl(f), , Te€.
1

Furthermore, suppose XeL,(2, o/, P; H) is arbitrary and define
a=B[X], Y=X-a, Z,=[K;i(;17) Y@)dP(.

d .
Note that Z, =) AmE[Y¢;], and hence
_ 4 . o

d
BT Zd <@ B I

by the Cauchy-Schwarz and Parseval inequalities.
Now we use Lemma 3.2 to get o
$llla—Z,P+lla+Z 1 < [llall? +(p— DIIZ;I1*F>
Taking the expectation and remembering the symmetry of Z;, we obtain

P/ 2

lla+Z;lte < [[lall? +@—DIZ1|fpz.
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~ and the Minkowski inequality yields immediately

. lla+Z;l7 < Ilal|2+(p 1)”Zl”p
Combining this and (3.4) we have

, .
||a+zrn,, < ||X”2; C4p-D Y AZNEIE < 1.
4 _

Flnally, for any Ae R4, we get
E[a+»Za | €15 eeiy Cal = [ Ko (e, T)X(T)dP(T)

and the Jensen inequality for condrtlonal expectatron gives
If K: (. 1) X @) aP ], <lla+Zsl,

Summing up, we have thus proved (3. 2)

-If the random vector (¢;)7 is symmetric, the above hne of proof apphes
directly to the kernel K, and (3.3) follows in a similar way

This completes the proof of Lemma 3.3.

LemMA 34. Let (Q;, <;, P,-), i=0,...,m,be probability- spaces and‘a‘ssume‘
K.eL,(Q;xQ;, 4;®A;, P;QP), i=0, .;,,m.' ' '
If NJ(K;;B)<1,i=0,...,m, then N (Ko®.. ®K,,,,B)

Lemma 34 is a direct consequence of the Minkowski 1nequahty as'in the

special case B = C (see [1], p. 375, and [13] Lemma 14) The argument will
not be repeated. here. ‘

Proof of Theorem 3.1. To prove (3».1) we_assumel-that'v

X = Z a;fv ’

Ngp(m) -

- for approprlate meN and a,eH, veN,,(m), dependlng on Lemma 2.1.
Moreover, since the o - algebras le =d(¢;¢el), i=0,..., m, are stochast-

ically independent and X is (® le,, Q(H)) measurable there is no loss of

generality in assuming the underlyrng probabrhty space to be of the form
@, o, P)= (Xﬂ,, ® o, ® P).
Accordingly, for each fixed i€ (0, ..., m}, the random vector (£;)f-,

depends onlgf on the i-th coordrnate w;. of we. _Introducing 0 =
(4d(p -1)) and

4 - - : -
Ki(w;, 1) =140 Z [&ij (@) fij(ﬁ)/”fij”pl ;, T €4,
j=1 :
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for i=0,..., m, we have _
I (Ko® QK (-, DX (T)dP(T) Y [6a,8Ig",]-
Ngp(m)
Now, applying Lemmas 33 and 3.4, we obtain -
| ¥ [6age, < 1Xil2
, N gnlm) »
and hence

XIS Y6 wm%wv

Ngn(m) )
which gives us immediately (3.1). This completes the proof of Theorem 31 A
Proof of Theorem 3.2. Setting C

35) m%m1+ZMAmmwmm—mmm

for i=0,. m and argulng as in the proof of Theorem 31 we prove at o
once the ﬁrst part of Theorem 3.2. The remaining part. of Theorem 3.2 may
. be proved in a similar ‘way if we replace 0, in (3.5) by 6,.

4. Banach space valued polynomlal chaos As one might expect, there is no
hope of a pure extension of Theorem 3.1 to Banach space valued polynemial -
chaos. Indeed, the supremum of a real -valued stochastic process may have -
very bad integrability properties under fairly restrictive conditions. '

" Tueorem 4.1. Suppose M, (%) < oo. Then #,(%; B) < L,(B). More preci-
sely, there ex:sts a finite constant A, which depends only on (d, n), such fhat
(4.1) _ HXII,, ApPMZ (@)X, XeP. (85 B).

. In addition, there extsts a constant a > 0, depending only on (d n, M w(®)),
such that .

