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" Abstract. Let p and v be symmetric Gaussian probability
measures on a Banach space E and let E' be the dual of E. Then, as
is well known, the inequality

f1¢x, a)lzd/,t_(x) j'l(x a)lzdv(x) for all ack'
E N

implies
U2 dp ) < § IxllZ dv ().
E 'E .

If we replace Gaussian measures by p-stable ones (0 < p < 2),
the property does not hold. Thus we consider the class .o/, of ‘such
Banach spaces, where a-generalization to the p-stable case is true.
Furthermore, we give relations of s7, to some other classes of Banach' -
spaces and we get also inclusion properties of .2/, 0 < p < 2. Recently,
similar classes of Banach spaces have been mvestlgated by Mandrekar,
Thang, Tien, and Weron.

 Given a real number p, O<p<2, we 1nvest1gate Banach spaces E havmg
the following property:
If 0.<r <p, then there exists a constant ¢ > 1 such that the mequahty

(+) Il(x a)l" dp x) < II(X a)l'JV(X)

for all aeE’ (E' is the dual of E) 1mphes
IIIVII'dﬂ(X) 4 IIIXH'dV(x)

for all p-stable symmetric Radon measures p and von E.
It is well known (cf [2]) that every Banach space has th1s property in the
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Gaussian case, i.e., for p = 2. But there are examples of Banach spaces where
such a constant does not exist for any p<2, eg, L;, 2<q<-00.

We characterize Banach spaces having this property in terms of inequal-
n

ities of sums Z x;0;, where x,, ..., x,€E and 0,, 0,, ... is an independent
i=1

sequence of standard p-stable real random variables.

Using ideas of [10] we prove that the property becomes stronger if p is
lessened and that there are examples of Banach spaces satlsfymg such an
inéquality for some p > 1, but not for any g < p.

Finally, we show-that every Banach space having this property must be
of cotype 2 in the sense of [9] whenever 0 < p < 2.

It is not known whether or not the above - mentioned property comc:des

.. with the property “stable cotype p” in the sense of [10], 0 < p < 2.

1. Notation and definitions. E always denotes a real Banach space, E' its
dual, and unless otherwise stated p is a real number with 0 < p < 2. The set

- of all p-stable symmetric Radon measures on E will be denoted by R,(E).

Let us recall that a symmetric Radon measure y is p-stable if its characteris-
tic function (cf) ji can be written as

fi(a) = exp(~[ITalf’), ackE’

"~ where T 'is an operator from E’ into some L,.

Given u, veR,(E) we write
u<v

provided that (*) holds for some (each) ¥ with 0 < r < p, which is equivalent
to '

(@) < fi(@), ackE,
or

uixeE;Kx,a)| =21} <vi{xeE;|Kx,a)| =1}, ackE.

By an E- valued random variable (r.v) we mean a strongly measurable
mapping ¢ from a probability space (2, P) into E. Its dlstrxbutlon dist(¢) is
defined by

dlst(<p)(B) — P{p(w)eB},

where B is a Borel subset of E. Then dist (¢) deﬁnes a Radon measure on E.

In general, L, means L,(Q, P) unless otherwise stated. For fixed p we
denote by 04, 0,, ... a sequence of independent real r.v.’s with cf. exp(—|t}).

A Banach space E is of stable type p (cf. [11]) if there is a constant ¢ > 0
such that

n | n '
E) X =0l <c{ X IxiPy"
i= . i=
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for some r with 0 <r < p and all x, ..., x,€E (E means the expectation).
E is said to be of cotype 2 if

n - n
1/2 241/2
(X Ixd?} ™ < e {E[| Y xanll ™}
i=1 i=1

for some ¢>0 and all x,, ..., x,€E, where 7,, y,, ... is an independent
sequence of standard Gaussian r.v.’s. ‘

2. The space A,(E', L,). Here we want to recall some deﬁmtlons and
results of [4] whnch will be used in the sequel. -

A,(E!, L,) denotes the set of all operators T from E’ into L, for which
exp(—llTaIl”) is the cf. of a Radon measure up. Clearly, ureR, (E) whenever
TeA,(E, L,).

