PROBABILITY AND MATHEMATICAL STATISTICS

Vol. 3, Fasc. 2 (1984), p. 205-215

INEQUALITIES BETWEEN INTEGRALS OF *p*-STABLE SYMMETRIC MEASURES ON BANACH SPACES

BY

WERNER LINDE AND PETER MATHE (JENA)

Abstract. Let μ and ν be symmetric Gaussian probability measures on a Banach space E and let E' be the dual of E. Then, as is well known, the inequality

$$\int_{E} |\langle x, a \rangle|^2 d\mu(x) \leq \int_{E} |\langle x, a \rangle|^2 d\nu(x) \quad \text{for all } a \in E'$$

implies

$$\int_E ||x||^2 d\mu(x) \leq \int_E ||x||^2 d\nu(x).$$

If we replace Gaussian measures by *p*-stable ones (0 , $the property does not hold. Thus we consider the class <math>\mathscr{A}_p$ of such Banach spaces, where a generalization to the *p*-stable case is true. Furthermore, we give relations of \mathscr{A}_p to some other classes of Banach spaces and we get also inclusion properties of \mathscr{A}_p , 0 . Recently,similar classes of Banach spaces have been investigated by Mandrekar,Thang, Tien, and Weron.

Given a real number p, 0 , we investigate Banach spaces E having the following property:

If 0 < r < p, then there exists a constant $c \ge 1$ such that the inequality

(*)
$$\int_{E} |\langle x, a \rangle|^{r} d\mu(x) \leq \int_{E} |\langle x, a \rangle|^{r} dv(x)$$

for all $a \in E'$ (E' is the dual of E) implies

$$\int_E ||x||^r d\mu(x) \leq c^r \int_E ||x||^r d\nu(x)$$

for all p-stable symmetric Radon measures μ and v on E.

It is well known (cf. [2]) that every Banach space has this property in the

W. Linde and P. Mathé

Gaussian case, i.e., for p = 2. But there are examples of Banach spaces where such a constant does not exist for any p < 2, e.g., L_q , $2 < q \le \infty$.

We characterize Banach spaces having this property in terms of inequalities of sums $\sum_{i=1}^{n} x_i \theta_i$, where $x_1, \ldots, x_n \in E$ and $\theta_1, \theta_2, \ldots$ is an independent

sequence of standard *p*-stable real random variables.

Using ideas of [10] we prove that the property becomes stronger if p is lessened and that there are examples of Banach spaces satisfying such an inequality for some p > 1, but not for any q < p.

Finally, we show that every Banach space having this property must be of cotype 2 in the sense of [9] whenever 0 .

It is not known whether or not the above-mentioned property coincides with the property "stable cotype p" in the sense of [10], 0 .

1. Notation and definitions. E always denotes a real Banach space, E' its dual, and unless otherwise stated p is a real number with $0 . The set of all p-stable symmetric Radon measures on E will be denoted by <math>R_p(E)$. Let us recall that a symmetric Radon measure μ is p-stable if its characteristic function (c.f.) $\hat{\mu}$ can be written as

$$\hat{\mu}(a) = \exp(-||Ta||^p), \quad a \in E',$$

where T is an operator from E' into some L_p .

Given μ , $v \in R_p(E)$ we write

 $\mu < \nu$

provided that (*) holds for some (each) r with 0 < r < p, which is equivalent to

$$\hat{v}(a) \leq \hat{\mu}(a), \quad a \in E',$$

or

$$\mu\{x \in E; |\langle x, a \rangle| \ge 1\} \le \nu\{x \in E; |\langle x, a \rangle| \ge 1\}, \quad a \in E'.$$

By an *E*-valued random variable (r.v.) we mean a strongly measurable mapping φ from a probability space (Ω, P) into *E*. Its distribution dist (φ) is defined by

dist $(\varphi)(B) := P \{\varphi(\omega) \in B\},\$

where B is a Borel subset of E. Then dist (φ) defines a Radon measure on E.

