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MATHEMATICAL STATISTICS 

AND ASSOCIATED MABWOV SEIWGROUPS, 

Abstract. Multiple stochastic integrals (m.s.i,) 

with respect to the centered Poisson random measure q(dx), E [q(dx)] 
= 0, E ~ ( ~ ( d x ) ) ' ]  = m(dx), are discussed, where (X, m) is a measurable 
space. A "diagram formulaw for evaluation of products of (Poisson) 
ms.i. as sums of ms l ,  is derived. With a given contraction semigroup 
A,, t 3 0, in C(X) we associate a semigroup T(A,), t 2 0, in I.?(Q) by 
the relation 

and prove that T(A,),  t 2 0, is Markov if and only if A,, t 3 0, is 
doubly sub - Markov ; the corresponding Markov process can be de- 
scribed as time evolution (with immigration) of the (infinite) system of 
particles, each moving independently according to A,, t 0. 

0. Intrduction. It is well known that the analysis of the structure of I? (51) - 
spaces arising from the Gaussian and the Poissonian white noises has certain 
common features, the main one being the existence of an orthogonal system of 
"polynomials" ("orthogonal polynomial chaos") defined by means of multiple 
stochastic integrals (m.s.i.). In the Gaussian case, such integrals were first 
discussed by Wiener 1151 and Ito [4] (on this ground called also Mener-Jto 
integrals), and in the Poissonian case by Ito [ 5 ] .  Msi.  of both types have been 
applied to deal with non -linear problems in engineering (see, e.g., [16], [9], 
1103 while "Gaussian" m.si appeared to play a major role in many areas of 
mathematical physics (e.g., quantum field theory [Ill ,  statisticaI physics [I], 
[12], statistical turbulence [8], etc.). This physical interest led to a number of 
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remarkab~e mathematical results about (Gaussian) m.s.i. some of which have 
no analogues yet in the Poissonian theory. In particular, we are interested in 
the properties of the semigroup r(A,), t 3 0, acting in L2(a), which is defined 
for a given contraction semigroup A,, t 2 0, in P(X)  by the relation 

where 

denotes rn.s.i, with respect to the noise (Gaussian or Poissonian) q(dx) on X 
with E [q(dx) ]  = 0, E [ ( ~ ( d x ) ) ~ ]  = m(dx) ,  and a is a a-finite measure on a 
measurable space (X, B(X)). In the Gaussian case the semigroup r ( A t )  enjoys 
two remarkable properties : first, r (A,) is positivity preserving and actually a 
Markov semigroup in L2 (a) for any contraction semigroup A,, t 0, in (X), 
and second, T(A,) admits some @-estimates, known as "hypercontractivity 
estimates", which are fundamental in constructive quantum field theory [I 11. 
In this paper we are mainly concerned with the Poissonian analogue of the first 
property; it turns out that, in the Poissonian case, T(At )  is Markov if and only 
if A, is doubly sub-Markov, which means - roughly speaking - that A, and 
the dual (semigroup) A: are positivity preserving and max (A, I, A: 1) < 1, t 3 0 
(Theorem 5.1). The Markov process associated with r ( A , )  can be interpreted "as 
time evolution of the (infinite) system of unit masses (particles), distributed 
initially at t = 0 in X according to the Poisson law with mean rn(dx), such that 
each particle evolves independently according to A,, t 2 0, with immigration at 
random moments of time of new independent identically behaving particles. 
One hopes that this result can provide a better understanding of the probabil- 
istic sense of the corresponding Markov process in the Gaussian case as the 
Gaussian noise can be approximated by suitably normalized Poissonian ones 
and it is reasonable to expect the corresponding approximation of T(A, ) .  

Apart from the semigroup T(A,) we discuss also some properties of 
Poisson m.s.i., in particular an alternative definition of m.s.i. which is close 
to the well- known definition of Gaussian m.s.i. by means of "Wick polyno- 
mials" [2], [11] (Section l), the relation between Poisson m.s.i. and Charlier 
polynomials (Section 2), the interpretation of Poisson m.s.i. as multiple in- 
tegrals with respect to random point measure (Section 4), and a "diagram 
formula" for evaluation of products of m.s.i. as sums of m.s.i. (see [6] for 
a particular case and [I] for an analogous formula for Gaussian m.s.i.). For 
other discussion of Poisson m.s.i. and related topics we refer to [3], [6] ,  
[9J, and [lo]. 

1. Poisson msi .  : definition and basic properties. Denote by M (X) the set of 
all o -finite measures m on a measurable space (X, B(X)). Given r n ~  M ( X ) ,  
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write E ( X )  = @ ( X ,  m) for the space of all measurable functions f : X 4 C1 
such that 

By a Poisson random measure (r.m.) on X with intensity rn E M ( X )  we mean the 
integer-valued random measure p = p(A), A f g ( X ) ,  defined on a probability 
space (52, F, P) such that, for any n 3 l and any non-intersecting 
A, ,  . . . , A, E d ( X ) ,  p(A,) ,  . . . , p(AJ are independent and, for each A E d ( X )  
such that m(A) < + e1 P(A) is disfributed according to the Poisson law with 
mean - m  ( A )  : 

A random signed measure q = q (A), q (A) = p (A) - m (A), A E W (X), will be 
called the centered Poisson r.m. I t  is well known that. for any ~ E M ( X )  the 
Poisson r.m. with intensity rn exists. 