If we put”

A (T) 1= J Il dpr (1Y, 0 <7 <p,

the space A,(E’, L,) becomes a complete normed (1 <r < p) (resp. quam-
normed (0 < r < 1)) space (cf. [4]).

For the 1,(E’, E)-topology on E’ generated by the compact subsets of E,
it is known that each operator TeA,(E’, L)) is continuous with respect to
1.(E’, E) and the norm (quasi-norm) topology on L,.

3. The class /,. Given p with 0<p<2, o/, denotes the class of all

Banach spaces E havmg the following property:
For some (each) r with 0 <r < p there exists a constant ¢ > 1 such that
for all u, veR,(E) with pu <v the estimation

J I dp(x) < ¢ § lIxll” dv(x)
E E

holds. :
As already . mentloned o, is the class of all Banach spaces

For later purposes we reformulate the above definition in terms of
operators in A (E’ L):

A Banach space E belongs to o, if for some (each) r w1th 0 <r < p there
exists-a- constant ¢ > 1 such that for all T, SeA ,(E', L) with || Tal| < ||Sdl|,
acE', the estimation

lr(T‘) < Cl,.(S) o

is valid.

Remark. Theorem 4 of [4] shows that the deﬁmtlon is independent of

the special choice of the number r.

TueoreMm 1. Suppose ||Ta|| < ||Sall, acE', implies TeA, (E’ L,) whenever
SeA,(E, L). Then E belongs to oA,.

6 — Prob. Math. Statist. 3 (2)
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Proof. Assume that E¢.s/,. Then there are operators 7, and S, in
A,(E', L,(2,, P)) such that [|Ta|l<|S,dl, acE, while' 4,(T)>1 and
AS)<2™ " n=1,2,..., for some r < p. Without loss of generality (taking
disjoint unions) we may assume T,, S,eA4,(E', L,) ar_id

1Y Tal’ =3 I1Talr, |3 Sl = X lIS.allr, m=1,2;..
n=1 n=1 n=1 ) n=1

ITall < 1IS,all < cip 4, (S llall < cpt-27"lall

. (cf: [4], ¢, :={E|6/"}'/), we infer that ‘the.o'perators- '

T= Zl-’lj, and S= §1 S,

exist. Moreover, ||Ta|| < ||Sal| acE', and because of the completeness of
A, (E', L,) with respect to A, the operator S belongs to A L,(E', L,). Now, by
assumptlon TeA,(E, ,,) i€, : B

R o0

exp(—llTalI") - exp(— Y. IIT..aI.I"’)

is the cf. of a Radon measure on E.
'If £, is an independent sequence of E - valued r.v.’s with cf. exp(—llTaII")

- then by the Ito-Nisio theorem (cf. [3]) there exists an r.v. ¢ such that

Ele= 3 &lf»0 as m—oo
n=1 .
Since
r(Tn) ‘— {E“é””r]‘l/r

. this contradicts J.,(T,,) 1, proving the theorem.

- CoroLLARY 1. If E is of stable cotype p, 0 < p < 2 in the sense of [10]

~ then E belongs to of,.

" Remark. We do not know whether or rot the converse of Corollary 1 also

0ur next-aim is to prove the converse of Theorem 1 under an addltlonal

property of E. But for this purpose we need

LemMMA 1. Let A;, icl, be a generalized sequence of operators in E such that

sup ||[4jll <0  and lim A;x =x

iel
uniformly on compact subsets of E. If TeA,(E, L)), then
lim 4,(T—-T4)=0.
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Proof. Let 4 = u,; be the Radon measure on E generated by T and put
d= sup (14l

Given ¢ > 0 we choose a compact subset K < E such that

J Il du() < & (200 +dp) "

E\K

Then we find an element 'ioel with

©_sup [l 4x—xlI" < /2 -

xeK

whenever i > iy. Thus
3 (T—=TAY = {f lx—Auxlr du(0)}™"
E

<{t+dy f Ixrdpo+ | llx— Al dp(}” <
\E\K K
provided i > iy. This proves Lemma 1.