“2 . Sup{E[eXp(allelz’")] IIXIIz 1, Xe,(%; B)} <

In particular, [exp(IIX{IZ’")]eL (R) for each X e@ (% B).-
Proof Suppose
X= Y a¢,
Ndn(m)

where meN and a,eB, veNd,,(m) Argumg as in the proof of Theorem 3.1,
we set, for any fixed ie{0, ..., m},

Ki (CD,, T) - 1+0 Z él](wl)élj(Tl)’ (0,-, ‘l'.-EQ,-, GER :

1/2

By Lemma 3.3, ,,(Ki;R)\I if 0] \(u(p—l)M;(fg))“ , and, obvi-
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ously, K{ > 0 if |6} < (dM?, ('6"))-_1. Now we use Lemmas 3.1 and 34 and
conclude that - :

I

Ngp(m)

L <IXllz,  160] < (2d(p—1)"2M2 (®)
However, if by, ..., b, belong to a Banach space (C, |||'|ll) and
IIIZ Obll <1, -e<O<e,

for a fixed ¢ (0 < &:<-1), then, by the Hahn-Banach theorem there exists a
finite constant A4,, dependmg only on n, such that

IEallsaen

Since L,(B) is a Banach space, X necessarily satisfies (4.1). .
Suppose now that X eg’ (‘6*; B) and || X]|, < 1. Clearly, for any « > 0,

oF .
E[exp(a||X||2/")]—1+ Z IIXIISL‘%: _

and, consequently, by (4. ) the left hand side does not exceed

) nf . @ A2/nM4 &
| §%+ 5 [ ()]“

" k=n+1

ThlS proves (4 2).
" To settle the last part of Theorem 41 suppose Xe?,(%; B) and choose
YeP4(%; B) so that || X —Y]||, < a™2/21*%2 where a >0 is as in (4 2). Since

IIXIIZ’" 22X ~ Yllz’"+IIYll2’"]
we now have E [exp(llX I#m] < oo by the Cauchy Schwarz 1nequahty, which :

" completes the proof of Theorem 4.1.

The assumptions on % in Theorems 3.1 and 3.2 are very different. To
throw some light on the underlying reason for this, we will construct a class

€ = (V);en of one-dimensional subspaces of L,(R) havmg the following
properties:

(i) (®)-(8) in Section 1 are fulfilled;

[+0]

(i) any random vector -belonging to {J ¥; is symrnetric;
. ’ [ 0 .

(iii) ‘U V., L, (R);
(iv) M 4(%) < oo for all g < o0; L ' B
v) 3’1 (%; co) |_U L (Lo)] ;é(b where co denotes the Banach space

(CO(N) - llw)-
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The construction below is a modification of an example given by Jain
and Marcus ([8], Example 4.3). It depends on the next lemma which follows
from the convexity of the exponential function: '

Lemma 4.1 ([8], p Sl). Let {;, i€ N, be non-negative stochastically independent
random variables and suppose (sup {;)e L, (R). Then
ieN

Z j' P = z]dz< oo
0 EL)
for an approprzate zo (0< 24 < 00).
To simplify the notation, set r, = 2Kk*1/2 —Kk'2, and x, =2"
keN. Assume ¢ is a symmetric real-valued random variable with

k/2
/rk:

. - PlE=x]= ((k+D7)™% - X% <X < Xrq,
and, for each ﬁxed keN, choose y, > 0 so that
P[2"’r, <El <yl = 3 P[2"°r < 1T

Moreover, let &, ie N, be stochastically independent observations on &
and introduce i = ry +...+r* and

-1 ! . . .
A-=r N —-élllg" J‘kl’ lk 1<l<l

In the following (¢;);.y denotes the standard basis for Co- We claim that
the series

‘ (4.3) - Z (Am) &
. . . 2 .
converges a.s. in ¢, i€,

Z PlAln=e]l <o for all e (0<e<1).

However for each fixed ¢ (0D<eg<) we have x, < ark < X344, Where k is
large, so the above claim is a direct consequence of the estimate

i . :
2 Pix In.l>s]<r"P[I€| ery]-

lk 1+l

Let X denote the sum of the series in (4.3). We shall prove that X ¢ L,(co) '
_ for all g > 0, so, in view of Lemma 4.1, it is enough to show

@4). Y [y Pl =yldy=co for all z,q (0<z, g < o).
2 z
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To this end, first note that for fixed z, q (0 <z, g < o0), the sum does not

fall below
2k/2

CfTPDR<Id<yddy
- > F P24, < |E](2%2 — z9)/2q, k= 2(In z)/(In 2).
‘Since X, < 2?r, € %341, ke N, the sum of the series in (4.4) dominates
B lim (k+1) " (2(*4)/2;.2«)/2(1 = w0, |

and hence X ¢L, (Co) for all ¢ > 0.
Fmally, settmg V.= spanm,”}, ieN, and observmg that
é e ) L (R) . s
q<m .

we obtam at once the statements in (i)- (v)

5. Series expansions and polynomial chaos. Throughout this section T
stands for a compact metric space and C(T) denotes the Banach space of all

- real-valued continuous functions on T.

Suppose a eC(T) veNa.., and set

'(51) e X,= Y a& meN.

Nentm)
Clearly, (X,,,),,,GN constitutes a martingale. Since L (C (7)- convergence of
a martingale 1mplles as. convergence, we concentrate below on the first type
of convergence.