Assume that the a -algebra g(X) contains points of X ,  i.e, for every X E X ,  
(XI EB(X) .  Denote by M ' ( X )  c M ( X )  the set of diffuse measures on 
X: m E M' (X) if rn((x))  = 0 for every x  E X. In this paper we discuss m.s.i. with 
respect to the Poisson r.m. with diffuse intensities, as a rule. 

Let (A),, k = 1, 2, . . ., be a monotone (i.e. (A) ,  c (A) ,+ ,) sequence of (count- 
able) partitions of X by measurable sets A  such that 

(1.1) max r n ( A ) + O  ( k - + m ) .  
A W ) k  

A complex -valued function f = f ( x ,  , . . . , x,), x,, . . . , X, E X ,  is said to be 
sipl~ple if 

I 1 (a )  f is symmetric (i.e. invariant with respect to all permutations of its 
arguments x,, ..., x,,), 

(b) f is constant on subsets . . 

D c X n =  X x  ... X X  
n 

- 

of the form D = A,  x . . . x A, ("quasi -intervals"), A , ,  . . ., A , E ( A ) ~  for some k 
= 1, 2, .. ., and f vanishes but on a finite number of such D's, 

(c) f vanishes on "diagonals" : f (x,, . . . , x,,) = 0 if xi = xj for some i # j, 
i , j = l ,  ..., n. 

Denote by Lf(Xn)  the Hilbert space of all symmetric functions f : Xn -+ C1 
such that 

I I f I I .  = ( I  l f ( x l ,  ..., 3 I 2 m ( d x ~ ) . . . m ( d x , ) ) " ' <  +a, 
xn 

while L$ (Xn) stands for the set of all simple f 's. Clearly, & ( X v s  a linear dense 
subset of L' ( X n )  . 
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For any f E (~")hich equals f on d , x  ... x A n c X :  A ,,... 
. . . , A, €(Al l ; ,  set 

A Poisson m.s.i. 

q'"V) = j f { x ~ ,  ..., x,Jq(dx,)...q(dx,J 
xn 

is defined for every f E I? (Xn) as the square - mean limit of integral sums q(")Cf,) 
of the form (1.2), where-(&& is asequence of simple functions convergent to f 
in L? (X")as j 4 a, and has the following properties : 

(41) d"' Cf) E L? (l;d) ; 
(q2) E Cq"')''(S)I = Q ;  

(q3) E [ ( ~ ( ~ ) V ~ Y ]  = IJjll;; 
I (q4) if f E L2(xn), g E L2(Xm), and n # m, then 

I 
I (E denotes the complex conjugate of u€C1). 

1 Properties (ql) -(q4) can be easily verified for simple functions and then 
extended to the general case by (q3). It follows from (q3) that the definition of 
q(")(f) does not depend on a particular choice of the sequence of simple 
functions convergent to f in LZ(X")as well as of the sequence of monotone 

I partitions of X satisfying (1.1). 
Set C(XO) = C1, q ( O ) C f )  = f €C1. It is known [ 5 ]  that Poisson m.s.i. con- 

I stitute a complete orthogonal system in I.? (a) (I) : any random variable (r.v,) 
E L' (0) can be uniquely expanded in series of m.s.i. convergent in (Q) : 

As I?(X") can be identified with the n-tuple symmetric tensor product 
(6 L2(X))", ,!?(a) is unitary equivalent to the direct sum (the Fock space) 

6 (6 L'(x))" = exp ( P ( x ) ]  
n= 0 

with the norm 

(') Here and in the sequel C(Q) stands for the set of all (complex) square integrable r.v.'s, 
measurable with respect to the a-algebra u ( p ( ~ ) , ' A  E I (X)),  generated by the Poisson ram. p. 
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the u&tary mapping i: exp (p (X)} - I.? (Q) being given by 

Poisson m.s.i. can be defined also in a more abstract manner which does 
not involve integral sums, similarly as Wick polynomials are defined in the 
Gaussian case (see [2] and [Ill).  Let the linear Poisson process indexed by 
L2 (X) be given, i.e, a (generalized) random field q = q Cf), f E (X), with the 
charaderistic functional . 