THEOREM 2. Let E be a Banach space in </, having the metric approximation
property (m.a.p.) (cf. [7] for the definition). Then for any operator T from E' into
L, and Se A,(E', L,) the inequality ||Tal| < ||Sall, a€E’, implies Te A,(E', L,).

Proof. By assumption there exists a generalized sequence 4;, iel, of
operators of finite rank in E such that

‘ sup |44l <1 and lim A;x =x
iel
uniformly on compact subsets of E. From Lemma 1 we get
lim 4,(S—SA4) = 0. '
Consequently, since
IT(Ai—Apall < |IS(4i—Ajall, ack,i,jel,

there exists an igel such that A,(TA;— TA) < & whenever i, j > i, for given
¢ > 0. By the completeness of A,(E’, L,) with respect to 4,, the generalized
sequence TA; converges to some operator Toe A,(E', L,). It remains to prove
that T=T,. v

Since § is 7.(E’, E)-continuous, so is T, which follows from the inequality
||'7al| < ||Sal|, acE'. Therefore, for each acE’ the generalized sequence TAa
converges to Ta. On the other hand, TAja converges also to Toa because

I TAla~ Toall < ¢4, (TA;—To)llall,

which proves that T = Tj.
Remark. Theorems 1 and 2 combined together give the following:
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If E has the m.a.p, then E belongs to </, iff for every TeL(E', L,) and
SeA,(E, L,) the inequality ||Ta|| < ||Sall, a€E’, implies Te A,(E, L,).

For the last property we refer to [14] or [8].

A careful examination of the proof of Theorem 2 shows that we only used
the estimation in the definition of 27, for the operators T(A;— A4]) and S(4;— A4))
which are of finite rank. This proves the following

THEOREM 3. Let E be a Banach space having the m.a.p. Then E belongs to -+,
_iff for some r with 0 <r < p there exists a constant ¢ 2 1 such that for all ﬁmre-
dtmenszona! subspaces F<E and all p, VER,(F) with p<v.the estimation

J X" dp (o) < ¢ | lixll" dv(x)
F F

holds.”

Remark. If a Banach space E has the m.a.p, then from Theorem 3 it
follows that the property that E belongs to =, depends in fact only on finite -
dimensional subspaces of E.

Now, we give some examples of Banach spaces in &,. The following
theorem is implied also by Corollary 1 and [10].

THEOREM 4. If 1 < q < 2, then every &, - space in the sense of [6] belongs to
o, 0<p<2. .

Proof. Using Theorem 3 it suffices to consider measures p, ve R, (I7) with
u=<v.1If g, 0,, ... denotes a sequence of independent q -stable random vari-
ables, ie., their cf. is exp(—|t|9), then for 0 <r < min (p, q) we get '

{ Ul du(o = |, (5 1<%, el du(x)

Ig i=1

—c [E|Y (xedal du)
Ig i=1

m

B [1Cx 3 el dv() = [l v

where e, ..., e, are the unit vectors of l,',".'

7 Our next aim is to restrict the set of measures in the definition of the class
«/,. More precisely, we show that it suffices to investigate measures ue R, (E)
which can be written as

-

p=dist() x60), x4, ..., x,,éE.
i=1

Note that even if E is finite dimensional, not every measure ueR,(E), 0 < p
< 2, can be written in this way.

THEOREM 5. Suppose E has the m.a.p. Then E belongs to o/, iff for some r with
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0 < r < pthere exists a constant ¢ = 1 such that for all x, ..., Xp, Y1, -z, Ya€E
with

Z |<xia a>lp < Z |<yi5 a>|p’ aeE’,
i=1 i=1

the estimation

EIIZ x0{f < cEHZ vl

is valid.