In general, L_p means $L_p(\Omega, P)$ unless otherwise stated. For fixed p we denote by $\theta_1, \theta_2, \ldots$ a sequence of independent real r.v.'s with c.f. $\exp(-|t|^p)$. A Banach space E is of stable type p (cf. [11]) if there is a constant $c \ge 0$

such that

$$\left\{ \mathbf{E} \left\| \sum_{i=1}^{n} x_{i} \theta_{i} \right\|^{r} \right\}^{1/r} \leq c \left\{ \sum_{i=1}^{n} \|x_{i}\|^{p} \right\}^{1/p}$$

206

p-stable symmetric measures

for some r with 0 < r < p and all $x_1, ..., x_n \in E$ (E means the expectation). E is said to be of cotype 2 if

$$\left\{\sum_{i=1}^{n} \|x_{i}\|^{2}\right\}^{1/2} \leq c \left\{E\left\|\sum_{i=1}^{n} x_{i}\gamma_{i}\right\|^{2}\right\}^{1/2}$$

for some $c \ge 0$ and all $x_1, \ldots, x_n \in E$, where $\gamma_1, \gamma_2, \ldots$ is an independent sequence of standard Gaussian r.v.'s.

2. The space $\Lambda_p(E', L_p)$. Here we want to recall some definitions and results of [4] which will be used in the sequel.

 $\Lambda_p(E', L_p)$ denotes the set of all operators T from E' into L_p for which $\exp(-||Ta||^p)$ is the c.f. of a Radon measure μ_T . Clearly, $\mu_T \in R_p(E)$ whenever $T \in \Lambda_p(E', L_p)$.

If we put

$$\lambda_r(T) := \left\{ \int_{T} ||x||^r \, d\mu_T(x) \right\}^{1/r}, \quad 0 < r < p,$$

the space $\Lambda_p(E', L_p)$ becomes a complete normed $(1 \le r < p)$ (resp. quasi-normed $(0 \le r < 1)$) space (cf. [4]).

For the $\tau_c(E', E)$ -topology on E' generated by the compact subsets of E, it is known that each operator $T \in \Lambda_p(E', L_p)$ is continuous with respect to $\tau_c(E', E)$ and the norm (quasi-norm) topology on L_p .

3. The class \mathscr{A}_p . Given p with $0 , <math>\mathscr{A}_p$ denotes the class of all Banach spaces E having the following property:

For some (each) r with 0 < r < p there exists a constant $c \ge 1$ such that for all μ , $v \in R_p(E)$ with $\mu < v$ the estimation

$$\int_E ||x||^r d\mu(x) \le c^r \int_E ||x||^r d\nu(x)$$

holds.

As already mentioned, \mathscr{A}_2 is the class of all Banach spaces.

For later purposes we reformulate the above definition in terms of operators in $\Lambda_p(E', L_p)$:

A Banach space E belongs to \mathscr{A}_p if for some (each) r with 0 < r < p there exists a constant $c \ge 1$ such that for all $T, S \in \mathcal{A}_p(E', L_p)$ with $||Ta|| \le ||Sa||$, $a \in E'$, the estimation

$$\lambda_r(T) \leqslant c\lambda_r(S)$$

is valid.

Remark. Theorem 4 of [4] shows that the definition is independent of the special choice of the number r.

THEOREM 1. Suppose $||Ta|| \leq ||Sa||$, $a \in E'$, implies $T \in A_p(E', L_p)$ whenever $S \in A_p(E', L_p)$. Then E belongs to \mathcal{A}_p .