- - 

(1.5) E [exp { i ~ e q ~ ) u j  j - 
= exp (J  (dRerl"" - 1 - iRe f (x) u) m (dx)) ,  f E (9, u E C1 

X . - 

(in other words, q (A) = q (l,), 1, (x) = 1 if x E A, I A  (x) = 0 otherwise, 
A E  J(X) is a Poisson r.m. on X with intensity na and qCf)  = J f (x) q (dx) 

X 

= qfLJ(f)). k t  B be a linear dense subspace of L'(x) such that B c B ( X )  for 
any p 2 2. Sums of products of q(J)'s with f €8, 

n, < n,  k = 1, . .., r, will be called polynomials of degree n, n = 1, 2, . . ., while 
constants c ~ C ( f 2 )  will be called polynomials of degree 0. Let f, consist of all 
polynomials of degree n and their C(f2)-limits, and denote by TI,, the or- 
thogonal complement (in 2 (a)) : 

Set 

For any fi, . . ., f, E C (X), write 

I 

where sym means symmetrization in x , ,  . . . , x, and 

PROPOSITION 1 .l. For any f, , . . . , f, E 8, 

(1.7) :4 Cfi) . - . q (A) : = 4(") (fl& - . . Oh) 
We prove this statement in Section 3. Proposition 1.1 implies that q(")Cf) 

can be defined by means of (1.7) on a dense subset of L? (X")and then extended 
to general f's by (q3). However, (q3) does not readily follow from (1.6). Note 
also that the right - hand side of (1.7) is well defined for any f, , . . . , f, E L2 (X )  
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while the left -hand one is not such in general, as the product qV; )  . . .q(L) may 
not be square integrable. In this context the following problem remains open : 
suppose f, , . . . , f, (belonging to I? (X)) are such that q U;) . . . q (fJ E (62) ; is it 
true that q (f,) . . . q Cf,) E f, and (1 -7) holds? 

2. Chrlier ply8wrmials. Poisson m.s.i. are related to Charlier polynomials 
in such a way as Hermite polynomials are related to Gaussian ms.i. (see [3],  
[6] ,  [9]); however, the analogy is not complete. In this section we study this 
relation which will also appear to be useful later (Section 6). Although many 
results discussed belgw are known, we prefer to provide an independent and 
self-contained exposition. As was noted in [9], there is no generally accepted 
set of definitions and notation for Charlier polynomials ; our definition follows 
that of [6] and differs from it by the factor rz!. 

As in [6], we define Chcsrlier poiynomials jn(x; A), n = 0, 1, . . . , of discrete 
argument x = -A,  -A + 1,  . . . , where R > 0 is a parameter, by means of their 
generating function 

where the series is convergent to the right - hand side for any A > 0, x = - A, 
- I + l ,  ..., and ZEC'. We have jo(x; A) = 1 ,  j l ( x ;  A) = x ,  j , ( x ;  A) = x2-x 
- I .  Charlier polyno~nials are related to the (centered) Poisson distribution 
with mean d > 0 by the formula 

(2.2) j , ( x ;  A) = (- l ) n l n j - l ( ~ ;  A )  Dnj@; A), 

where j ( x ;  A) = e - 9 x + i / ( x + A ) ! ,  Dn = DDn-', Df (x) = f ( x ) - f  (.u- I),  DO^ 
= f: Relation (2.2) can be verified as follows. Denote by j;, (s; I )  the right -hand 
side of (2.2) and check that it gives correct values of j,(x; A) for n = 0, 1, 2. By 
induction we verify the recurrence relation 

The same relation is satisfied by the polynomials j, ( x  ; A) with the generat- 
ing function (2.11, which follows from the identity 

(2.4) ( 1  + z )  dJ/& = (x -Rz)  J .  

This proves (2.2). 
To discuss the relation between Charlier polynomials and Poisson m.s.i., let 

A,, . . . , A, be measurable subsets of X, let i , ,  . . . , i, be non - negative integers, 
i1 +.. .+i, = n, and set 
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If sym 1 il  ' ik  E L Z ( X ~ ,  set 
A1 X ... XAk 

q'n'(~! x ... x A:) = q("(sym 1 . i J .  
A:' x . . ,  x A t  

PROPO~ITION 2.1 (cf. 131 and [ti]). Let Al, , . . , Ak be pnirwise disjoint 
measurable subsets of X, m(Ai) < +GO, i = 1, .. ., k, and let il, ..., ik be non- 
negative integers, i, + . . . + ik = n .  Then 

(2.5) - q(")(~: 'x. .. x.~~)=j~,(q(A,);n(A,))...j~~(q(A&;rn(A~)). 
Let us prove first 
PROPOSITION 2.2. (i) For any f E I? (9, ko EI? (a) is equiualent to 

(2.6) j exp(2Ref(x)}m(dx)<+oo. -- 

Refix) > 1 

(ii) For any k EL? (X") n = 1, 2, . . +, and f E I? (X) satisfying (2.6), 

(2.7) 

~[&]s(*(h)] = E[fl)] J fi (6'xj)-l)h(xl, ..., x,Jrn(dr,) ...nt( ax,,). 
x n  j'l 

Br o of. (i) If f E L2 (X) is simple, then EU) E L'.(S~) and 

(2.8) E Cex~(qCf)ll = exp(1 FCf)dmj, 
X 

where F Cf)(x) = e""'- 1 - f (x). Observe that, for f E I? (X), formula (2.6) is 
equivalent to 

J 1FCf)ldm < +m. 
X 

For any f EL? (X) ,  there exists a sequence of simple functions 
convergent to f in C(X) such that 

. . 

Now, iff satisfies (2.6), then by (2.8) and the above observatibn equj) is a 
Cauchy sequence in @(a) which converges to 8") in probability. Therefore, 
eQu) E (a) and (2.8) holds. 

