PROBABILITY

AND MATHEMATICAL STATISTICS

INEQUALITIES BETWEEN INTEGRALS OF p-STABLE SYMMETRIC MEASURES ON BANACH SPACES

BY
WERNER LINDE aND PETER MATHE (JENa) - -

Abstract

Let μ and v be symmetric Gaussian probability measures on a Banach space E and let E^{\prime} be the dual of E. Then, as is well known, the inequality $$
\int_{E}|\langle x, a\rangle|^{2} d \mu(x) \leqslant \int_{E}|\langle x, a\rangle|^{2} d \nu(x) \quad \text { for all } a \in E^{\prime}
$$ implies $$
\int_{E}\|x\|^{2} d \mu(x) \leqslant \int_{E}\|x\|^{2} d v(x) .
$$

If we replace Gaussian measures by p-stable ones $(0<p<2)$, the property does not hold. Thus we consider the class α_{p} of such Banach spaces, where a generalization to the p-stable case is true. Furthermore, we give relations of \mathscr{A}_{p} to some other classes of Banach spaces and we get also inclusion properties of $\mathscr{A}_{p}, 0<p<2$. Recently, similar classes of Banach spaces have been investigated by Mandrekar, Thang, Tien, and Weron.

Given a real number $p, 0<p \leqslant 2$, we investigate Banach spaces E having the following property:

If $0<r<p$, then there exists a constant $c \geqslant 1$ such that the inequality

$$
\begin{equation*}
\int_{E}|\langle x, a\rangle|^{r} d \mu(x) \leqslant \int_{E}|\langle x, a\rangle|^{r} d v(x) \tag{*}
\end{equation*}
$$

for all $a \in E^{\prime}\left(E^{\prime}\right.$ is the dual of \dot{E}) implies

$$
\int_{E}\|x\|^{r} d \mu(x) \leqslant c^{r} \int_{E}\|x\|^{r} d \nu(x)
$$

for all p-stable symmetric Radon measures μ and ν on E.
It is well known (cf. [2]) that every Banach space has this property in the

Gaussian case, i.e., for $p=2$. But there are examples of Banach spaces where such a constant does not exist for any $p<2$, e.g., $L_{q}, 2<q \leqslant \infty$.

We characterize Banach spaces having this property in terms of inequalities of sums $\sum_{i=1}^{n} x_{i} \theta_{i}$, where $x_{1}, \ldots, x_{n} \in E$ and $\theta_{1}, \theta_{2}, \ldots$ is an independent sequence of standard p-stable real random variables.

Using ideas of [10] we prove that the property becomes stronger if p is lessened and that there are examples of Banach spaces satisfying such an inequality for some $p>1$, but not for any $q<p$.

Finally, we show that every Banach space having this property must be of cotype 2 in the sense of [9] whenever $0<p<2$.

It is not known whether or not the above-mentioned property coincides with the property "stable cotype p " in the sense of [10], $0<p<2$.

1. Notation and definitions. E always denotes a real Banach space, E^{\prime} its dual, and unless otherwise stated p is a real number with $0<p \leqslant 2$. The set of all p-stable symmetric Radon measures on E will be denoted by $R_{p}(E)$. Let us recall that a symmetric Radon measure μ is p-stable if its characteristic function (c.f.) $\hat{\mu}$ can be written as

$$
\hat{\mu}(a)=\exp \left(-\|T a\|^{p}\right), \quad a \in E^{\prime}
$$

where T is an operator from E^{\prime} into some L_{p}.
Given $\mu, v \in R_{p}(E)$ we write

$$
\mu<v
$$

provided that (*) holds for some (each) r with $0<r<p$, which is equivalent to

$$
\hat{v}(a) \leqslant \hat{\mu}(a), \quad a \in E^{\prime},
$$

or

$$
\mu\{x \in E ;|\langle x, a\rangle| \geqslant 1\} \leqslant v\{x \in E ;|\langle x, a\rangle| \geqslant 1\}, \quad a \in E^{\prime} .
$$

By an E-valued random variable (r.v.) we mean a strongly measurable mapping φ from a probability space (Ω, P) into E. Its distribution $\operatorname{dist}(\varphi)$ is defined by

$$
\operatorname{dist}(\varphi)(B):=P\{\varphi(\omega) \in B\},
$$

where B is a Borel subset of E. Then dist (φ) defines a Radon measure on E.
In general, L_{p} means $L_{p}(\Omega, P)$ unless otherwise stated. For fixed p we denote by $\theta_{1}, \theta_{2}, \ldots$ a sequence of independent real r.v.'s with c.f. $\exp \left(-|t|^{p}\right)$.

