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Abstmcr. Let p and v be symmetric Gaussian probability . 
measures on a Banach space E and let E' be the dual of E. Then, as 
is well known, the inequality 

implies 

If we replace Gaussian measures by p-stable ones (0 < p < 2). 
the property does not hold. Thus we consider the class .4 of such 
Banach spaces, where a generalization to the p-stable case is true. 
Furthermore, we give relations of s9, to some other classes of Bauach 
spaces and we get also inclusion properties of .dp, 0 < p < 2. Recently, 
similar classes of Banach spaces have been investigated by Mandrekar, 
Thang, Tien, and Weron. 

Given a real number p, 0 < p < 2, we investigate Banach spaces E having 
the following property : 

If 0 < r < p, then there exists a constant c 2 1 such that the inequality 

for all a E E' (E' is the dual of 'E) implies 

for a11 p-stable symmetric Radon measures ,u and v on E. 
It is well known (cf. 121) that every Banach space has this property in the 
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Gaussian case, i.e., for p = 2. But there are examples of Banach spaces where 
such a constant does not exist for any p < 2, e.g., L,, 2 < q < c~ . d 

We characterize Banach spaces having this property in terms of inequal- 
A 

i t i s  of sums 1 xiO,, where x,, . . ., X,E E and dl ,  0,, . . . is an independent 
i= 1 

sequence of standard p - stable real random variables. 
Using ideas of [lo] we prove that the property becomes stronger if p is 

lessened and that there are examples of Banach spaces satisfying such an 
inquality for some p > 1, but not for any q < p. -- 

Finally, we show-that every Banach space having this property must be 
of cdtype 2 in the sense of 191 whenever 0 o p < 2. 

It is not known whether or not the above - mentioned property coincides 
with the property "stable cotype py' in the sense of [lo], 0 -2 p < 2.  

1. Notation and definitiom. E always denotes a real Banach space, E' its 
dual, and unless otherwise stated p is a real number with 0 < p ,< 2. The set 
of all p-stable symmetric Radon measures on E will be denoted by R,,(E). 
Let us recall that a symmetric Radon measure p is p-stable if its characteris- 
tic function (c.f.1 f i  can be written as 

ii{a) = exp(- I I  TallP), a s  E'. 
where T is an operator from E' into some Lp. 

Given p, a ER,(E) we write 

provided that ( * )  holds for some (each) r with 0 < r < p ,  which is equivalent 
to 

By an E -valued random variable (r.v.) we mean a strongly measurable 
mapping cp from a probability space (8, P) into E. Its distribution dist(cp) is 
defined by 
-- _ . 

dist (cp) (B)  : = P (cp  (a) E 3 )  , 

where B is a Borel subset of E. Then dist (cp) defines a Radon measure on E. 
In general, Lp means Lp(O, P) unless otherwise stated. For fixed p we 

denote by O,, 8,,  . . . a sequence of independent real r.v.'s with c.f. exp(-]tjP). 
A Banach space E is of stable type p (cf. 1111) if there is a constant c 2 0 

such that 
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for some r with 0 < r < p and all x,, ..., x , f E  (E means the expectation). 
E is said to be of corype 2 if 

for some c 2 0 and all x i ,  . . . , x, E E, where y,, y,, . . . is an independent 
sequence of standard Gaussian r.v.'s. 

2. The spce Ap(E', L,). Here we want to recall some definitions and 
results of [4] which will be used in the sequel. 

A,(EI, L,) denotes the 'set of all operators T from E' into L, for which 
exp(-HTallP) is the c.f. of a Radon measure pT. Clearly, ~ , E R , ( E )  whenever 
TEA,(E', L,). 

If we put 

i r ( T )  := (j llxll'd~T(x)]"~, 0 < r < p, 
E 

the space Ap(Er, L,) becomes a complete normed (1 < r < p) (resp. quasi- 
normed (0 < r < 1)) space (cf. [4]). 

For the z,(Er, E)  -topology on E' generated by the compact subsets of E, 
it is known that each operator TE AP(E1, L,) is continuous with respect to 
.r,(Er, E )  and the norm (quasi-norm) topology on L,. 

3. The class d,. Given p with 0 < p < 2, dp denotes the class of all 
Banach spaces E having the following property: 

For some (each) r with 0 < r < p there exists a constant c 2 1 such that 
for all p, v ER,(E) with p < v the estimation 

j l lxl lrd~(x) G c' 1 Ilxll'dv(x) 
E E 

holds. 
As already mentioned, d,  is the class of all Banach spaces. 
For later purposes we reformulate the above definition in terms of 

operators in Ap(Er, L,): 
A Banach space E belongs to dp if for some (each) r with 0 < r < p there 

exists a constant c > 1 such that for all T, S E A,(Ef, L,) with I /  Tall < IISall, 
a E E', the estimation 

is valid. 
Remark.  Theorem 4 of [4] shows that the definition is independent of 

the special choice of the number r. 
THEOREM 1. Suppose 1 1  Tall < Itsall, a E E', implies T E AP(Ef, L,) whenever 

S E A ,  (E', L,). Then E belongs to dp. 

