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ON POLYNOMIAL CHAOS AND IN'kEGBABBLlTY -- - 

Abstract. Given a polynomial chaos 9, the main purpose of the 
present paper is to estimate the quantity sup (IlXII,; llXllz < 1, 
X E P )  ar, a function of p.512, m[. The results obtained will then be 
usd to decide L, -convergence of certain random series with partial 
sums belonging to 8. 

1. Introduction. Consider a probability space (52, ,d, P) and a class 
% = (E),.,, of vector subspaces of L,  (Q, .d, P; R) having the following 
properties : 

(a) K l  R,  EN; 
(j) dim J$ = d,  EN (1 < d < m); 
( y )  the a - algebras a (c ; 5 E vy i E N ,  are stochastically independent. 
For any Banach space 8 = ( B ,  II-Jl) and  EN,, we introduce the al- 

gebraic sum 

and let 9,(V;8) denote the closure of ,%(%; B) in probability, i.e, in 
Lo (Q, d, P ; 3). The vector space 9,(% ; B) is called the n - th B - valued 
polynomial clzms generated. by W. 

In the subsequent sections the quantity 

8 will play an important role. To avoid unnecessary repetitions, we will from 
now on always assume that 

(6) 2 < p < oo is fixed and M , ( q  < co. 

5 - Prob. Math Statist. 3 (2) 
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, The main aim of this paper is to determine sufficient conditions on W and 
, B to ensure that 

9',{V; B) s L,(O, a', P; B) 

and, in that case, to estimate the finite quantity 

As an example of an application of the L,-estimates obtained for 
9,, (% ; R), we will discuss L, -convergence of certain.- martingales in 
9,,(%' ; C (T)) arising -as partial sums of formally given random series. 

- L, -estimates for polynomial chaos have been studied, among others. by 
Bonami ([l], p. 3663, Schreiber [12], Segal ([13], Corollary 1.11, and the 
author ([2], Theorem 4.1, and 131). In the linear case, that is for n = 1, the 
list of contributors is, of course, enormously extensive. 

The papers [I], [13], and [3] are all based on the idea of hypercontracti- 
vity. In the sequel we will show that this, indeed, is a general principle which 
applies to all polynomial chaos with B = R or even with B = H, where H is 
a HiIbert space. Moreover, for an arbitrary Banach space B the same 
technique works if M, (59) < co, a condition which does not seem possible to 
improve very much in general. 

2. Polymmisl cham a d  coordinates. The purpose of the present section is 
to introduce some notation and to give a fragmentary discussion of series 
expansions of random vectors belonging to a fixed polynomial chaos. The 
latter subject is further developed in Section 5. 

Set I 

( v )=ca rd ( i~N;v ( i )#01 ,  v ~ ( 0 , I  ,..., d)N, i 
Ndn = f v ~ ( 0 ,  1, ..., dlN; ( v )  < n), 

- and 

N,,(m) = [v€ iVdn;  v ( i )  = 0, i > m),  EN. 

Moreover, for fixed i E N, let E i l  , . . . , tid be an orthonormal basis for y, 
let ti, = 1, and introduce the orthonormal family 

Note that every X E %(%? ; B) may be written in the form 

X = C E [ X c v ] t v  
Ndn(") 

for a suitable r n ~  N. 
We will frequently use the notation L,(B) = Lp(S2, d ,  P; B). 
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then, for any XE.P,,(%'; B), 

X = E [XSv] <' a.s. and in L,(B). 
NdAI'") 

Theorem 2.1 follows at once from the martingale theory and the next 
lemma, which will be useful several times below. We postpone the proof of 
  he or em 2.1 to Section 5, where a more illuminating result is given. 

I LEMMA 2.1. The ~ O I E O ~ E &  assertions are squiualent: 
I (i) (2.1) is true; 

(ii) L, (B) induces the same topology on .?PA(% ; B) for each q (0 6 q 6 p) ; 
(iii) there exists a constant A ER, such that 

llxll, < Allxllz, X E ~ ( % ;  B). 