A Banach space E is of stable type p (cf. [11]) if there is a constant $c \geqslant 0$ such that

$$
\left\{E\left\|\sum_{i=1}^{n} x_{i} \theta_{i}\right\|^{r}\right\}^{1 / r} \leqslant c\left\{\sum_{i=1}^{n}\left\|x_{i}\right\|^{p}\right\}^{1 / p}
$$

for some r with $0<r<p$ and all $x_{1}, \ldots, x_{n} \in E$ (E means the expectation). E is said to be of cotype 2 if

$$
\left\{\sum_{i=1}^{n}\left\|x_{i}\right\|^{2}\right\}^{1 / 2} \leqslant c\left\{\mathrm{E}\left\|\sum_{i=1}^{n} x_{i} \gamma_{i}\right\|^{2}\right\}^{1 / 2}
$$

for some $c \geqslant 0$ and all $x_{1}, \ldots, x_{n} \in E$, where $\gamma_{1}, \gamma_{2}, \ldots$ is an independent sequence of standard Gaussian r.v.'s.
2. The space $\Lambda_{p}\left(E^{\prime}, L_{p}\right)$. Here we want to recall some definitions and results of [4] which will be used in the sequel.
$\Lambda_{p}\left(E^{\prime}, L_{p}\right)$ denotes the set of all operators T from E^{\prime} into L_{p} for which $\exp \left(-\|T a\|^{p}\right)$ is the c.f. of a Radon measure μ_{T}. Clearly, $\mu_{T} \in R_{p}(E)$ whenever $T \in \Lambda_{p}\left(E^{\prime}, L_{p}\right)$.

If we put

$$
\lambda_{r}(T):=\left\{\int_{E}\|x\|^{r} d \mu_{T}(x)\right\}^{1 / r}, \quad 0<r<p,
$$

the space $\Lambda_{p}\left(E^{\prime}, L_{p}\right)$ becomes a complete normed ($1 \leqslant r<p$) (resp. quasinormed ($0 \leqslant r<1$)) space (cf. [4]).

For the $\tau_{c}\left(E^{\prime}, E\right)$-topology on E^{\prime} generated by the compact subsets of E, it is known that each operator $T \in \Lambda_{p}\left(E^{\prime}, L_{p}\right)$ is continuous with respect to $\tau_{c}\left(E^{\prime}, E\right)$ and the norm (quasi - norm) topology on L_{p}.
3. The class \mathscr{A}_{p}. Given p with $0<p \leqslant 2, \mathscr{A}_{p}$ denotes the class of all Banach spaces E having the following property:

For some (each) r with $0<r<p$ there exists a constant $c \geqslant 1$ such that for all $\mu, v \in R_{p}(E)$ with $\mu<v$ the estimation

$$
\int_{E}\|x\|^{r} d \mu(x) \leqslant c^{r} \int_{E}\|x\|^{r} d v(x)
$$

holds.
As already mentioned, \mathscr{A}_{2} is the class of all Banach spaces.
For later purposes we reformulate the above definition in terms of operators in $\Lambda_{p}\left(E^{\prime}, L_{p}\right)$:

A Banach space E belongs to \mathscr{A}_{p} if for some (each) r with $0<r<p$ there exists a constant $\dot{c} \geqslant 1$ such that for all $T, S \in \Lambda_{p}\left(E^{\prime}, L_{p}\right)$ with $\|T a\| \leqslant\|S a\|$, $a \in E^{\prime}$, the estimation

$$
\lambda_{r}(T) \leqslant c \lambda_{r}(S) .
$$

is valid.
Remark. Theorem 4 of [4] shows that the definition is independent of the special choice of the number r.

Theorem 1. Suppose $\|T a\| \leqslant\|S a\|$, $a \in E^{\prime}$, implies $T \in A_{p}\left(E^{\prime}, L_{p}\right)$ whenever $S \in \Lambda_{p}\left(E^{\prime}, L_{p}\right)$. Then E belongs to \mathscr{A}_{p}.

Proof. Assume that $E \notin \mathscr{A}_{p}$. Then there are operators T_{n} and S_{n} in $\Lambda_{p}\left(E^{\prime}, L_{p}\left(\Omega_{n}, P_{n}\right)\right)$ such that $\left\|T_{n} a\right\| \leqslant\left\|S_{n} a\right\|, a \in E^{\prime}$, while $\lambda_{r}\left(T_{n}\right) \geqslant 1$ and $\lambda_{r}\left(S_{n}\right) \leqslant 2^{-n}, n=1,2, \ldots$, for some $r<p$. Without loss of generality (taking disjoint unions) we may assume $T_{n}, S_{n} \in \Lambda_{p}\left(E^{\prime}, L_{p}\right)$ and

$$
\left\|\sum_{n=1}^{m} T_{n} a\right\|^{p}=\sum_{n=1}^{m}\left\|T_{n} a\right\|^{p}, \quad\left\|\sum_{n=1}^{m} S_{n} a\right\|^{p}=\sum_{n=1}^{m}\left\|S_{n} a\right\|^{p}, \quad m=1,2, \ldots
$$