Conversely, let f E L2(X) be such that (2.6) is not true; we want to prove 
that e4u) is not in I?@). In fact, it suffices to prove this for f real and such 
that f > 1 m-a.e. as 

where the last two integrals are independent and exp 1qCf")) €L2(i2) by the 
discussion above. As 

7 - Rob. Math Statist. 3 (2) 
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, the assumption e4w)~I?(i2) implies du) E L2(0),  where p ( f )  = q ( f ) + j  f dm. 
I Consider a sequence W;); , , 0 dh t f Cj + co) ; then 

~ ( f j )  6 ~ ( f )  and j+ lim UJ E Cexp ( 2 p C f , ) } l  = + m, 

which yields a contradiction. 
(ii) By (i) it suffices to prove (2.7) for simple f and h equal to f A and 

h"l'"..A" on quasi - intervals A and A ,  x . . . x A,, respectively, A ,  A , ,  . . . 
. . . , A, E (A) , .  Then . . - 

- Z Lexp f A q (A)}] fi E [exp [ f (A,)) q ( A d ]  hA1..--9dn. 
41, ..., A ,  A #  d l ,  ..., A ,  j= 1 

I 
I We have 

which together with (2.8) implies (2.7). 

COROLLARY 2.1. For arty f EC(X) such that e4u' ~I.?(i2), we have 

a. 

(2.11) equ) = 1 exp [ j F ( f )  dm)  q(n)  ((8 (6 - l)r)/n!. 
n= 0 X 

r 

: Proof of Proposit ion 2.1. It suffices to verify that 
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for any real f E L~ ( X ) ,  z , ,  . . . , z, E R ~ ,  lzil < 1 .  Denote by S the right - hand 
side of (2.12). By (2.1), we have 

k 

S = ~[exp( iq( f ) )  n (l+zj) d ~ j )  + N A j I  exp ( -zjm(Aj)l] 

where 
- 

y-= ln(l+z,)-lAj-$. 
J =  i 

By (2.8), we obtain 

The left-hand side of (2.12) can be evaluated by means of (2.7) and the 
result is also (2.13). 

COROLLARY 2.2. Under conditions and notation o f  Propusitio!~ 2.1, 

q(n) (A: x . . . x A:? = $')(A:). ..P'(A)). 
Contrary to Hermite polynomials in the Gaussian case, Charlier poly- 

nomials do not constitute a complete orthonormal system in C(SE) (see [3], 
[9]), which is easily understandable as only very special Poisson m.s.i. can be 
expressed in terms of Charlier polynomials. As linear combinations of m.s.i. 
of the form q ( n ) ( ~ ' , '  x ... x A;!), A , ,  . .., Ak€(A),, i,, . . ., i, = 0, 1 ,  . .., i ,  +. . .+ 

I +ik = n, n = 0, 1, ..., r = 1 ,  2,  ..., are dense in C(L?), by orthogonalization 

i one can construct an orthonormal basis in e(S2) made of linear corn- 

j binations of (multivariate) Charlier polynomials. Somewhat unexpectedly it 
turned out that inzach subspace 

there exists an orthonormal basis made of linear combinations of a finite 
number d = d (n) of Charlier polynomials, where (most likely) d (n) = O(n)  (11 

-t a). Let us describe such a basis in the case n = 2.  
Assume that m(A) are equal for any A €(A) , ,  r = 1 ,  2, ..., and that every 

A €(A) ,  splits into two "intervals" A', d - €(A) , ,  , . Introduce r.v.'s 

<$' (d l ,  A,) = q ( ' ' ( ~ ~  x d2)-2q(')(d: 8 A ~ ) - 2 q ( ~ ) ( d ;  x A:). 
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We leave to the reader the verification of the fact that the system 

is complete and orthogonal in Tiz1. Note that all elements of this system can be 
expressed by means of linear combinations of at most 3 Charlier polynomials. 

mts d Poisson msi.: a 'Vdigrarrs bormwla". It is well known [I] 
that products of Gaussian m.s.i. can be most conveniently expressed as linear 
combinations of m.s.i. by means of the so -called "diagrams". In the case of 
Paisson m.s.i. thereexists an analogous diagram formalism under the assum- 
ption that no arbitrary products of Poisson m.s.i. can be expanded in such a 
way (as they need not be square integrable), and the "diagrams" are somewhat 
more complicated (see below). 

Let f, , . . , , f ,  be symmetric functions depending on n, , . . . , nk variables 
x E X, respectively. Write 

where N = n, +. . .+ nk. By a diagram over (grouped) variables 

(3.2) [XI, (-%q+~ -.-, xnl+m2), - * - ,  . . .+nk-l+ I ,  XN) 

or, shortly, a diagram we mean a graph y connecting variables x,, . . ., x, 
arranged in groups sudh that 

(a) y connects only variables which enter different groups (brackets) (or 
belong to different functions f,, . . .,f,), 

(b) every variable is directly connected with at most two other variables. 
More precisely, if the variables x,, . . . , x, are considered as vertices of the 

graph. y, we say that xi and xj are directly connected or that the pair ( x i ,  xi) is 
directly connected if there is a branch of y which connects xi and xj; and we say 
that xi and xj are indirectly connected or just connected if there exist 
y,, . .., y, c (x,, . .., x,) such that the pairs (xi, yl), (yl, y2), . .., (ym, xj )  are 
directly connected. According to (a), variables entering the same group cannot 
be (indirectly) connected by a diagram. Denote by ( y )  the set of all diagrams 
(over a given set of grouped variables). 