Proof. Of course, the condition of Theorem 5 is necessary even without
any further assumption. To prove that it is sufficient we use Theorem 3. Let
F < E be finite dimensional and let T and S be operators in A,(F’, L,) such
that || Th|| < ||Sb|| for all be F'. We may assume S to be injective. Otherwise, we
have to take a subspace of F. Given ¢ > 0 we put

& = inf {(1+2)[|Sb|| || Th]|; be F', ||bl| = 1}.

From the mequahty HTh)| < ||Sh|| and the compactness of the unit sphere of
F' we get 6>0. Next, we approximate T and S by operators
T, Sme A, (F', L,) such that

ITBIP = 3 1<, b, HIS,blIP = 3 1, bYP,  beF,
i=1 i=1

XYy ooy Xy s Vs oovs Y €F. Since 6 > 0, we find a natural number m, with
1Tl < (L+&)lISnbll,  beF', '

whenever m = my. Thus, by assumptlon and the special form of T,, and §,,, we
get

M(To) < e+ 5.
It remains to prove that .
lim 2,(T,) =4,(T) and lim ,(S,) = 4.(S)
Let y,,,,y be the sequence of measures in R,(F) generated by T,, and T,
respectively. Then, since dim F < oo, u, converges weakly to . On the other
hand, the function x — ||x||" from the Banach space F into the real numbers is

uniformly integrable with respect to {j,}. This follows, e.g., by the results of
[1] (0 < r < p!). Consequently,

lim 2,(T,) = im {| |Ixll" dpt ()} = {] 6l du(x)}"" = 4,(T),
. F F

which completes the proof of the theorem.
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4. Inclusion properties of </,. As the main result in this section we get the
inclusion </, < &/, for 0 < g < p < 2. For this purpose we construct a map-
ping from A,(E’, L,) into A,(E’, L;). The main ideas of this construction can be
found in [10].

LEMMA 2. Assume 0 < q < p < 2. Then there exists a probability measure
on [0, o) such that ‘

(1) exp(—u) = | exp(—ou)dae), ue[0, o),
] 0
) a{0} =0
" (3) for positive s the integral af v da(v) is finite iff s < q/p.
0

Proof. By Schonberg’s theorem (cf. [2]), for t = 2g/p, 0 <t < 2, there!
exists a measure « on [0, oo) such that

ex'p(-w') = cf exp(nuwi)da(v), ﬁe[O, 0).
V] .

Replacing w by v”* we obtain (1).

Putting u =0 we get 1 =a ([0, o0)), i€, a is a probability measure.

Property (2) can be shown by taking the limit as # — oo on both sides of (1)
and using the Lebesgue theorem.

Finally, the integral

1—exp(—u')
f s
0 .
is finite iff 0 <s <1/2 =¢/p. But this integral is equal to

fu“daz()J.l ex1p+(23w iw,

which proves (3).
Tueorem 6. Let T be an operator from E' into L Then the following

--Statements. are equwalent

(1) TeA,(E, L).

(2) For one (each) real number q with 0 < q < p the function exp(—|| Ta||%) is
the cf. of a Radon measure v, on E (v, € R,(E)). Moreover, if 0 <r < q < p, then
there exists a constant c(r, q, p) (independent of E and T) such that

2(T) =c(r, 4, p) {j lIx|I” dv, (x)}".

Proof. It is shown in [4] that (2) 1mphes (1) if (2) is satisfied for one

q<p.
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Now we choose TeA,(E', L,) and our aim is to show that exp(—llTaII")
defines the cf. of a Radon measure on E. We put

vy(B):= I u(v™ % B)do(v),

where B = E is a Borel subset, yeR (E) is defined by T, and a denotes the
probability measure on [0, o) constructed in Lemma 2. Clearly, v, is a Radon
measure on E (it is ¢ - additive and concentrated on the separable support of ).
Next we calculate the cf. of v,

@) = [exp( Cx, @)y - J T expiot, ) da)duts)
_ [ a0 @)da(e) = | exp(—vl| TalP)dx () = exp(—[ITall.
N | R . .0