Using

$$
\left\|T_{n} a\right\| \leqslant\left\|S_{n} a\right\| \leqslant c_{r p}^{-1} \lambda_{r}\left(S_{n}\right)\|a\| \leqslant c_{r p}^{-1} \cdot 2^{-n}\|a\|
$$

(cf. [4], $c_{r p}:=\left\{\mathrm{E}\left|\theta_{1}\right|^{r}\right\}^{1 / r}$), we infer that the operators

$$
T=\sum_{n=1}^{\infty} T_{n} \quad \text { and } \quad S=\sum_{n=1}^{\infty} S_{n}
$$

exist. Moreover, $\|T a\| \leqslant\|S a\|, a \in E^{\prime}$, and because of the completeness of $\Lambda_{p}\left(E^{\prime}, L_{p}\right)$ with respect to λ_{r} the operator S belongs to $\Lambda_{p}\left(E^{\prime}, L_{p}\right)$. Now, by assumption, $T \in \Lambda_{p}\left(E^{\prime}, L_{p}\right)$, i.e.,

$$
\exp \left(-\|T a\|^{p}\right)=\exp \left(-\sum_{n=1}^{\infty}\left\|T_{n} a\right\|^{p}\right)
$$

is the c.f. of a Radon measure on E.
If ξ_{n} is an independent sequence of E-valued r.v.'s with c.f. $\exp \left(-\left\|T_{n}\right\|^{p}\right)$, then by the Ito-Nisio theorem (cf. [3]) there exists an r.v. ξ such that

$$
\mathrm{E}\left\|\xi-\sum_{n=1}^{m} \xi_{n}\right\|^{r} \rightarrow 0 \quad \text { as } m \rightarrow \infty
$$

Since

$$
\lambda_{r}\left(T_{n}\right)=\left\{\mathrm{E}\left\|\xi_{n}\right\|^{r}\right\}^{1 / r}
$$

this contradicts $\lambda_{r}\left(T_{n}\right) \geqslant 1$, proving the theorem.
Corollary 1. If E is of stable cotype $p, 0<p<2$, in the sense of [10], then E belongs to \mathscr{A}_{p}.

Remark. We do not know whether or not the converse of Corollary 1 also holds.

Our next aim is to prove the converse of Theorem 1 under an additional property of E. But for this purpose we need

Lemma 1. Let $A_{i}, i \in I$, be a generalized sequence of operators in E such that

$$
\sup _{i \in I}\left\|A_{i}\right\|<\infty \quad \text { and } \quad \lim A_{i} x=x
$$

uniformly on compact subsets of E. If $T \in \Lambda_{p}\left(E^{\prime}, L_{p}\right)$, then

$$
\lim _{i \in I} \lambda_{r}\left(T-T A_{i}^{\prime}\right)=0
$$

Proof. Let $\mu=\mu_{T}$ be the Radon measure on E generated by T and put

$$
d=\sup _{i \in I}\left\|A_{i}\right\|
$$

Given $\varepsilon>0$ we choose a compact subset $K \subseteq E$ such that

$$
\int_{E \backslash K}\|x\|^{r} d \mu(x) \leqslant \varepsilon^{r}\left(2(1+d)^{r}\right)^{-1}
$$

Then we find an element $i_{0} \in I$ with

$$
\sup _{x \in K}\left\|A_{i} x-x\right\|^{r} \leqslant \varepsilon^{r} / 2
$$

whenever $i>i_{0}$. Thus

$$
\begin{aligned}
\lambda_{r}\left(T-T A_{i}^{\prime}\right) & =\left\{\int_{E}\left\|x-A_{i} x\right\|^{r} d \mu(x)\right\}^{1 / r} \\
& \leqslant\left\{(1+d)^{r} \int_{E \backslash K}\|x\|^{r} d \mu(x)+\int_{K}\left\|x-A_{i} x\right\|^{r} d \mu(x)\right\}^{1 / r} \leqslant \varepsilon
\end{aligned}
$$

provided $i>i_{0}$. This proves Lemma 1.
Theorem 2. Let E be a Banach space in \mathscr{A}_{p} having the metric approximation property (m.a.p.) (cf. [7] for the definition). Then for any operator T from E^{\prime} into L_{p} and $S \in \Lambda_{p}\left(E^{\prime}, L_{p}\right)$ the inequality $\|T a\| \leqslant\|S a\|, a \in E^{\prime}$, implies $T \in \Lambda_{p}\left(E^{\prime}, L_{p}\right)$.