6 - Prob. Math. Statist. 3 (2)

Proof. Assume that $E \notin \mathcal{A}_p$. Then there are operators T_n and S_n in $\mathcal{A}_p(E', L_p(\Omega_n, P_n))$ such that $||T_n a|| \leq ||S_n a||$, $a \in E'$, while $\lambda_r(T_n) \geq 1$ and $\lambda_r(S_n) \leq 2^{-n}$, n = 1, 2, ..., for some r < p. Without loss of generality (taking disjoint unions) we may assume $T_n, S_n \in \mathcal{A}_p(E', L_p)$ and

$$\left\|\sum_{n=1}^{m} T_{n}a\right\|^{p} = \sum_{n=1}^{m} \|T_{n}a\|^{p}, \quad \left\|\sum_{n=1}^{m} S_{n}a\right\|^{p} = \sum_{n=1}^{m} \|S_{n}a\|^{p}, \quad m = 1, 2, \ldots$$

Using

$$|T_n a|| \le ||S_n a|| \le c_{rp}^{-1} \lambda_r(S_n) ||a|| \le c_{rp}^{-1} \cdot 2^{-n} ||a||$$

(cf. [4], $c_{rp} := \{ E | \theta_1 |^r \}^{1/r} \}$, we infer that the operators

$$T = \sum_{n=1}^{\infty} T_n$$
 and $S = \sum_{n=1}^{\infty} S_n$

exist. Moreover, $||Ta|| \leq ||Sa||$, $a \in E'$, and because of the completeness of $\Lambda_p(E', L_p)$ with respect to λ_r the operator S belongs to $\Lambda_p(E', L_p)$. Now, by assumption, $T \in \Lambda_p(E', L_p)$, i.e.,

$$\exp(-||Ta||^p) = \exp(-\sum_{n=1}^{\infty} ||T_na||^p)$$

is the c.f. of a Radon measure on E.

If ξ_n is an independent sequence of *E*-valued r.v.'s with c.f. $\exp(-||T_na||^p)$, then by the Ito-Nisio theorem (cf. [3]) there exists an r.v. ξ such that

$$\mathbb{E} \left\| \xi - \sum_{n=1}^{m} \xi_n \right\|^r \to 0 \quad \text{as } m \to \infty$$

Since

$$\lambda_r(T_n) = \{ E \| \xi_n \|^r \}^{1/r},$$

this contradicts $\lambda_r(T_n) \ge 1$, proving the theorem.

COROLLARY 1. If E is of stable cotype p, $0 , in the sense of [10], then E belongs to <math>\mathcal{A}_p$.

Remark. We do not know whether or not the converse of Corollary 1 also holds.

Our next aim is to prove the converse of Theorem 1 under an additional property of E. But for this purpose we need

LEMMA 1. Let A_i , $i \in I$, be a generalized sequence of operators in E such that

$$\sup_{i\in I} ||A_i|| < \infty \quad and \quad \lim A_i x = x$$

uniformly on compact subsets of E. If $T \in A_p(E', L_p)$, then

$$\lim_{i\in I}\lambda_r(T-TA_i)=0.$$

p-stable symmetric measures

Proof. Let $\mu = \mu_T$ be the Radon measure on E generated by T and put

$$d = \sup_{i \in I} \|A_i\|.$$

Given $\varepsilon > 0$ we choose a compact subset $K \subseteq E$ such that

$$\int_{E\setminus K} ||x||^r d\mu(x) \leq \varepsilon^r (2(1+d)^r)^{-1}.$$

Then we find an element $i_0 \in I$ with

$$\sup_{x \in K} ||A_i x - x||^r \leq \varepsilon^r / 2$$

whenever $i > i_0$. Thus

$$\lambda_{r}(T - TA_{i}) = \left\{ \int_{E} ||x - A_{i}x||^{r} d\mu(x) \right\}^{1/r}$$

$$\leq \left\{ (1 + d)^{r} \int_{E \setminus K} ||x||^{r} d\mu(x) + \int_{K} ||x - A_{i}x||^{r} d\mu(x) \right\}^{1/r} \leq \varepsilon$$

provided $i > i_0$. This proves Lemma 1.

THEOREM 2. Let E be a Banach space in \mathscr{A}_p having the metric approximation property (m.a.p.) (cf. [7] for the definition). Then for any operator T from E' into L_p and $S \in \mathcal{A}_p(E', L_p)$ the inequality $||Ta|| \leq ||Sa||$, $a \in E'$, implies $T \in \mathcal{A}_p(E', L_p)$.