With every diagram y E ( y )  and every function F defined by (3.1) we 
associate a formal sum FY of symmetric functions depending on different 
number of variables x E X in the following way. If y E { y )  is empty (i.e., the 
corresponding graph is empty), we set FY = sym F. If y E ( y )  is not empty, 
denote by y (1), . . . , y (r) the connected components of y which connect vari- 
ables (xj, j E T,), . . . , (xj, j E T,) respectively, where T,, . . . , T, are disjoint sub- 
sets of [ I ,  ..., N]. Introduce the linear operator DY(", s = 1, ..., r, which 
transforms a function G (x,, . . . , x,) into a (formal) sum of two functions G1 
and GI, where G1 is obtained from G by replacing the variables (xj, j~ T,) 
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(connected by the component y ( s ) )  by a single new one which we denote, e.g., 
by TB, while G, equals the integral of G I  with respect to m(dZn). Set 

(3 -3) ,-. FY = sym DY(') . . . D~('' F ,  B 

where symmetrization involves all variables, the new T I ,  . . . , jt, as well as the 
r 

old (unconnected) xj ,  j~ (1, . , ., N )  \ U T ,  which altogether can be enum- 
a =  1 

erated in each term of F in a.rnore convenient fashion. For example, let 

F ( x l ?  ..., ~ 6 )  =fl x2)f2(x3, ~ 4 9  ~ 5 ) f 3 ( ~ 6 ) .  - . 

Consider the following diagram y consisting of two connected components: 
1 

(~-3, f ~ 5 1 ,  ( x 6 ) .  

Then 

+ S f 1  ( X Y  ~ l ) f 2 ( ~ ,  X 2 s  ~ l ) f 3  
X 

+ j If1 ( x ,  ~ ) f 2 ( ~ ,  X 1 ,  y ) f 3 ( ~ ) m ( W f 4 d y ) ) .  
X X 

Finally, let us introduce the operator q [.I which maps formal sums FY into 
sums of Poisson m.s.i. Let 

I 

k 

H =  4, where H , E L ~ ( x ~ ~ ) , ~ = ~  ,..., k ;  
j= 1 

then 

Write lFIY for the formal sum (3.3ly where P is replaced by IF1 
= IF(x,, . . ., xdl . We have 

PROPOSITION 3.1. Let functions E L2 ( ~ " 9 ,  j = I, . . . , k ,  be such that, for 
every diagram y E [ y )  over variables (3.2), every function H = H x , ,  . . . , x,) which 
enters the J m l  sum IF17 is in Z (x?. Then i + " " ~ f ~ ) .  . . dS(f3 EL' (Q) and 
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Remark  3.1. This result is not very satisfactory as it provides only 
sufficient conditions on fl, . . . ,A  under which q("l)(fl)..,q'"'Cf,) is in p(S2)  
and can be expanded in series of m.s.i. with integrands determined by some 
given rule. Although necessary conditions for this are not known even in the 
case n, = . . . = n, = 1 (see Proposition 1.1 and the discussion at the end of 
Section I), there remains an open problem whether (Fly in Proposition 3.1 can 
be replaced by FY, as the right-hand side of (3.5) in such a case is still well - 
defined. 

Before proving Proposition 3.1, let us consider two examples where more 
explicit formulae can be obtained from (3.5). 

E xa rn ple 1. Let k = 2, n, = n, and n, = 1 . Every diagram y over variables 
( x ,  , . . . , x,,), (x,+ I )  connects x,, , with some xj, j = 1, . . . , n (we write y = y ij)) 
and t y ] = ( y (O), y (I), . . . , y (n)) , where y (0) is empty diagram. Now, 
F!'O) = F = s ymf, Of2 and 

F ~ ~ )  = sym DY"' F = sym fi (x, , . . . , X, , . . . , x,J f2 ( x j )  -t 

+ fl (xl , . . . , xi, . . . , x,) f2 (xj) m(dxj) -- F; + Fj'. 
X 

If fl and f, are in (XT and LZ(X), respectively, this implies that 
IF!; E J? (Xn- '1 .  Assume, in addition, that 1FJ; E L2 ( X n ) ,  j = 1, . . . , n, i.e., that 
fl ( x l ,  . . ., x,,) f2 (x,) is in I! (X") According to Proposition 3.1, we have 

Formula (3.6) under the same assumptions on J; and f, was obtained earlier 
by Kabanov [6] ,  Theorem 2. 

Example  2. Let n, = ... = n, = 1 and N = k. If y~ [ y )  consists of con- 
nected components y ( I ) ,  . . . , j(r) which connect variables ( x j ,  j E T, ) ,  
. . . , ( x j ,  ,i E T,), respectively, then 

where K = ( l ,  ..., k), ~ , ( x ) = n f ; ( x ) ,  T G K ,  K C = K \ ~ )  7;. 
jeT s= 1 

It is easy to see that the assumptions of Proposition 3.1 are fulfilled if and 
only if .. 