~THEOREM 5.1. Suppose X € L,(C(T)) and X()e P, (%; R), teT. Then
X = hm Y E[X&]¢E in L (C(T))
© Ngp(m)
In partlcular X e2,(C (T))
. Proof Obv1ously, ' _
(52 - X(@®) =73, E[X(t)é“] 'f" in Lz(R)

Nan

_ for each ﬁxed teT by Theorem 31 and Lemma 2.1. ‘Now we set

A =a(§'£eU V), meN,

and conclude that X is measurable if © is equipped. with the P- completlon.
of the o -algebra a(U B)- Usmg the martingale theory it therefore suffices

to show that

E[XI.]= ¥ ELXE1E, meN,

Ngp(m)
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which, however is a consequence of (5.2). ThlS completes the proof of
Theorem 5.1.

-Now we turn to the more subtle problem of giving sufficient condmons '
to ensure L,(C(T))-convergence of the martingale in (5.1). Our conditions

are given in terms of so -called majorizing measures, originally introduced by
Fernique [4] for Gaussian stochastic processes.

TreoREM 5.2. Let a,eC(T), vGNd,,, and suppose the series Z aZ con-
) Ndn

verges in C(T). Set o o _ . ;
T e n=(Y (av(s).—‘éz;(r))z)”_z, stel

Nan:

and F
B(t;r)={seT; os, ) <r}, teT,r>0.

(a) Assume there exists a ‘Radon probablhty measure y. on (T Q) such that

hm sup j' [/,L(B(u r))] /"dr 0.

. uET 0
Theri _
: . a(s w2 o ' .
(53 sup IX,,,(s) X (t)| -y sup j [u(B(u r))] /pdr s, teT,

~ for an approprlate y€L,(R). In particular,. (X,,,),,,EN converges in L,(C (T))

(b) Suppose that M (%) < 00 and that there exists a Radon probablhty B

measure u on (T, g) satlsfylng
'_-(54) o lim sup j [in(1/4(B(u; r))) dr-—O e

- Set yy =0, y, = [(n 2)/a]"?, n= 2, where a>0is as in (4 2). Then’
els.1)/2

X, (s)- X 20 2% I 'v"d T,
‘S’}:IBI (S) (t)l sulelTP J‘ <[ n Pz—(B(—))T yn) r, S, tE v,

for a suztable 56L2 (R). In pamcular (X,,,),,,E,v converges in each L, (C(T)), |

0<q<oo

A minor variation of Theorem 5.2 (b) is proved by Fernique ([4],
Théoréme 6.2.1 and Corollaire 6.2.3) for Gaussian stochastic processes and n
=1 in (5.4). Further, Heinkel ([6], Théoréme 4) shows that condition (5.4)

with n =1 is still sufﬁcient for sample continuity of subgaussian stochastic

processes.
Proof. The first part of the proof depends ona very ingenious construc-
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tion of Heinkel ([6], Proposition 1, and [7], p. 205) based on the Jensen
inequality.

Suppose ¢: [0, oo [— [0, co[ is a strictly increasing convex function and
let 4 be a Radon probability measure on (T, @) with topological support T.

Setting
X, ()—X,, ‘
0 = Jva (l(;)(s—’t)(t)l Loy (s., t))d (n®u

and_hsing the ¢-continuity of X,,(-, w) for each fixed (m, w)éN—)? Q, we ihfe_r_
from the work of Heinkel that

als,t)/2

A X (8) =X, ()] < 20 su —1(___'_,1.__)d,-, s, teT.
1 Xiale) = X 0 wr f ¢ \WBw; )
4] .
(a) We apply the above inequality to the function @(x) = x*, x = 0. To

show (5.3) it remains only to prove that sup 0, is integrable. However by the
meN

standard martingale estimates and Theorem 3.1, the expectation of the
random variable

sup
) meN

[IX m(8) = Xm (1)

06 1) Lg+0y(s, t):'

does not exceed
_ ,
[ 1(Apn/Z Mn((g)):l

where A4 is as in (3.1). This proves (5.3). _

The assumptions in Theorem 5.1 ensure that g: Tx T— R is continuous
and, by Theorem 3.1, the martingale (X,,(t)) _, converges in L,(R) for each
fixed t € T. These properties together with (5. 3) estabhsh 1mmed1ately the last
statement in part (a).

(b) To begin with, we introduce the convex function
| 909 = expla(x+y)*/2],  x>0.

The submartingale estimates and Theorem 41 now promise that the -
expectation of the random variable '

TETS ST,

sup ¢
meN

does not exceed 8 exp(xy?™ and part (b) follows in the same way as part (a).
This completes the proof of Theorem 5.1.
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