Proof. By assumption there exists a generalized sequence A_i , $i \in I$, of operators of finite rank in E such that

 $\sup_{i \in I} ||A_i|| \le 1 \quad \text{and} \quad \lim A_i x = x$

uniformly on compact subsets of E. From Lemma 1 we get

$$\lim \lambda_r (S - SA_i) = 0.$$

Consequently, since

$$||T(A'_i - A'_i)a|| \leq ||S(A'_i - A'_i)a||, \quad a \in E', i, j \in I,$$

there exists an $i_0 \in I$ such that $\lambda_r(TA'_i - TA'_j) < \varepsilon$ whenever $i, j > i_0$ for given $\varepsilon > 0$. By the completeness of $\Lambda_p(E', L_p)$ with respect to λ_r , the generalized sequence TA'_i converges to some operator $T_0 \in \Lambda_p(E', L_p)$. It remains to prove that $T = T_0$.

Since S is $\tau_c(E', E)$ -continuous, so is T, which follows from the inequality $||Ta|| \leq ||Sa||$, $a \in E'$. Therefore, for each $a \in E'$ the generalized sequence TA'_ia converges to Ta. On the other hand, TA'_ia converges also to T_0a because

$$||TA_i'a - T_0a|| \leq c_{rp}^{-1}\lambda_r(TA_i' - T_0)||a||,$$

which proves that $T = T_0$.

Remark. Theorems 1 and 2 combined together give the following:

W. Linde and P. Mathé

If E has the m.a.p., then E belongs to \mathcal{A}_p iff for every $T \in L(E', L_p)$ and $S \in \mathcal{A}_p(E', L_p)$ the inequality $||Ta|| \leq ||Sa||$, $a \in E'$, implies $T \in \mathcal{A}_p(E', L_p)$.

For the last property we refer to [14] or [8].

A careful examination of the proof of Theorem 2 shows that we only used the estimation in the definition of \mathscr{A}_p for the operators $T(A'_i - A'_j)$ and $S(A'_i - A'_j)$ which are of finite rank. This proves the following

THEOREM 3. Let E be a Banach space having the m.a.p. Then E belongs to \mathscr{A}_p iff for some r with 0 < r < p there exists a constant $c \ge 1$ such that for all finitedimensional subspaces $F \subseteq E$ and all $\mu, \nu \in \mathbb{R}_p(F)$ with $\mu \prec \nu$ the estimation

$$\int_{F} ||x||^r d\mu(x) \leq c^r \int_{F} ||x||^r d\nu(x)$$

holds.

Remark. If a Banach space E has the m.a.p., then from Theorem 3 it follows that the property that E belongs to \mathcal{A}_p depends in fact only on finite-dimensional subspaces of E.

Now, we give some examples of Banach spaces in \mathcal{A}_p . The following theorem is implied also by Corollary 1 and [10].

THEOREM 4. If $1 \le q \le 2$, then every \mathcal{L}_q -space in the sense of [6] belongs to \mathcal{A}_p , 0 .

Proof. Using Theorem 3 it suffices to consider measures μ , $\nu \in R_p(l_q^m)$ with $\mu \prec \nu$. If $\varrho_1, \varrho_2, \ldots$ denotes a sequence of independent q-stable random variables, i.e., their c.f. is $\exp(-|t|^q)$, then for $0 < r < \min(p, q)$ we get

$$\begin{split} \int_{l_{q}}^{m} ||x||^{r} d\mu(x) &= \int_{l_{q}}^{m} \left(\sum_{i=1}^{m} |\langle x, e_{i} \rangle|^{q} \right)^{r/q} d\mu(x) \\ &= c_{rq}^{-r} \int_{l_{q}}^{m} E \left| \sum_{i=1}^{m} \langle x, e_{i} \rangle \varrho_{i} \right|^{r} d\mu(x) \\ &\leq c_{rq}^{-r} E \int_{l_{q}}^{m} \left| \langle x, \sum_{i=1}^{m} e_{i} \varrho_{i} \rangle \right|^{r} dv(x) = \int_{l_{q}}^{m} ||x||^{r} dv(x), \end{split}$$

where e_1, \ldots, e_m are the unit vectors of l_q^m .