- Clearly, the proof of Lemma 2.1 is very simple, so we just state some 
informative remarks. First note that the canonical translation - invariant 
Lo (B) - metric is given by 

and hence L,(B) is a Frkhet space. The implication (i) *(ii) now follows 
from the closed graph theorem. Further, the implication (ii) * (iii) is trivial 
and the remaining implication (iii) *(i) is a consequence of the Holder and 

I Minkowski inequalities ([Ill, Lemme 1.1). ~ 3. filbert space valued polynomial cham. Throughout this section H 
I stands for an arbitrary Hilbert space. 

THEOREM 3.1. iPn(H) G Lp(H).  In addition, t h e  exists a $finite constant A, 
which depends only on (d,  n), such that, for any X E Pn (% ; H), 

(3.1) IIXll, G Ap"I2 M ( X )  IIXII*, 
wizere 

. - 

M (X) = sup (115'11p ; E Cx5'3 # 0, v ~Ndn).  

Granting the validity of Theorem 3.1 with H replaced by the scalar field 
of H it is simple to show (3.1) with n replaced by n+ 1 for any H. However, 
Theorem 3.1 seems to- give some new information on scalar valued poly- 
nomial chaos as well. 

We recall that a random vector is said to be symmetric if its distribution 
law is invariant under reflection with respect to the origin. Below we use the 
notation 

1. 

lvl=xv(i),  V E N ~ , .  
0 



THEOREM 3.2. Let 8, be a positive root of the equation 

Then, for each X E .P# (V ; H), 

Ilxll; < 1 8; 2'v' 115YllpZ 1IE CXSYII12 
*dn 

In 

and, moreover, if any {EU is symmetric, then, in fact, - 
?. 0 

Ilxlli? G G2'"' lltvll~ IIE CXTv1112. 
Ndm . . _ . ._  

~ ~ r i n g  the past decade there has been an intensive search for hy- 
I 

, percontractive maps (i.e. norm < 1) between special Lq -spaces and, as is well 
known, this work has resulted in a series of important articles (see, e.g., [14], 
[9], and the papers referred to therein). If to = 1, t,, {,, ... is an or- 
thonormal basis for L,(R), then Theorem 3.2 shows, in particular, that the 

: Fourier multipliers 

induce a hypercontractive map from L,(R) into L,(R). Note here that 
essentially no restrictions are made on the distribution of the random vector 
(5JjE,. Indeed, the idea of hypercontractivity is a general probabilistic 
principle. 

The proofs of Theorems 3.1 and 3.2 are based on several lemmas. 

LEMMA 3.1. Let K € L 2 ( f i  x f i ,  d@d, P O P ;  R) and set 

Lemma 3.1 follows at once from the Jensen inequality and needs no 
proof. It should be emphasized that Lemma 3.1 does not extend to signed 
kernels. 

LEMMA 3.2. For any a, ~ E H ,  

3~lla-~llp++la+b11pl G CtIall2+(~- 1)ltbl121pi2. 

We assume familiarity with Lemma 3.2 for H = R (see [I], p. 378, [5j, 
Theorem 3, and [lo], p. 75). 

Pro of. Consider the probability space 
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! 
I and introduce the kernel 

Since K a O  and N , ( K ; R ) < l ,  Lemma 3.1 gives N , ( K ; H ) < l .  
However, if a, ~ E H ,  then 

and Lemma 3.2 follows at once. 
LEMMA 3.3. Let 1 ,  tl, ..., c d ~ L P ( l 2 ,  d;  R) be an orrhonormal sequence 

in L1 (R),  suppose R = (A,,  .. . . , A,) E P, and set 

1 

Then 
d 

(3 -2) N,(K,;H) < I i f 4 @ - 1 ) ~  I ~ I I U ~  G 1. 

If the random vector (cf}; 13 symmetric, then 
rl 

(3.3) Np(Ki ;H)Cl  j f ( p - l ) ~ ~ f I I t j I I ~ ~ l *  1 

Proof.  We first prove (3.2). To this end let ((j)d, be a stochastically 
independent wpy of the random vector and set qj = ti-{;, j = 1, . .., d ,  

I I and 

I d . 
K ; ( w , ~ ) = l + ~ A ~ , j r l ~ ( o ) < ~ ( z ) ,  ~ , T E B .  