Proof. By assumption there exists a generalized sequence $A_{i}, i \in I$, of operators of finite rank in E such that

$$
\sup _{i \in I}\left\|A_{i}\right\| \leqslant 1 \quad \text { and } \quad \lim A_{i} x=x
$$

uniformly on compact subsets of E. From Lemma 1 we get

$$
\lim \lambda_{r}\left(S-S A_{i}^{\prime}\right)=0
$$

Consequently, since

$$
\left\|T\left(A_{i}^{\prime}-A_{j}^{\prime}\right) a\right\| \leqslant\left\|S\left(A_{i}^{\prime}-A_{j}^{\prime}\right) a\right\|, \quad a \in E^{\prime}, i, j \in I
$$

there exists an $i_{0} \in I$ such that $\lambda_{r}\left(T A_{i}^{\prime}-T A_{j}^{\prime}\right)<\varepsilon$ whenever $i, j>i_{0}$ for given $\varepsilon>0$. By the completeness of $\Lambda_{p}\left(E^{\prime}, L_{p}\right)$ with respect to λ_{r}, the generalized sequence $T A_{i}^{\prime}$ converges to some operator $T_{0} \in \Lambda_{p}\left(E^{\prime}, L_{p}\right)$. It remains to prove that $T=T_{0}$.

Since S is $\tau_{c}\left(E^{\prime}, E\right)$-continuous, so is T, which follows from the inequality $\|T a\| \leqslant\|S a\|, a \in E^{\prime}$. Therefore, for each $a \in E^{\prime}$ the generalized sequence $T A_{i}^{\prime} a$ converges to $T a$. On the other hand, $T A_{i}^{\prime} a$ converges also to $T_{0} a$ because

$$
\left\|T A_{i}^{\prime} a-T_{0} a\right\| \leqslant c_{r p}^{-1} \lambda_{r}\left(T A_{i}^{\prime}-T_{0}\right)\|a\|
$$

which proves that $T=T_{0}$.
Remark. Theorems 1 and 2 combined together give the following:

If E has the m.a.p., then E belongs to \mathscr{A}_{p} iff for every $T \in L\left(E^{\prime}, L_{p}\right)$ and $S \in \Lambda_{p}\left(E^{\prime}, L_{p}\right)$ the inequality $\|T a\| \leqslant\|S a\|, a \in E^{\prime}$, implies $T \in \Lambda_{p}\left(E^{\prime}, L_{p}\right)$.

For the last property we refer to [14] or [8].
A careful examination of the proof of Theorem 2 shows that we only used the estimation in the definition of \mathscr{A}_{p} for the operators $T\left(A_{i}^{\prime}-A_{j}^{\prime}\right)$ and $S\left(A_{i}^{\prime}-A_{j}^{\prime}\right)$ which are of finite rank. This proves the following

Theorem 3. Let E be a Banach space having the m.a.p. Then E belongs to \mathscr{A}_{p} iff for some r with $0<r<p$ there exists a constant $c \geqslant 1$ such that for all finitedimensional subspaces $F \subseteq E$ and all $\mu, v \in R_{p}(F)$ with $\mu<v$ the estimation

$$
\int_{F}\|x\|^{r} d \mu(x) \leqslant c^{r} \int_{F}\|x\|^{r} d v(x)
$$

holds.
Remark. If a Banach space E has the m.a.p., then from Theorem 3 it follows that the property that E belongs to \mathscr{A}_{p} depends in fact only on finitedimensional subspaces of E.

Now, we give some examples of Banach spaces in \mathscr{A}_{p}. The following theorem is implied also by Corollary 1 and [10].

Theorem 4. If $1 \leqslant q \leqslant 2$, then every \mathscr{L}_{q}-space in the sense of [6] belongs to $A_{p}, 0<p \leqslant 2$.

Proof. Using Theorem 3 it suffices to consider measures $\mu, v \in R_{p}\left(l_{q}^{m}\right)$ with $\mu \prec \nu$. If $\varrho_{1}, \varrho_{2}, \ldots$ denotes a sequence of independent q-stable random variables, i.e., their c.f. is $\exp \left(-|t|^{q}\right)$, then for $0<r<\min (p, q)$ we get

$$
\begin{aligned}
\int_{l_{q}^{m}}\|x\|^{r} d \mu(x) & =\int_{l_{q}^{m}}\left(\sum_{i=1}^{m}\left|\left\langle x, e_{i}\right\rangle\right\rangle^{q}\right)^{r / q} d \mu(x) \\
& =c_{r q}^{-r} \int_{l_{q}^{m}} \mathrm{E}\left|\sum_{i=1}^{m}\left\langle x, e_{i}\right\rangle \varrho_{i}\right|^{r} d \mu(x) \\
& \leqslant c_{r q}^{-r} \mathrm{E} \int_{l_{q}^{m}}\left|\left\langle x, \sum_{i=1}^{m} e_{i} \varrho_{i}\right\rangle\right|^{r} d v(x)=\int_{l_{q}^{m}}\|x\|^{r} d v(x),
\end{aligned}
$$