Our next aim is to restrict the set of measures in the definition of the class \mathscr{A}_p . More precisely, we show that it suffices to investigate measures $\mu \in R_p(E)$ which can be written as

$$\mu = \operatorname{dist}\left(\sum_{i=1}^{n} x_{i}\theta_{i}\right), \quad x_{1}, \ldots, x_{n} \in E.$$

Note that even if E is finite dimensional, not every measure $\mu \in R_p(E)$, 0 , can be written in this way.

THEOREM 5. Suppose E has the m.a.p. Then E belongs to \mathcal{A}_p iff for some r with

210

0 < r < p there exists a constant $c \ge 1$ such that for all $x_1, \ldots, x_n, y_1, \ldots, y_n \in E$ with

$$\sum_{i=1}^{n} |\langle x_i, a \rangle|^p \leq \sum_{i=1}^{n} |\langle y_i, a \rangle|^p, \quad a \in E',$$

the estimation

$$\mathbf{E} \left\| \sum_{i=1}^{n} x_{i} \theta_{i} \right\|^{r} \leq c^{r} \mathbf{E} \left\| \sum_{i=1}^{n} y_{i} \theta_{i} \right\|^{r}$$

is valid.

Proof. Of course, the condition of Theorem 5 is necessary even without any further assumption. To prove that it is sufficient we use Theorem 3. Let $F \subseteq E$ be finite dimensional and let T and S be operators in $A_p(F', L_p)$ such that $||Tb|| \leq ||Sb||$ for all $b \in F'$. We may assume S to be injective. Otherwise, we have to take a subspace of F. Given $\varepsilon > 0$ we put

$$\delta = \inf \{ (1+\varepsilon) ||Sb|| - ||Tb||; b \in F', ||b|| = 1 \}.$$

From the inequality $||Tb|| \leq ||Sb||$ and the compactness of the unit sphere of F' we get $\delta > 0$. Next, we approximate T and S by operators $T_m, S_m \in \Lambda_p(F', L_p)$ such that

$$||T_m b||^p = \sum_{i=1}^{n_m} |\langle x_i^m, b \rangle|^p, \quad ||S_m b||^p = \sum_{i=1}^{n_m} |\langle y_i^m, b \rangle|^p, \quad b \in F',$$

 $x_1^m, \ldots, x_{n_m}^m, y_1^m, \ldots, y_{n_m}^m \in F$. Since $\delta > 0$, we find a natural number m_0 with

$$||T_m b|| \leq (1+\varepsilon) ||S_m b||, \quad b \in F',$$

whenever $m \ge m_0$. Thus, by assumption and the special form of T_m and S_m , we get

$$\lambda_r(T_m) \leqslant c \, (1+\varepsilon) \, \lambda_r(S_m).$$

It remains to prove that

$$\lim \lambda_r(T_m) = \lambda_r(T) \quad \text{and} \quad \lim \lambda_r(S_m) = \lambda_r(S)$$

Let μ_m , μ be the sequence of measures in $R_p(F)$ generated by T_m and T, respectively. Then, since dim $F < \infty$, μ_m converges weakly to μ . On the other hand, the function $x \to ||x||'$ from the Banach space F into the real numbers is uniformly integrable with respect to $\{\mu_m\}$. This follows, e.g., by the results of [1] (0 < r < p!). Consequently,

$$\lim \lambda_r(T_m) = \lim \left\{ \int_F ||x||^r \, d\mu_m(x) \right\}^{1/r} = \left\{ \int_F ||x||^r \, d\mu(x) \right\}^{1/r} = \lambda_r(T),$$

which completes the proof of the theorem.

4. Inclusion properties of \mathscr{A}_p . As the main result in this section we get the inclusion $\mathscr{A}_q \subseteq \mathscr{A}_p$ for $0 < q \leq p \leq 2$. For this purpose we construct a mapping from $\Lambda_p(E', L_p)$ into $\Lambda_q(E', L_q)$. The main ideas of this construction can be found in [10].