6 - Prob. Math. Statist. 3 (2) 
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Proof.  Assume that E $4. Then there are operators T,, and S, in 
AP(Ef, Lp(Qn, PJ) such that IIT.all 6 llSna(l, UEE', while il ,(TJ> 1 and 
A,(S,) d 2-", n = 1, 2, . .., for some r < p .  Without loss of generality (taking 
disjoint unions) we may assume T,, S, E A,,(E', L,) and 

Using 

IlT,pll < IIS.all C c;'A,(S,JllaJI < c ~ '  -2-" 1 1  a 1 1  
(cf.' [4], crp : = {E 1011r]117, we infer that the operators 

m 41 

T = z  T, and S = C  S, 
n= 1 n= 1 

exist. Moreover, IITaII < IISaJl, ~ E E ' ,  and because of the completeness of 
AP(Et, L,) with respect to A, the operator S belongs to AJE', L,). Now, by 
assumption, T f A P ( E f ,  Lp), i.e., 

is the cf, of a Radon measure on E. 
If (, is an independent sequence of E -valued r.v.'s with c.f. exp(- IIT,allP), 

then by the Ito-Nisio theorem (cf. [3]) there exists an r.v. 5: such that 

Since 

this contradicts &(TJ 2 1, proving the theorem. 
COROLLARY 1. If E is of stable eotype p, 0 < p < 2, in the sense of [lo], 

ttaen E belongs to dp. - 
Remark. We do not know whether or not the converse of Corollary 1 also 

holds. _ 
Our next aim is to prove the converse of Theorem 1 under an additional 

property of E. But for this purpose we need 
LEMMA 1. Let A,, i E I ,  be a generalized sequence of operators in E such that 

sup llAilJ < co and lirn Aix = x 
id 

uniformly on compact subsets of E .  If TEA,,(E', Lp), then 

--. lim &(T-TA,? = 0. 
i ~ l  
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Proof. Let p = p~ be the Radon measure on E generated by T and put 

Given E > 0 we choose a compact subset K G E such that 

Then we find an element io €1 with 

. . sup IIAix- x{lr < er/2 
x€K 

whenever i > io . Thus 

i > i,. This proves Lemma 1. 
THEOREM 2. Let E be a Banach space in cG4, having the metric approximation 

property (m.a.p.) (cf. 173 for the definition). Then for any operator T from E' into 
L, a d  S E Ap(Ef, L,) the inequality ltTh(/ < IISalf, a E E', implies T E  AP(E1, L,). 

Proof. By assumption there exists a generalized sequence Ai, i ~ l ,  of 
operators of finite rank in E such that 

sup llAill < 1 and lirn Aix = x 
ier 

uniformly on compact subsets of E. From Lemma 1 we get 

lim A, (S - SA:) = 0.  

Consequently, since 

]IT(A;-Aj)all</IS(Af-Aj)all, a ~ E ' , i , j ~ 1 ,  

there exists an i, EI such that &(TAI- TA;) < E whenever i, j > io for given 
E > 0. By the completeness of Ap(Ef, L,) with respect to A,, the generalized 
sequence TA; converges to some operator T,,EA,(E', Lp). It remains to prove 
that T= To. 

Since S is z,(E', E)-continuous, so is T, which follows from the inequality 
11 Tall < IlSall, a EE'. Therefore, for each a EE' the generalized sequence TAia 
converges to Ta. On the other hand, TAIa converges also to Toa because 

which proves that T = T, . 
Remark. Theorems 1 and 2 combined together give the following: 
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If E has the m.a.p., then E belolzgs to .o/, ig for every T € L ( E f ,  L,) and 
S E  A,(E1, L,) the inequality 1 1  Tall < IlSall, a EE', implies T E  A,(Ef, L,). 

For the last property we refer to El41 or [8]. 
A careful examination of the proof of Theorem 2 shows that we only used 

the estimation in the definition of 4 for the operators T ( A : -  A;)  and SIAi- A;) 
which are of finite rank. This proves the following 

THEOREM 3. Let E he a Banach space having the m a p .  Then E bebngs to .d,, 
i#)ur some r with 0 < r < p there exists a constanr c 2 1 such that for all finite- 

. dimensional subspuces F s E and all' p, v ER,(F) with p < v the estimation 
.. . . 