where e_{1}, \ldots, e_{m} are the unit vectors of l_{q}^{m}.
Our next aim is to restrict the set of measures in the definition of the class \mathscr{A}_{p}. More precisely, we show that it suffices to investigate measures $\mu \in R_{p}(E)$ which can be written as

$$
\mu=\operatorname{dist}\left(\sum_{i=1}^{n} x_{i} \theta_{i}\right), \quad x_{1}, \ldots, x_{n} \in E .
$$

Note that even if E is finite dimensional, not every measure $\mu \in R_{p}(E), 0<p$ <2, can be written in this way.

Theorem 5. Suppose E has the m.a.p. Then E belongs to \mathscr{A}_{p} iff for some r with
$0<r<p$ there exists a constant $c \geqslant 1$ such that for all $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \in E$ with

$$
\sum_{i=1}^{n}\left|\left\langle x_{i}, a\right\rangle\right|^{p} \leqslant \sum_{i=1}^{n}\left|\left\langle y_{i}, a\right\rangle\right|^{p}, \quad a \in E^{\prime}
$$

the estimation

$$
\mathrm{E}\left\|\sum_{i=1}^{n} x_{i} \theta_{i}\right\|^{r} \leqslant c^{r} \mathrm{E}\left\|\sum_{i=1}^{n} y_{i} \theta_{i}\right\|^{r}
$$

is valid.
Proof. Of course, the condition of Theorem 5 is necessary even without any further assumption. To prove that it is sufficient we use Theorem 3. Let $F \subseteq E$ be finite dimensional and let T and S be operators in $\Lambda_{p}\left(F^{\prime}, L_{p}\right)$ such that $\|T b\| \leqslant\|S b\|$ for all $b \in F^{\prime}$. We may assume S to be injective. Otherwise, we have to take a subspace of F. Given $\varepsilon>0$ we put

$$
\delta=\inf \left\{(1+\varepsilon)\|S b\|-\|T b\| ; b \in F^{\prime},\|b\|=1\right\}
$$

From the inequality $\|T b\| \leqslant\|S b\|$ and the compactness of the unit sphere of F^{\prime} we get $\delta>0$. Next, we approximate T and S by operators $T_{m}, S_{m} \in \Lambda_{p}\left(F^{\prime}, L_{p}\right)$ such that

$$
\left\|T_{m} b\right\|^{p}=\sum_{i=1}^{n_{m}}\left|\left\langle x_{i}^{m}, b\right\rangle\right|^{p}, \quad\left\|S_{m} b\right\|^{p}=\sum_{i=1}^{n_{m}}\left|\left\langle y_{i}^{m}, b\right\rangle\right\rangle^{p}, \quad b \in F^{\prime},
$$

$x_{1}^{m}, \ldots, x_{n_{m}}^{m}, y_{1}^{m}, \ldots, y_{n_{m}}^{m} \in F$. Since $\delta>0$, we find a natural number m_{0} with

$$
\left\|T_{m} b\right\| \leqslant(1+\varepsilon)\left\|S_{m} b\right\|, \quad b \in F^{\prime}
$$

whenever $m \geqslant m_{0}$. Thus, by assumption and the special form of T_{m} and S_{m}, we get

$$
\lambda_{r}\left(T_{m}\right) \leqslant c(1+\varepsilon) \lambda_{r}\left(S_{m}\right)
$$

It remains to prove that

$$
\lim \lambda_{r}\left(T_{m}\right)=\lambda_{r}(T) \quad \text { and } \quad \lim \lambda_{r}\left(S_{m}\right)=\lambda_{r}(S)
$$

Let μ_{m}, μ be the sequence of measures in $R_{p}(F)$ generated by T_{m} and T, respectively. Then, since $\operatorname{dim} F<\infty, \mu_{m}$ converges weakly to μ. On the other hand, the function $x \rightarrow\|x\|^{r}$ from the Banach space F into the real numbers is uniformly integrable with respect to $\left\{\mu_{m}\right\}$. This follows, e.g., by the results of [1] ($0<r<p$!). Consequently,

$$
\lim \lambda_{r}\left(T_{m}\right)=\lim \left\{\int_{F}\|x\|^{r} d \mu_{m}(x)\right\}^{1 / r}=\left\{\int_{F}\|x\|^{r} d \mu(x)\right\}^{1 / r}=\lambda_{r}(T),
$$

which completes the proof of the theorem.
4. Inclusion properties of \mathscr{A}_{p}. As the main result in this section we get the inclusion $\mathscr{A}_{q} \subseteq \mathscr{A}_{p}$ for $0<q \leqslant p \leqslant 2$. For this purpose we construct a mapping from $\Lambda_{p}\left(E^{\prime}, L_{p}\right)$ into $\Lambda_{q}\left(E^{\prime}, L_{q}\right)$. The main ideas of this construction can be found in [10].