! 1 
I 
I , Furthermore, suppose X E  L2(S2, d ,  P ;  H) is arbitrary and define 

Note that 2, = 3Ljq$3[Y<j], and hence .- 

1 

d ---_ I 

. (3.4) lIZ~Ilp G (4 1 ~l t j l l~)~ '~ 11~112 
1 

by the Cauchy - Schwarz and Parseval inequalities. 
Now we use Lemma 3.2 to get 

Taking the expectation and remembering the symmetry of Z,, we obtain 



and the Minkowski inequality yields immediately 

Combining this and (3.4) we have 
d 

Finally, for any AEP, we get 
.- 

EEa+z~I~l,.--,~dl=~KA('r~)X(~)dP(~)~ 

and the Jensen inequality for conditional expectation gives 

(11 K,(*, ~)X(r)dp(r)lC g lla+zillp. 

Summing up, we have thus proved (3.2). 
If the random vector (t jg is symmetric, the above line of proof applies 

directly to the kernel K, and (3.3) follows in a similar way. 
This completes the proof of Lemma 3.3. 

LEMMA 3.4. Let (Qi, di, Pi), i = 0, . . ., m, be probability spaces and assume 

K i ~ L 2 ( S Z i x 6 2 i l d i @ d i , P i @ P i ) ,  i = O  ,..., rn. 
IfNp(Ki;B) 6 1, i = 0, ..., rn, then N,(K,@ ...Q K,; B ) g  1. 
Lemma 3.4 is a direct consequence of the Minkowski inequality as in the 

special case B = C (see 111, p. 375, and [13], Lemma 1.4). The argument will 
not be repeated here. 

Proof  of Theorem 3.1. To prove (3.1) we assume,that 

for appropriate r n ~ N  and a, E H ,  v ~N,,(rn), depending on Lemma 2.1. 
Moreover, since the a -algebras di = a (r ; < E F}, i = 0, . . . , rn, are stochast- 

m 

ically independent and X is (0 d,, B(H))-measurable, there is no loss of 
0 

generality in assuming the underlying probability space to be of the form 

Accordingly, for each fixed i~ [O, . . ., m), the random vector (eii)& 
I I depends on1 on the i- th coordinate mi of 0 ~ 6 2 .  Introducing 0 = 

(4d ( p  - 1))- "' and 
I 

I d 

! Ki (mi, zi) = 1 + 0 1 C t i j  (mi) Sij(ri)/IISijIIpIY mi, ~i E $1 

j=  1 
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for i = 0, . . . , m, we have 

J (KO @. . .@U( - 3  Z) X(t )dP(r )  = C C~~v>a,tv/lltvllpl. 
Nd dm) 

Now, applying Lemmas 3.3 and 3.4, we obtain 

and hence 

- IIXIILG c e-2Cv> II~~II;  I I ~ ~ I I ~ ,  
r+"i"('") 

which gives us immediately (3.1). This completes the proof of Theorem 3.1. 
Proof o f  Theorem. 3.2. Setting 

d 

a (3.5) i i i i j i / i  O i r ~ i ~ Q i ,  
j= 1 

for i = 0, . . ., my and arguing as in the proof of Theorem 3.1, we prove at 
once the first part of Theorem 3.2. The remaining part of Theorem 3.2 may 
be proved in a similar way if we replace 8 ,  in (3.5) by 8,. 

4. Banach space valued polynomial cham. As one might expect, there is no 
hope of a pure extension of Theorem 3.1 to Banach space valued polynomial 
chaos. Indeed, the supremum of a real-valued stochastic process may have 
very bad integrability properties under fairly restrictive conditions. 

' 
THEOREM 4.1. Suppose M m  (W) < 03. Then 9,, (% ; 3) c L,(B). More preci- 1 

! sely, there exists a jni te  constant A, which depends only on ( d ,  n), such that 

In addition, there exists a constant a > 0, depending only on (d, n, M ,  (q), 
such that 

(4.2) sup (E [exp(aJIXJIZ/"); IIXilz < 1, X E ~ . ( @ ;  B)} < 2. 