LEMMA 2. Assume $0 < q < p \leq 2$. Then there exists a probability measure α on $[0, \infty)$ such that

(1) $\exp(-u^q) = \int_0^\infty \exp(-vu^p) d\alpha(v), \ u \in [0, \infty),$ (2) $\alpha\{0\} = 0,$

(3) for positive s the integral $\int_{0}^{\infty} v^{s} d\alpha(v)$ is finite iff s < q/p.

Proof. By Schönberg's theorem (cf. [2]), for t = 2q/p, 0 < t < 2, there exists a measure α on $[0, \infty)$ such that

$$\exp(-w') = \int_0^\infty \exp(-vw^2) d\alpha(v), \quad w \in [0, \infty).$$

Replacing w by $u^{p/2}$ we obtain (1).

Putting u = 0 we get $1 = \alpha$ ([0, ∞)), i.e., α is a probability measure. Property (2) can be shown by taking the limit as $u \to \infty$ on both sides of (1) and using the Lebesgue theorem.

Finally, the integral

$$\int \frac{1-\exp(-u^t)}{u^{1+2s}} du$$

is finite iff 0 < s < t/2 = q/p. But this integral is equal to

$$\int_{0}^{\infty} v^{s} d\alpha(v) \int_{0}^{\infty} \frac{1 - \exp(-w^{2})}{w^{1+2s}} dw,$$

which proves (3).

THEOREM 6. Let T be an operator from E' into L_p . Then the following statements are equivalent:

(1) $T \in A_p(E', L_p)$.

(2) For one (each) real number q with 0 < q < p the function $\exp(-||Ta||^q)$ is the c.f. of a Radon measure v_q on $E(v_q \in R_q(E))$. Moreover, if 0 < r < q < p, then there exists a constant c(r, q, p) (independent of E and T) such that

$$\lambda_{r}(T) = c(r, q, p) \left\{ \int ||x||^{r} dv_{q}(x) \right\}^{1/r}.$$

Proof. It is shown in [4] that (2) implies (1) if (2) is satisfied for one q < p.

p-stable symmetric measures

Now we choose $T \in \Lambda_p(E', L_p)$ and our aim is to show that $\exp(-||Ta||^q)$ defines the c.f. of a Radon measure on E. We put

$$v_q(B) := \int_0^\infty \mu(v^{-1/p} B) d\alpha(v),$$

where $B \subseteq E$ is a Borel subset, $\mu \in R_p(E)$ is defined by T, and α denotes the probability measure on $[0, \infty)$ constructed in Lemma 2. Clearly, ν_q is a Radon measure on E (it is σ -additive and concentrated on the separable support of μ). Next we calculate the c.f. of ν_q :

$$\widehat{v}_q(a) = \int_E \exp(i\langle x, a \rangle) dv_q(x) = \int_E \int_0^\infty \exp(i\langle v^{1/p} x, a \rangle) d\alpha(v) d\mu(x)$$
$$= \int_0^\infty \widehat{\mu}(v^{1/p} a) d\alpha(v) = \int_0^\infty \exp(-v ||Ta||^p) d\alpha(v) = \exp(-||Ta||^q).$$

This proves (2).

Now, if 0 < r < q, we get

$$\left\{ \int_{E} ||x||^{r} dv_{q}(x) \right\}^{1/r} = \left\{ \int_{E} \int_{0}^{\infty} v^{r/p} d\alpha(v) ||x||^{r} d\mu(x) \right\}^{1/r}$$
$$= \lambda_{r}(T) \left\{ \int_{0}^{\infty} v^{r/p} d\alpha(v) \right\}^{1/r}.$$

The last integral is finite because s = r/p < q/p. Putting

$$c(r, q, p) = \left\{\int_{0}^{\infty} v^{r/p} d\alpha(v)\right\}^{-1/p}$$

we obtain the result.

The next corollary was shown in [12]. It is an immediate consequence of Theorem 6 in the case p = 2.