Remark.  If a Banach space E has the m.a.p., then from Theorem 3 it 
follows that the property that E belongs to dp depends in fact only on finite- 
dimensional subspaces of E. 

Now, we give some examples of Banach spaces in dp. The following 
theorem is implied also by CorolIary 1 and [lo]. 

THEOREM 4. If 1 < q G 2, then every Y4 - space in the sense of [6]  belongs to 
.I#,, O < p < 2 .  

Proof.  Using Theorem 3 it suffices to consider measures y, v E R,, ( I : )  with 
p i v. If el, e z ,  . . . denotes a sequence of independent q -stable random vari- 
ables, i.e., their c.f. is exp(-ltlq), then for 0 < r < min ( p ,  q) we get 

In 

G c , ' ~  1 l(x, 1 eiei)Jrdv(x) = IIxII'dv(x), 
4 i =  1 lq 

where e l ,  . . . , em are the unit vectors of I,". 
- Our next aim is to restrict the set of measures in the definition of the class 

d,. More precisely, we show that it suffices to investigate measures p €Rp(E)  
which can be written as 

Note that even if E is finite dimensional, not every measure ,u E %(E), 0 < p 
< 2, can be written in this way. 

THEOREM 5. Suppose E has the m.a.p. Then E belongs to d,, iSffor some r with 
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0 < r < p there exists a corlstant c 3 1 such that for all x l ,  . . ., x,, y,, . .,, y , ~  E 
with 

rhe estimation 

is valid. .. . . 

Proof.  Of course, the condition of Theorem 5 is necessary even without 
any further assumption. To prove that it is sufficient we use Theorem 3. Let 
F c E be finite dimensional and let T and S be operators in Ap(F', L,) such 
that ( 1  TblJ < JISbll for all b E F'. We may assume S to be injective. Otherwise, we 
have to take a subspace of F. Given E > 0 we put 

From the inequality t(TbJ1 < jlSb(1 and the compactness of the unit sphere of 
F' we get S > 0.. Next, we approximate T and S by operators 
T,, S, E AD(F', Lp) such that 

"m 

l l  Tmbll" II(xY, b>Ip, Ilsmbllp = 1 /<Y?, b>Y, ~ E F ,  
i= 1 i =  1 

xl;, . .., x;, y7, .. ., y r , ~ F .  Since S > 0, we find a natural number m, with 

whenever rn 2 m,. Thus, by assumption and the special form of T, and S,, we 
get 

Jr(Tm) c( l+~)S(sm)-  

It remains to prove that 

I A ( T )  = A ( and lim A, (S,) = ,Ir (S )  

Let p,, p be the sequence of measures in Rp(F) generated by Tm and T, 
respectively. Then, since dim F < oo, p, converges weakly to p. On the other 
hand, the function x + I I ~ I I '  from the Banach space F into the real numbers is 
uniformly integrable with respect to [p,,,}. This follows, e.g., by the results of 
[I] (0 < r < p!). Consequently, 

which completes the proof of the theorem. 
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A laelusion pasprties of d,,. AS the main result in this section we get the 
inclusion dq c d, for 0 < q 6 p 6 2. For this purpose we construct a map- 
ping from AP(Ef, L,) into A, (E', L,) . The main ideas of this construction can be 
found in [lo]. 

LEMMA 2. Assume 0 < q < p < 2. Then there exists a probability measure ct 

on [O ,  m) such that 
a> 

( 1 )  exp(-ug)  = 1 exp(-vuP)dcl(v), u € [ O ,  m), 
0 

(2) a{O) = 0, -.- 
;a 

(3)  f ir  positiue s the integral j v'da (v) is finite ir s < q/p. 
0 

Proof. By SchlSnberg's theorem (d [2]), for t = Mi, ' 0 < t < 2, there 
exists a measure ct on 10, a) such that 

Replacing w by uPtZ we obtain (1). 
Putting u = 0 we get 1 = a ( [ O ,  a)), i.e., a is a probability measure. 
Property (2) can be shown by taking the limit as u + a, on both sides of (1) 

and using the Lebesgue theorem. 
Finally, the integral 

i I -exp(-ut) 
u~ + 2s d~ 

0 

is finite iff 0 < s < r/2 = q / p .  But this integral is equal to 

which proves (3). 
THEOREM 6. Let T be an operator from E' into L,. Then the followirlg 

statements are equivalent: 
( 1 )  T€AP(Efer, Lp)- 
(2) For one {each) real number q with 0 < q < p the function exp( - ( 1  Tall3 is 

the C$ o fa  Radon measure v, on E (v, €4 (E)). Moreoverer, $0 < r < q < p, then 
there exists a constant c(r, q, p) (independent of E and 7') such that 