In particular, [exp (((Xf(21") 7 L (8) fur each X E P,, (W ; B). 
Proof. Suppose 

where m E N and a, E B, v E N,,(m). Arguing as in the proof of Theorem 3.1, 
we set, for any fixed i~ {O, . . ., m), 

By Lemma 3.3, N,(K:; R) 6 1 if 101 < ( 4 d ( p - 1 ) M ~ ( % ) ) - " 2 ,  and, obvi- 



ously, KY 3 0 if 101 g ( d M & ( B ) ) - ' .  Now we use Lemmas 3.1 and 3-4 and 
i conclude that 
I 

However, if b,, . . . , b, belong to a Banach space (C, 111 .)I]) and 

for a fixed E (0 < E < I ) ,  then, by the Hahn - Banach theorem, there exists a 
I 
I finite constant A,, depending only on n, such that 

. I 

Since L,(B) is a Banach space, X necessarily satisfies (4.1). 
Suppose now that XE~,(%'; B) and llXllz < 1. Clearly, for any a > 0, 

and, consequently, by (4.1) the left -hand side does not exceed 

dlk [ ~ u A ~ ~ ~ M . , ( ~ ~  kk 
C G +  - 

k =  o R = R + I  n k! '  

This proves (4.2). 
To settle the last part of Theorem 4.1, suppose X E P ~ ( % ;  B) and choose 

YE%(%; B) so that IIX-Yl12 < 01n/2/2'Cn/2, where or > 0 is as in (4.2). Since 

we now have E [e~p(l/X1J~~")] < oo by the Cauchy -Schwarz inequality, which 
- completes the proof of Theorem 4.1. 

The assumptions on (27 in Theorems 3.1 and 3.2 are very different. To 
throw some Iight on the underlying reason for this, we will construct a class 
W = (&) iEN of one - dimensional subspaces of L, (R)  having the following 
properties : 

(i) (or) - (6) in Section 1 are fulfilled ; 
m 

(ii) any random vector belonging to U J$ is symmetric; 

(iv) M,(%) < co for all q < ao ; 
(v) 9, (% ; c,,) :L u Lq (col] # 0, where c, denotes the Banach space 

9 2 0  

(co(W, / I  -1Im). 
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The construction below is a modification of an example given by Jain 
and Marcus ([a], Example 4.3). It depends on the next lemma which follows 
from the convexity of the exponential function: 

LEMMA 4.1 ([8], p. 5). Let ri, i E N, be non-negative stochastically independent 
random variables and suppose (sup l i) E L1 (R) .  Then 

i€N 

for an appropriate z, (0-< z ,  < m). 
To simplify the notation, set rk = 2k(kC1112, sk = k1/2y and x k - - 2-k12r,, 

k € N .  Assume { is a symmetric real - valued random variable with 

and, for each fixed  EN, choose y, > 0 so that 

Moreover, let ti,  EN, be stochastically independent observations on < 
and introduce i, = r",O + . . . + rik and 

In the following (ei)i,N denotes the standard basis for co.  We claim that 
the series 

m 

(4.3) C ( J - i ~ i )  ei 
2 

converges a.s. in c,, i.e, 

OCI 

C P [ A i ( q i ( a ~ ] < ~  for all B ( o < E < I ) .  
2 

However, for each fixed E (0 < E < 1) we have xk < Erk < x,+ ,, where k is' 
large, so the above claim is a direct consequence of the estimate 

Let X denote the sum of the series in (4.3). We shall prove that X$L,(c,) 
for all q > 0, so, in view of Lemma 4.1, it is enough to show 
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To this end, first note that for fixed z,  q (0 < z, q < to), the sum does not 
fall below 

2k/2 

rf f Y1'PLvrk G IS/ 6 Y ~ I  d y  
I 

2 ~ P P  [2k12rk 6 (51] (2(kq)/2 - zq)/2q, k 3 2 (ln z)/(In 2). 

Since x, < 2k/2r, < x ~ + ~ ,  k € N + ,  the sum of the series in (4.4) dominates 

lim (k + I ) - " ~  (2(k9)/2 - 29/26 = a, 
k +  a 

and hence X g L, (c,) for all g > 0. 
I Fi'nally, setting = span Cqi+ i E N, and observing that 
I 

we obtain at once the statements in (i)-(v). 

5. Series expnsiom a d  pIynwmial chaw. Throughout this section T 
stands for a compact metric space and C(7') denotes the Banach space of all 
real -valued continuous functions on T. 