This proves (2). .
Now, if 0 <r<gq, we get

{f 1l dv, ()} = {f 5‘v"?da(v)uxn'du(x)}”'
E . E0
= a,(T){I v'"’da(v)} .
The last mtegral is ﬁmte because s= r/p < q/p. Puttmg

C(r a&p={]v "”da(v)}

8

1,‘r

Q

we obtain the result. ‘ . o
The next corollary was shown in [12]. It is an immediate consequence of
Theorem 6 in the case p = 2. '

COROLLARY 2. Let R be an operator. from E'-into E which is posmve ((Ra, a) '

> 0, ac E') and symmetric ((Ra, b) = (Rb, a), a, beE'). Then R is a Gaussian
covariance, i.e., exp(— {Ra, a)) is the cf. of a Radon measure, iff for some (each)
q with-0 < q < 2 the function exp(— {Ra, a)¥?) is the cf. of a Radon measure on
COROLLARY 3. If 0<q<p<2, then o/, < A,

Proof. Fix Ee</, and S TeA,(E, ,,) with || 74| < ||Sal|. Since this
implies |[7a)]? < |ISal|%, we infer from Theorem 6 that there exist T;, S; €

(D) =c(r, 4, DA(T), 4 (S)=clr, g, p)z,(s;)} -
Hence Ee s/, and ||Tul| < ||Sa imply :
iTall <ISiall and  4,(Ty) < cA4(Sy). -
Consequently, Ec«/,. ' '
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Our next aim is to prove that the inclusion .o/, = <7, is strict whenever
p>1 and 0 <q < p. Here we also use the example constructed in [10].

The following two lemmas are proved by exactly the same arguments as
used in [10] and [15], respectively.

Lemma 3. For 1<s<p<2, Ec, implies I(E)e&f,,, where I (E) is
defined as

CLE) =) S E; Y IIxllf < o).

i=1
LemMa 4. Assume 1 < p < 2 and let E€ 4, If, moreover, E- is of stable type
P then E is isomorphic to some subspace of L,(v), where v is arbitrary.

Remark. The proof depends mainly on a result of Lindenstrauss and
Pelczynski [6]. :

THEOREM 7. Let t and s be real numbers such rhat 1< t <s<2. Then
L(l)es/, \of, provided that 0 <g<t<s<p<2.

Proof. It is well known that /(1) is of stable type r whenever r < t. Now, if
1 <r <tandq <r, then (/) can belong neither to </, nor to ./, since L () is
not isomorphic to a subspace of L,(v) (cf. [10] and Lemma 4). On the other
hand, we have [(l)e.</, because of Lemma 3 and [ e.«/,.

Finally, we want to prove that the property “Ee.o/,” is rather strong if 0
< p < 2. More precisely, we show that in this case E has to be of cotype 2.
Particularly, this implies L,¢.«/,, 2<g< o and 0 <p<2.

TheoreM 8. If 0 < p <2 and Ec.o/,, then E is of cotype 2.

Proof. Given p with 0 < p < 2 we put g := 2/(2—p). Let x4, ..., x,€E be
arbitrary and let f,, ..., 8, be real numbers such that

¥ 1<t
Then \‘i;e define p, veR,(E) by .
@) = exp(= 3 IBIGw, )P 5@ = exp(~(%, Kx, adPf").
Using Holder’s inequality we get u<v, which inllplies -
T {EHZ":I 1,3,.|1{Px,.9,.||'}1"< cf £ x| dv (x)}'".
But the right-ha:ic_l side equals
cetr, p. 27 HENY, 3o}

1/r

(see Theorem 6) and the left-hand side can be estimated by

(z Bilxd?)” < ¢ (E ||z IB1YP X0 )"
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Here 7,, ..., 7, denotes an independent sequence of standard Gaussian
r.v.’s. Now, taking the supremum over all 8,, ..., f,,

. Z 1ﬂilq < 13
i=1
we get
(X ) <€ R wl) <] X w1

Thus, E is of cotype- 2
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