COROLLARY 2. Let R be an operator from E' into E which is positive ($\langle Ra, a \rangle \ge 0$, $a \in E'$) and symmetric ($\langle Ra, b \rangle = \langle Rb, a \rangle$, $a, b \in E'$). Then R is a Gaussian covariance, i.e., $\exp(-\langle Ra, a \rangle)$ is the cf. of a Radon measure, iff for some (each) q with 0 < q < 2 the function $\exp(-\langle Ra, a \rangle^{q/2})$ is the cf. of a Radon measure on E.

COROLLARY 3. If $0 < q \leq p \leq 2$, then $\mathcal{A}_q \subseteq \mathcal{A}_p$.

Proof. Fix $E \in \mathcal{A}_q$ and S, $T \in \Lambda_p(E', L_p)$ with $||Ta|| \leq ||Sa||$. Since this implies $||Ta||^q \leq ||Sa||^q$, we infer from Theorem 6 that there exist $T_1, S_1 \in A_q(E', L_q)$ with $||T_1a|| = ||Ta||^q$, $||S_1a|| = ||Sa||^q$, and for $r < q \leq p$

$$\lambda_r(T) = c(r, q, p)\lambda_r(T_1), \quad \lambda_r(S) = c(r, q, p)\lambda_r(S_1).$$

Hence $E \in \mathscr{A}_q$ and $||Ta|| \leq ||Sa||$ imply

$$||T_1a|| \leq ||S_1a||$$
 and $\lambda_r(T_1) \leq c\lambda_r(S_1)$.

Consequently, $E \in \mathscr{A}_p$.

Our next aim is to prove that the inclusion $\mathscr{A}_q \subseteq \mathscr{A}_p$ is strict whenever p > 1 and 0 < q < p. Here we also use the example constructed in [10].

The following two lemmas are proved by exactly the same arguments as used in [10] and [15], respectively.

LEMMA 3. For $1 \leq s , <math>E \in \mathcal{A}_p$ implies $l_s(E) \in \mathcal{A}_p$, where $l_s(E)$ is defined as

$$l_s(E) = \{(x_i) \subseteq E; \sum_{i=1}^{2} ||x_i||^s < \infty \}.$$

LEMMA 4. Assume $1 \le p < 2$ and let $E \in \mathcal{A}_p$. If, moreover, E is of stable type p, then E is isomorphic to some subspace of $L_p(v)$, where v is arbitrary.

Remark. The proof depends mainly on a result of Lindenstrauss and Pełczyński [6].

THEOREM 7. Let t and s be real numbers such that $1 < t < s \le 2$. Then $l_s(l_t) \in \mathcal{A}_p \setminus \mathcal{A}_q$ provided that $0 < q < t < s < p \le 2$.

Proof. It is well known that $l_s(l_t)$ is of stable type r whenever r < t. Now, if $1 \le r < t$ and q < r, then $l_s(l_t)$ can belong neither to \mathscr{A}_r nor to \mathscr{A}_q , since $l_s(l_t)$ is not isomorphic to a subspace of $L_r(v)$ (cf. [10] and Lemma 4). On the other hand, we have $l_s(l_t) \in \mathscr{A}_p$ because of Lemma 3 and $l_t \in \mathscr{A}_p$.

Finally, we want to prove that the property " $E \in \mathscr{A}_p$ " is rather strong if $0 . More precisely, we show that in this case E has to be of cotype 2. Particularly, this implies <math>L_q \notin \mathscr{A}_p$, $2 < q \leq \infty$ and 0 .

THEOREM 8. If $0 and <math>E \in \mathcal{A}_p$, then E is of cotype 2.