(3.7) A € L 2 ( X ) ,  i = 1 ,  ..., k ,  F,E@(X), p = l , 2 ,  forevery T c K .  

By Holder's. inequality 
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we infer that a sufficient condition for (3.7) is of the form 

For any disjoint subsets 1;, . . . , T, s K and any S G {I, . . . , r 1, r 
=0, ..., k ,  set 

and - 

(IAI denotes the number of elements in A). According to Proposition 3.1, under 
conditions -(3.7) we have 

k 'k 

the second sum being taken over all mutually disjoint non-empty subsets 
T , ,  ..., of K such that 3 2. 

Now we come back to the proof of Proposition 3.1. The idea of the prod is, 
roughly spoken, the same as in the Gaussian case (see [I]): one has to just@ 
the possibility to replace "products of q(dt)'s on diagonals" Iq(dt))': n 2 2, by 
some other differentials, in our case by g(dt)+m(dt) = p(dt).  (The reason for 
such a replacement is intuitively clear and it can be verified that using such a 
formal procedure one arrives at formula ( 3 4 . )  Due to this fact and in order to 
avoid cumbersome notation we present a somewhat abbreviated version of the 
proof. 

Proof of Proposi t ion  3.1. It is sufficient to discuss the case k = 2, i.e, 
the product of two msi.  q(")(f) and q(m)(g). In. this case our diagrams are ' 

identical with "Gaussian" diagrams as they connect only pairs of variables. 
Consider two sequences of simple hnctions convergent to f and g in the 
corresponding I! -spaces and expand the products of the corresponding in- 
tegral sums just as in the Gaussian case ([I ], p. 17). It is not difficult to see that 
for the proof it suffices to show that 

in L? (9, where h, E C (XI), p = 1, 2, . . . , is a sequence of simple functions equal 
to on A, x . . . x A,, A,,  . . ., A , E ( ~ ) , , ,  and convergent to some heI?(X)  
in I?(X? as p -+ a. (Note that S corresponds to a diagram over (x,, . .., x,), 
C y l ,  . . . , y,,J which connects k pairs of variables in the two groups, 
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k < min (n ,  m), I = m + n- k.) According to the assumptions of Proposition 3.1, 
we can assume without Ioss of generality that 
(3.1 1 )  

2 1 (S I hp (~ l ,  ..., x,, ..., ~ ~ ) l ~ ( ~ x ~ ) . . . ~ ( d ~ , ) )  m ( d x , + , )  ... m(dx3 < C 
x l - s  xs 

for every s (0 < s < k), where C < + cri does not depend on p and s 6 k. 
Assume also that m ( A )  = p = p(p) for every A  ~ ( d ) , .  Now, S can be rewritten 
as 

whei-e 
el ( A )  = C I ( A ) ~ - ~ @ ) - P ,  e z I 4  = 4 ( 4 ) + ~ ,  e3(9 = _ q ( A ) ,  

K = { l ;  .+., k ) ,  L = ( 1 ,  . . ., I), and the sum C is taken over all non-empty 
R +8 

subsets R G K.  We have 

Denote the last expectation in (3.13) by d M l ( A 1 ,  . .., A , ;  A ; ,  .. ., A;). 
Consider the sum 

( 1  (r) 

taken over all collections ( A , ,  ..., A,) and ( A ; ,  ..., A;) in which r quasi- 
intervals A coincide (regardless of their positions), 0 < r < l .  In (3.14), 
d R R * ( A l ,  . .., A , ;  A ; ,  . . ., A;) does not vanish only if those quasi-intervals 
in the collections ( A , ,  .. ., A,) and ( A ; ,  ..., A;) which are not common to both 
of them enter Q, as E [Q ,  (A)] = E Lea (A)] = 0 and if in every collection 
( A , ,  . . ., A,) quasi-intervals A , ,  . . ., A, are different (h, vanishes on diagonals). 
Thus dRR, (A,,  .,. . , A,; A ; ,  . . ., AD # 0 implies r > I - k. But then there exists at 
least one A  € ( A l ,  . . . , A,) n ( A ; ,  . . . , A;) which enters Q, (once or twice), as R 
and R' are non -empty. If p = m ( A )  < 1, then 

Consequently, if p G 1  and r > 1- k, then 
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where C, does not depend on p whhe 

Since the fast double sum in (3.15) is just the integral (3.11), where s = I-r, 
bounded by C, we obtain E [IS12] -) 0 as p j a. 

Proof of Proposi t ion  1.1. Set 

.. .. . 

Observe that 

In fact, iff,, . . .f,, E 8, then, by Proposition 3.1 and Example 2, qCf,) .  . . qV;J 
can be written as the sum of m.si. of order less than q equal to n, i.e., 

where hj E (Xi), j = 0, . . . , n - 1 .  Therefore (3.16) holds. As d is dense in 
C(X), r; = r,. ~ssume'  that T; = T j ,  j <  n .  Then, by (3.171, 

(3.18) V { q ( n ) ~ l @ - - - @ f d ) ~ D n ,  
f 1 . . . . J I * d  

where V (t) denotes the filbert subspace of I?@), spanned by the r.v. 
~ E A  

ta, a E A. Again, as I is dense in L?(X), (3.18) implies Dn = T;,,] c TI,]. Thus r, 
= rk, rent = rin,, n = 0 ,  1, . . ., and (1.6) holds. 