Lemma 2. Assume $0<q<p \leqslant 2$. Then there exists a probability measure α on $[0, \infty)$ such that
(1) $\exp \left(-u^{q}\right)=\int_{0}^{\infty} \exp \left(-v u^{p}\right) d \alpha(v), u \in[0, \infty)$,
(2) $\alpha\{0\}=0$,
(3) for positive s the integral $\int_{0}^{\infty} v^{s} d \alpha(v)$ is finite iff $s<q / p$.

Proof. By Schönberg's theorem (cf. [2]), for $t=2 q / p, 0<t<2$, there exists a measure α on $[0, \infty)$ such that

$$
\exp \left(-w^{\prime}\right)=\int_{0}^{\infty} \exp \left(-v w^{2}\right) d \alpha(v), \quad w \in[0, \infty)
$$

Replacing w by $u^{p / 2}$ we obtain (1).
Putting $u=0$ we get $1=\alpha([0, \infty)$), i.e., α is a probability measure.
Property (2) can be shown by taking the limit as $u \rightarrow \infty$ on both sides of (1) and using the Lebesgue theorem.

Finally, the integral

$$
\int_{0}^{x} \frac{1-\exp \left(-u^{t}\right)}{u^{1+2 s}} d u
$$

is finite iff $0<s<t / 2=q / p$. But this integral is equal to

$$
\int_{0}^{\infty} v^{s} d \alpha(v) \int_{0}^{\infty} \frac{1-\exp \left(-w^{2}\right)}{w^{1+2 s}} d w
$$

which proves (3).
Theorem 6. Let T be an operator from E^{\prime} into L_{p}. Then the following statements are equivalent:
(1) $T \in \Lambda_{p}\left(E^{\prime}, L_{p}\right)$.
(2) For one (each) real number q with $0<q<p$ the function $\exp \left(-\|\right.$ Ta $\left.\|^{q}\right)$ is the c.f. of a Radon measure v_{q} on $E\left(v_{q} \in R_{q}(E)\right)$. Moreover, if $0<r<q<p$, then there exists a constant $c(r, q, p)$ (independent of E and T) such that

$$
\lambda_{r}(T)=c(r, q, p)\left\{\int_{E}\|x\|^{r} d v_{q}(x)\right\}^{1 / r}
$$

Proof. It is shown in [4] that (2) implies (1) if (2) is satisfied for one $q<p$.

Now we choose $T \in \Lambda_{p}\left(E^{\prime}, L_{p}\right)$ and our aim is to show that $\exp \left(-\|T a\|^{q}\right)$ defines the c.f. of a Radon measure on E. We put

$$
v_{q}(B):=\int_{0}^{\infty} \mu\left(v^{-1 / p} B\right) d \alpha(v)
$$

where $B \subseteq E$ is a Borel subset, $\mu \in R_{p}(E)$ is defined by \dot{T}, and α denotes the probability measure on $[0, \infty)$ constructed in Lemma 2. Clearly, v_{q} is a Radon measure on E (it is σ-additive and concentrated on the separable support of μ). Next we calculate the c.f. of $\boldsymbol{v}_{\boldsymbol{q}}$:

$$
\begin{aligned}
\hat{v}_{q}(a) & =\int_{E} \exp (i\langle x, a\rangle) d v_{q}(x)=\int_{E} \int_{0}^{\infty} \exp \left(i\left\langle v^{1 / p} x, a\right\rangle\right) d \alpha(v) d \mu(x) \\
& =\int_{0}^{\infty} \hat{\mu}\left(v^{1 / p} a\right) d \alpha(v)=\int_{0}^{\infty} \exp \left(-v\|T a\|^{p}\right) d \alpha(v)=\exp \left(-\|T a\|^{q}\right)
\end{aligned}
$$

This proves (2).
Now, if $0<r<q$, we get

$$
\begin{aligned}
\left\{\int_{E}\|x\|^{r} d v_{q}(x)\right\}^{1 / r} & =\left\{\int_{E}^{\infty} \int_{0}^{\infty} v^{r / p} d \alpha(v)\|x\|^{r} d \mu(x)\right\}^{1 / r} \\
& =\lambda_{r}(T)\left\{\int_{0}^{\infty} v^{r / p} d \alpha(v)\right\}^{1 / r}
\end{aligned}
$$

The last integral is finite because $s=r / p<q / p$. Putting

$$
c(r, q, p)=\left\{\int_{0}^{\infty} v^{r / p} d \alpha(v)\right\}^{-1 / r}
$$

we obtain the result.
The next corollary was shown in [12]. It is an immediate consequence of Theorem 6 in the case $p=2$.