Suppose U,.EC(T), V E N ~ . ,  and set 

(5-1) X, = C a,gv,  EN. 
N!n(m) 

Clearly, (X,),, constitutes a martingale. Since L,(C(T))-convergence of 
a martingaIe implies a.s. convergence, we concentrate below on the first type 

i of convergence. 
THEOREM 5.1. Suppose X E L,(C(T)) and X ( t )  E 9,,(%; R)? t E T. Then 

In particular, X E Pn (C (7')). 
P r o  of. Obviously, 

(5-2) X ( t )  = C E CXlt) S7 tv in L* wl 
Ndn 

for each fixed t ~  T by Theorem 3.1 and Lemma 2.1. Now we set 

and conclude that X is measurable if 8 is equipped with the P-completion 
m 

of the a -algebra a(U g,,,). Using the martingale theory it therefore suffices 
0 

to show that 



which, however, is a consequence of (5.2). This completes the proof of 
Theorem 5.1. 

Now we turn to the more subtle problem of giving sufficient conditions 
to ensure L, (C (T))-convergence of the martingale in (5.1). Our conditions 
are given in terms of so -called majorizing measures, originally introduced by 
Fernique [4] for Gaussian stochastic processes. 

THEOREM 5.2. Let a, E C(T) ,  v E N,,, and suppose the series a: con- 
Nd. - 

verges in C(T).  Set 
2 112 

~ ( s , t ) = ( x  (a,(?-a.(t))) , s , t ~ T ,  
Nd. 

and 

B ( t ; r ) = { s ~ T ; ~ ( s , t ) < r ) ,  t ~ T , r 2 = 0 .  

(a) Assume there exists a Radon probability measure p on (T, Q) such that 
e 

lim sup 1 [P  (B (u ; r))]- "' dr = 0. 
MET 0 

g(s.t)12 

(5.3) sup )X.(s)- X.(t)l 4 y sup j [ p (B(u  ; *))]-""dr, s, t E T 
rn~N UET 0 

for an appropriate y E L,(R). I n  particular, (XAEN convnges in L,(C(T)).  
(b) Suppose that M,(%) < oo and that there exists a Radon probability 

measure p on (T,  q) satisfying 

lim sup j [ln (lip (8 (u ; r)))]'" dr = 0. 
UET 0 

Set y ,  = 0, y, = [(n-2)/alnr2, n 2 2, where a > 0 is as in (4.2). Then 
e(s.t)/2 

sup [X, (s) - X, (tll < 20 sup 
lllEN UET 

0 

for a suitable 6 E L,(R). In particular, (X,,Jrnd converges in each L,(C(T)), 
o < q < c r , .  

A minor variation of Theorem 5.2 (b) is proved by Fernique ([4],  
~hior&tne 6.2.1 and Coroilaire 6.2.3) for Gaussian stochastic processes and n 
= 1 in (5.4). Further, Heinkel (161, Thhreme 4) shows that condition (5.4) 
with n = 1 is still sufficient for sample continuity of subgaussian stochastic 
processes. 

Proof. The first part of the proof depends on a very ingenious construc- 
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tion of Heinkel ([4], Proposition 1, and 171, p. 205) based on the Jensen 
inequality. 

Suppose rp: [0, m [+KO, co[ is a strictly increasing convex function and 
let p be a Radon probability measure on (T ,  Q} with topological support T. 
Setting 

and- using the Q -continuity of X, ( ., w) for each fixed (m, w) E N x 52, we infer 
from the work of Heinkel that 

(a) We apply the above inequality to the function q(x) = xP, x 2 0. To 
show (5.3) it remains only to prove that sup 8, is integrable. However, by the 

mEM 

standard martingale estimates and Theorem 3.1, the expectation of the 
random variable 

does not exceed 

where A is as in (3.1). This proves (5.3). 
The assumptions in Theorem 5.1 ensure that Q: Tx T-, R is continuous 

and, by Theorem 3.1, the martingale (Xm(t))RIEN converges in L,(R) for each 
fixed t E'T. These properties together with (5.3) establish immediately the last 
statement in part (a). 

(b) To begin with, we introduce the convex function- 

The submartinga1e estimates and Theorem 4.1 now promise that the 
expectation of the random variable 

does not exceed 8 exp(ayzl")and part (b) follows in the same way as part (a). 
This completes the proof of Theorem 5.1. 
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