A Multiple integrals with respect to tadom p i n t  re. It is some- 
times useful to interpret Poisson m.si. as (multiple) integrals with respect to 
iandom point measure (or polnt process) [?I. Assume that the Poisson r.m. 

= p(A), A E a(X), with intensity r n E  M ( X )  can be written as the (infinite) 
sum of unit masses at random points (') z,, Z*, ..., i.e., 

where &(A) = 1 if x E A and &(A) = 0 otherwise. Write IT} = (z,, z,, . . .]. Let 
Kr t X (r -, m), where #,EB(X) and m(K,) < +a, for every rn 2 1. For any n 
= 1,2, ... and any measurable function. 

(4 This can be done if (X, 1(X)) satisfies some mild topological assumptions [7] or if 
(X, B(X)) is an arbitrary measurable space by the appropriate choice of the probability space 
(Q, e ~141. 
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is a well-defined r.v. as the number oft's in K, is finite with probability 1 for 
any r = l , 2 ,  ... 

homwno~ 4.1. Let K,, r 2 1, be as above and let f E L2 (X") n ((X9, n 
=. 1, 2, . . . Then 

n n ! 
(4.2) q") (f) = ( - 

- k = O  
C f (k ' (x ly  . , - 9  xd, k! (n -k) ! x,, ..., X,E(~} 

#xj.i + j  

where 

f ' k ) ( ~ l r  . . . , x  & =  f ( ~ t ,  . . . , X k r  % + I ,  ...,x J m ( d ~ ~ + ~ ) . - . r n ( d x J ,  
XII- k 

k = 0, . . ., n- 1,  f '"I =f, a d  the interior sum in (4.2) is dejned as the limit in 
L1(Q) of finite sums (4.1) with f replaced by f 'kj as r -t m. 

Proof, If f ' ~  L: (x') is simple and equal to fl'''m'Ak on A, x 1.. x A,, then 

which implies 

Therefore, p(")Cf) can be extended by fi (Q)-continuity to an arbitrary 
f E C (X")reserving (4.4). In particular, 

in I? (a), and the right-hand side of (4.2) is well defined. By the linearity of 
both sides of (4.2) in f, it suffices to establish (4.2) for simple f = sym l,, .....An, 
where A,, . . . , A, are mutually disjoint. Then 

where the second sum is taken over all subsets a of { I ,  . . . , n) such that lor1 = k. 
, From (4.5) and (4.3) we obtain easily (4.2). 
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Let R be an automorphism of (X, m), i.e, a measurable 1 - 1 mapping of X 
onto X preserving the measure m. For g E I.?-(X") n = 1, 2, . . . , introduce 

(Rg)jx,, ..., x , J = g ( R x , ,  ..-, RxA. 
Clearly, R is a unitary operator in I . ? ( x ~ .  Set Rg = g, g E p ( ~ o )  = c', and 

Rf = (&, Rfi , . , .) for f = (f,, f,  , . . .) Eexp {I? (a). The following statement 
was proved to be useful in construction of new classes of self-similar random 
fields by means of Poisson m.sJ. [13): 

PRornslr~o~ 4.2. For any f E exp (X)], f  = CfO, fl , . . .), the r.v.'s 
n m - -" 

iCf) = -qtn)(f,,/n ! and i (Rf)  = q(")(R$,,/n! 
n= 0 n= 0 

are identically distributed. 
Proof. It suffices to prove this fact forf = Cf,,S,, ...) such that all fo, f l ,  .. . 

are simple and all but a finite number of them are zero. By Proposition 4.1, we 
have 

m n 

m 

where R-lp = is a Poisson r.m. identically distributed with p. 
j= 1 

5. The operator r ( A ) .  Let A be a contraction in L2(X), i.e., a continuous 
linear operator with norm less than or equal to 1. There exists a unique 
contraction r ( A )  in C(Q) such that 

(5.1) r ( A )  dn)v1 6) . . . 6fn) = q ( " ) ( ~ f , @  . . 6 A ~ A ,  

fi , . . . , S, E LZ (X), n = 1, 2, . . . (we set T ( A )  qC0) ( f )  = q(')Cf)). An analogical 
operator in the Gaussian case plays an important role in quantum field theory, 
in connection with the second quantization, and exhibits two remarkabb 
properties mentioned in the Introduction, namely: (a) it is positivity preserving 
in I? (a) and (b) it is hypercontractive in @(a) - spaces, p 2 1 (see, e.g., El1 ] for 
details). In this section we establish the Poissonian analogue of (a) which is 
different from the Gaussian one. 