Proof. Given p with 0 we put <math>q := 2/(2-p). Let $x_1, \ldots, x_n \in E$ be arbitrary and let β_1, \ldots, β_n be real numbers such that

$$\sum_{i=1}^{n} |\beta_i|^q \leqslant 1.$$

Then we define μ , $\nu \in R_n(E)$ by

$$\hat{\mu}(a) = \exp\left(-\sum_{i=1}^{n} |\beta_i| |\langle x_i, a \rangle|^p\right), \quad \hat{\nu}(a) = \exp\left(-\left(\sum_{i=1}^{n} |\langle x_i, a \rangle|^2\right)^{p/2}\right).$$

Using Hölder's inequality we get $\mu \prec v$, which implies

$$\left\{ E \left\| \sum_{i=1}^{n} |\beta_{i}|^{1/p} x_{i} \theta_{i} \right\|^{p} \right\}^{1/r} \leq c \left\{ \int_{E} ||x||^{r} dv(x) \right\}^{1/p}$$

But the right-hand side equals

$$cc(r, p, 2)^{-1} \left\{ E \left\| \sum_{i=1}^{n} x_{i} \gamma_{i} \right\|^{r} \right\}^{1/r}$$

(see Theorem 6) and the left-hand side can be estimated by

$$\left(\sum_{i=1}^{n} |\beta_{i}| ||x_{i}||^{p}\right)^{1/p} \leq c' \left(\mathbb{E} \left\| \sum_{i=1}^{n} |\beta_{i}|^{1/p} x_{i} \theta_{i} \right\|^{p} \right)^{1/r}.$$

214

Here $\gamma_1, \ldots, \gamma_n$ denotes an independent sequence of standard Gaussian r.v.'s. Now, taking the supremum over all β_1, \ldots, β_n ,

$$\sum_{i=1}^n |\beta_i|^q \leq 1,$$

we get

$$\left(\sum_{i=1}^{n} ||x_{i}||^{2}\right)^{1/2} \leq c'' \left(\mathbb{E} \left\| \sum_{i=1}^{n} x_{i} \gamma_{i} \right\|^{r} \right)^{1/r} \leq c'' \left(\mathbb{E} \left\| \sum_{i=1}^{n} x_{i} \gamma_{i} \right\|^{2} \right)^{1/2}.$$

Thus, E is of cotype 2.

References

- [1] A. de Acosta, Asymptotic behaviour of stable measures, Ann. Probability 5 (1977), p. 494-499.
- [2] A. Badrikian et S. Chevet, Mesures cylindriques, espaces de Wiener et fonctions aléatoires gaussiennes, Lecture Notes in Math. 379 (1974).
- [3] K. Ito and M. Nisio, On the convergence of sums of independent Banach space valued random variables, Osaka J. Math. 5 (1968), p. 35-48.
- [4] W. Linde, Operators generating stable measures on Banach spaces, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 60 (1982), p. 171-184.
- [5] V. Mandrekar and A. Weron, p-stable measures and absolutely summing operators, Lecture Notes in Math. 828 (1980), p. 167-178.
- [6] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in \mathcal{L}_p -spaces and their applications, Studia Math. 29 (1968), p. 275-326.
- [7] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, Vol. I. Sequence spaces, Berlin-Heidelberg-New York 1978.
- [8] V. Mandrekar and A. Weron, α -stable characterization of Banach spaces (1 < α < 2), preprint, 1979.
- [9] B. Maurey, Espaces de cotype p, 0 , Sém. Maurey-Schwartz, Exp. 7, 1972/73.
- [10] D. Mouchtari, Spaces of cotype p ($0 \le p \le 2$), Theor. Probability Appl. 24 (1980), p. 105-118.
- [11] G. Pisier, Type de espaces normes, C. R. Acad. Sci. Paris 276 (1973), p. 1673-1676.
- [12] A. Račkauskas, Remark on stable laws on Banach spaces, Litovsk. Mat. Sb. 19 (1979), p. 161-165.
- [13] D. H. Thang and N. Z. Tien, Mapping of stable cylindrical measures in Banach spaces, preprint, 1980.
- [14] N. Z. Tien, and A. Weron, Banach spaces related to α-stable measures, Lecture Notes in Math. 828 (1980), p. 309-317.
- [15] A. Tortrat, Lois $e(\lambda)$ dans les espaces vectorielles et lois stables, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 37 (1976), p. 175-182.

Sektion Mathematik Friedrich-Schiller-Universität Jena, GDR

Received on 9. 10. 1980