Corollary 2. Let R be an operator from E^{\prime} into E which is positive ($\langle R a, a\rangle$ $\left.\geqslant 0, a \in E^{\prime}\right)$ and symmetric $\left(\langle R a, b\rangle=\langle R b, a\rangle, a, b \in E^{\prime}\right)$. Then R is a Gaussian covariance, i.e., $\exp (-\langle R a, a\rangle)$ is the c.f. of a Radon measure, iff for some (each) q with $0<q<2$ the function $\exp \left(-\langle R a, a\rangle^{q / 2}\right)$ is the c.f. of a Radon measure on E.

Corollary 3. If $0<q \leqslant p \leqslant 2$, then $\mathscr{A}_{q} \subseteq \mathscr{A}_{p}$.
Proof. Fix $E \in \mathscr{A}_{q}$ and $S, T \in \Lambda_{p}\left(E^{\prime}, L_{p}\right)$ with $\|T a\| \leqslant\|S a\|$. Since this implies $\|T a\|^{q} \leqslant\|S a\|^{q}$, we infer from Theorem 6 that there exist $T_{1}, S_{1} \in$ $\in \Lambda_{q}\left(E^{\prime}, L_{q}\right)$ with $\left\|T_{1} a\right\|=\|T a\|^{q},\left\|S_{1} a\right\|=\|S a\|^{q}$, and for $r<q \leqslant p$

$$
\lambda_{r}(T)=c(r, q, p) \lambda_{r}\left(T_{1}\right), \quad \lambda_{r}(S)=c(r, q, p) \lambda_{r}\left(S_{1}\right)
$$

Hence $E \in \mathscr{A}_{q}$ and $\|T a\| \leqslant\|S a\|$ imply

$$
\left\|T_{1} a\right\| \leqslant\left\|S_{1} a\right\| \quad \text { and } \quad \lambda_{r}\left(T_{1}\right) \leqslant c \lambda_{r}\left(S_{1}\right)
$$

Consequently, $E \in \mathscr{A}_{p}$.

Our next aim is to prove that the inclusion $\mathscr{A}_{q} \subseteq \mathscr{A}_{p}$ is strict whenever $p>1$ and $0<q<p$. Here we also use the example constructed in [10].

The following two lemmas are proved by exactly the same arguments as used in [10] and [15], respectively.

Lemma 3. For $1 \leqslant s<p \leqslant 2, E \in \mathscr{A}_{p}$ implies $l_{s}(E) \in \mathscr{A}_{p}$, where $l_{s}(E)$ is defined as

$$
l_{s}(E)=\left\{\left(x_{i}\right) \subseteq E ; \sum_{i=1}^{\prime}\left\|x_{i}\right\|^{s}<\infty\right\}
$$

Lemma 4. Assume $1 \leqslant p<2$ and let $E \in \mathscr{A}_{p}$. If, moreover, E is of stable type p, then E is isomorphic to some subspace of $L_{p}(v)$, where v is arbitrary.

Remark. The proof depends mainly on a result of Lindenstrauss and Pelczyński [6].

Theorem 7. Let t and s be real numbers such that $1<t<s \leqslant 2$. Then $l_{s}\left(l_{t}\right) \in \mathscr{A}_{p} \backslash \mathscr{A}_{q}$ provided that $0<q<t<s<p \leqslant 2$.

Proof. It is well known that $l_{s}\left(l_{t}\right)$ is of stable type r whenever $r<t$. Now, if $1 \leqslant r<t$ and $q<r$, then $l_{s}\left(l_{t}\right)$ can belong neither to \mathscr{I}_{r} nor to \mathscr{A}_{q}, since $l_{s}\left(l_{t}\right)$ is not isomorphic to a subspace of $L_{r}(v)$ (cf. [10] and Lemma 4). On the other hand, we have $l_{s}\left(l_{t}\right) \in \mathscr{A}_{p}$ because of Lemma 3 and $l_{t} \in \mathscr{A}_{p}$.

Finally, we want to prove that the property " $E \in \mathscr{A}_{p}$ " is rather strong if 0 $<p<2$. More precisely, we show that in this case E has to be of cotype 2. Particularly, this implies $L_{q} \notin \mathscr{A}_{p}, 2<q \leqslant \infty$ and $0<p<2$.