Proof. It is shown in [4] that (2) implies (1) if (2) is satisfied for one 
4 < P .  
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Now we choose TE AP(E1, L,) and our aim is to show that exp(-]I Tall4) 
defines the c.f, of a Radon measure on E. We put 

where B E E is a Borel subset, p E R,(E) is defined by T, and u denotes the 
probability measure on [0, m )  constructed in Lemma 2. Clearly, v, is a Radon 
measure on E (it is a -additive and concentrated on the separable support of p). 
Next we calculate the c.f. of v,: 

m 

?,(a) = J ekp (i (x, a>) dv, (x) = 1 I exp ( i  {u x ,  a)) da (o) d p  (x )  
' E E 0 

91 m 

= i ; ( ~ ' ~ ~ a ) d a ( v )  = exp(-vHTa113du(v) = e~p(-llTa11~). 
0 0 

This proves (2). 
Now, if 0 < r < q ,  we get 

The last integral is finite because s = rip < q / p .  Putting 

we obtain the result. 
The next corollary was shown in [12]. It is an immediate consequence of 

Theorem 6 in the case p = 2. - . 

COROLLARY 2. Let R be an operator.frorn E' into E which is positive ( (Ra ,  a )  
2 0, a E El) and symmetric ((Ra, b )  = (Rb,  a ) ,  a, b E El). Then R is a Gaussian 
covariance, i.e., exp(- (Ra,  a ) )  is the c$ of a Radon measure, trfor some (each) 
q with 0 < q < 2 the function exp ( - {Ra, a)q/') is the c$ of a Radon measure on 
E. 

COROLLARY 3. I f  0 < q < p < 2, then 4 G dp. 
Proof. Fix E €4 and S,  T E  AP(E1, L,,) with (JTaJI < (ISa(1. Since this 

implies It Tallq < liSallqy we infer from Theorem 6 that there exist TI ,  S ,  E 

E A ~ ( E ' ,  L,,) with IIqal[ = flTallqy IISla/l = IISaHq, and for r < q < p 
I - -- 

l r ( T )  = c ( r ~  q, P)&(T), &(S) = c(r9 q,  P)&(Si)- 

Hence E €dq and IITall < IISa/l imply I 
I 

HTall llsiall and < ~ S I S I ) .  i 
Consequently, E E dp. I 

I 
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Our next aim is to prove that the inclusion .dq G .d,, is strict whenever 
p > 1 and 0 c q < p .  Here we also use the example constructed in [lo]. 

The following two lemmas are proved by exactly the same arguments as 
used in [lo] and [15], respectively. 

LEMMA 3. Far 1 < s < p ,< 2, E E ,4 implies I, ( E )  E dP, where I, ( E )  is 
defined as 

I 

1, (E) = :(xi) G E ; 1 ( ( x ~ ( ( '  < -JC ] . 
i =  1 

LEMMA 4 .  Assume 1 < p r 2 and let E E .dp. IJ; moreover, E is qj'stable type 
p, rlzerz E is isomrpliic to some subspace of L,(v), wltere v is arbitrary. 

R e m a r k .  The proof depends mainly on a result of Lindenstrauss and 
Peiczynski 161. ... 

T H E O R E M  7. Let t and s be real rzumbers suclt rltat 1 < t < s < 2 .  TIzerz 
I, (1,) E \dq provided that 0 < q < t < s < p ,< 2. 

Pro  of. It is well known that l,(l,) is of stable type r whenever r < t .  Now, if 
1 < r c t and q < r, then I , ( [ , )  can belong neither to .s/, nor to .d,, since 1,(1,) is 
not isomorphic to a subspace of L,(v) (cf. [lo] and Lemma 4). On the other 
hand, we have 1, ( I , )  E dP because of Lemma 3 and I, E ,d,. 

Finally, we want to  prove that the property "E E s4," is rat her strong if 0 
< p < 2. More precisely, we show that in this case E has to be of cotype 2. 
Particularly, this implies L, 4 $Ip, 2 < q g oo and 0 < p < 2 .  

THEOREM 8. If 0 < p < 2 and E E d , ,  tlzerz E is of cotype 2. 
Proof .  Given p with 0 < p < 2 we put q : = 2 / ( 2 - p ) .  Let x , ,  . . ., X , E  E be 

arbitrary and let /3,, . . . , fl ,  be real numbers such that 

i =  1 

Then we define p, v E R,(E) by 

Using Holder's inequality we get p < v ,  which impIies 

But the rigbt - hand side equals 

(see Theorem 6) and the left-hand side can be estimated by 
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Here y,, . . . , y, denotes an independent sequence of standard Gaussian 
r.v.'s. Now, taking the supremum over a11 PI,  . . . , f i n ,  

we get 

Thus, E is of cotype -2. 
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