Theorem 8. If $0<p<2$ and $E \in \mathscr{A}_{p}$, then E is of cotype 2.
Proof. Given p with $0<p<2$ we put $q:=2 /(2-p)$. Let $x_{1}, \ldots, x_{n} \in E$ be arbitrary and let $\beta_{1}, \ldots, \beta_{n}$ be real numbers such that

$$
\sum_{i=1}^{n}\left|\beta_{i}\right|^{q} \leqslant 1
$$

Then we define $\mu, v \in R_{p}(E)$ by

$$
\hat{\mu}(a)=\exp \left(-\sum_{i=1}^{n}\left|\beta_{i}\right|\left|\left\langle x_{i}, a\right\rangle\right|^{p}\right), \quad \hat{v}(a)=\exp \left(-\left(\sum_{i=1}^{n}\left|\left\langle x_{i}, a\right\rangle\right|^{2}\right)^{p / 2}\right)
$$

Using Hölder's inequality we get $\mu \prec v$, which implies

$$
\left\{\mathrm{E}\left\|\sum_{i=1}^{n}\left|\beta_{i}\right|^{1 / p} x_{i} \theta_{i}\right\|^{r}\right\}^{1 / r} \leqslant c\left\{\int_{E}\|x\|^{r} d \nu(x)\right\}^{1 / r} .
$$

But the right - hand side equals

$$
c c(r, p, 2)^{-1}\left\{\mathrm{E}\left\|\sum_{i=1}^{n} x_{i} \gamma_{i}\right\|^{r}\right\}^{1 / r}
$$

(see Theorem 6) and the left-hand side can be estimated by

$$
\left(\sum_{i=1}^{n}\left|\beta_{i}\right|\left\|x_{i}\right\|^{p}\right)^{1 / p} \leqslant c^{\prime}\left(E\left\|\sum_{i=1}^{n}\left|\beta_{i}\right|^{1 / p} x_{i} \theta_{i}\right\|^{r}\right)^{1 / r} .
$$

Here $\gamma_{1}, \ldots, \gamma_{n}$ denotes an independent sequence of standard Gaussian r.v.'s. Now, taking the supremum over all $\beta_{1}, \ldots, \beta_{n}$,

$$
\sum_{i=1}^{n}\left|\beta_{i}\right|^{q} \leqslant 1
$$

we get

$$
\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{2}\right)^{1 / 2} \leqslant c^{\prime \prime}\left(\mathrm{E}\left\|\sum_{i=1}^{n} x_{i} y_{i}\right\|^{r}\right)^{1 / r} \leqslant c^{\prime \prime}\left(\mathrm{E}\left\|\sum_{i=1}^{n} x_{i} y_{i}\right\|^{2}\right)^{1 / 2}
$$

Thus, E is of cotype 2 .

References

[1] A. de Acosta, Asymptotic behaviour of stable measures, Ann. Probability 5 (1977), p. 494499.
[2] A. Badrikian et S. Chevet, Mesures cylindriques, espaces de Wiener et fonctions aléatoires gaussiennes, Lecture Notes in Math. 379 (1974).
[3] K. Ito and M. Nisio, On the convergence of sums of independent Banach space valued random variables, Osaka J. Math. 5 (1968), p. 35-48.
[4] W. Linde, Operators generating stable measures on Banach spaces, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 60 (1982), p. 171-184.
[5] - V. Mandrekar and A. Weron, p-stable measures and absolutely summing operators, Lecture Notes in Math. 828 (1980), p. 167-178.
[6] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in \mathscr{L}_{p}-spaces and their applications, Studia Math. 29 (1968), p. 275-326.
[7] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, Vol. I. Sequence spaces, Berlin-Heidelberg-New York 1978.
[8] V. Mandrekar and A. Weron, α-stable characterization of Banach spaces $(1<\alpha<2)$, preprint, 1979.
[9] B. Maurey, Espaces de cotype p, $0<p \leqslant 2$, Sém. Maurey -Schwartz, Exp. 7, 1972/73.
[10] D. Mouchtari, Spaces of cotype $p(0 \leqslant p \leqslant 2)$, Theor. Probability Appl. 24 (1980), p. 105118.
[11] G. Pisier, Type de espaces normes, C. R. Acad. Sci. Paris 276 (1973), p. 1673-1676.
[12] A. Rack auskas, Remark on stable laws on Banach spaces, Litovsk. Mat. Sb. 19 (1979), p. 161-165.
[13] D. H. Thang and N. Z. Tien, Mapping of stable cylindrical measures in Banach spaces, preprint, 1980.
[14] N. Z. Tien, and A. Weron, Banach spaces related to α-stable measures, Lecture Notes in Math. 828 (1980), p. 309-317.
[15] A. Tortrat, Lois $e(\lambda)$ dans les espaces vectorielles et lois stables, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 37 (1976), p. 175-182.

Sektion Mathematik
Friedrich-Schiller-Universităt Jena, GDR

Received on 9. 10. 1980