Let (K, L@(K)) be a measurable space with a 0 -finite measure rn and let A 
be a bounded linear operator in I?(K). We say that A is positivity preserving 
and write A V 0 iff 3 0 rn - a.e. implies Af 2 0 rn - a.e. (3). We call A V 0 sub- 
Markov if Af (x) < 1 for any f < 1, and Markw if 

sup Afn (x) = 1 
n 

(7 In the sequel we omit the phrase "m- as." (m-almost everywhere). 
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for an increasing sequence f, E L2 (K), 0 <S, f 1. Finally, we say that A is doubly 
sub- Markov (resp. doubly Markov) if both A and A* (A* is the dual of A in 
I? (K)) are sub - Markov (resp. Markov). 

, THEOREM 5.1. r ( A )  is positivity preserving if and only if A is doubly sub- 
Morkou (in the latter case r ( A )  is also doubly Markov). 

Item a r  k 5.1. It follows from Riesz - Thorin theorem (see, e.g., Theorem 1.13 
in [ll]) that every doubly sub- Markov operator is a contraction. 

Remark 5.2. We prove Theorem 5.1 by a probabilistic argument which at 
the same time-reveals the probabilistic sense of the Markov semigroup r(A"), n 
= 0, 1, . . . An alternative analytic proof reduces to the computation of the 
kernel of r ( A )  in the finite-dimensional case, which is more cumbersome. 

Proof of Theorem 5 1 .  Sufficiency. Let A be doubly sub-Markov. 
We prove that r (A) V 0. 

Identify (52, 9) with the space of all random point measures on X (see 
Section 4). Set p(A)(o)  = o ( A ) ,  A E a ( X ) .  Given a measure mf M (X), denote 
by P, the probability on (52, 9) such that p = p(A), A E g(X), is a Poisson 
r.m. on X with intensity m. 

Every sub - Markov operator A in e(X) determines (sub - Markov) trans- 
ition kernel 

P(x ,  3) = PA)(x, B) = lim A lBnKr:,(x) 
r+m 

(K, were introduced in Section 4), 0 d P ( x ,  B) < 1, X E X ,  B E ~ ( X ) .  Set 
P* (x, 3) = FA3 (x, B).  

Define a Markov process wt, t = 0, 1, . . . , with the state space (Q, 9) as the 
time evolution of the initial point measure wo EQ such that every atom x of w, 
evolves in time t = 0, 1, . . . , ( (6 is the life time) according to the transition law 
P(x, B) independently of others, and the initial distribution of w, is P,. More 
exactly, if wo is fixed and written in the form 

then - 

where xj = (x j  ( t ) ,  t = 0, 1, . . . , Cj ) ,  j = 1, 2, . . ., are independent Markov pro- 
cesses having the same transition function P(x, 3). Write fit, t = 0, 1, . .., for 
the analogical process with the initial distribution PG, 5 ( d x )  = ~ ( x )  m(dx), and 
e ( x )  = 1 - P* (x, X) instead of P,. Finally, let I$~', k = 1, 2, . . . , t = 0, 1, . . . , 
be independent copies of '6, which are also independent of w,, and set 
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Clearly, r, is a homogeneous Markov process with the state space 51, which 
can be interpreted as time evolution of a Poisson point measure w, during 
which every unit mass evolves independently within its life time according to 
the transition function P(x, B), with the consequent immigration at the mo- 
ments of time t = 1, 2, . . . of identically behaving independent Poisson point 
measures with initial distributions Pti. 

Let F E L2(i2). We claim that 

(5.3) - r ( A ) F  = [F (Q)l ro3 3 

which implies T ( A )  V 0.. Let L denote the linear space of functions F : D 4 C1 
of the -form 

n 

where f, 2 0, . . . , f, 2 0 are simple functions. As L is dense in I? (a), it suffices 
to prove (5.3) for F E L. By the linearity of both sides of (5.3) in F, it is. enough 
to consider the case n = 1, a, = 1, fl = f. By (2.11), we have 

and 

(5.6) 

(all the integrals in (5.5) and (5.6) are well defined). On the other hand, we 
obtain 

(5-7) E [F (rl)l r01 = Ei [ ~ X P  ( -p ( f  ))I E M   ex^ ( - f ( x j  (')))I '"01 
jdj:gj3 11 

= exp { j  (e-" l)pdm)exp(p(ln[~(e-f- 1)+ I])}, 
X 

where Em denotes the expectation with respect to P,. By the definition of Q, 

which proves (5.3). 
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From the genera1 definition (5.1) of r ( A )  and the uniqueness of expansion 
(1.3) it - follows that r ( A ) -  1 = I ,  i.e., r ( A )  is Markov, and 

which implies that r (A)*  is also Markov. This completes the proof of the 
sufficiency of Theorem 5.1, including the statement in brackets. 

Necessity. Let A be a contraction in LZ(x) but not positivity preserving. 
Then there exist a function f 2 0, f EI?(X) n I! (X), and E. > 0 such that 
rn (Be) > E ,  where BE = {X E X: Af (x) < - E). Let be an r.v. and c a constant. 
Then = qCf)+c  2 Wifand only if e b j /dm. As 

X 

we have 

(5.9) P (r (A) S < 0) 3 B ( p  (Be) 2 N) P ( j Af (x) q (dx) + c < e N ) .  
X\B, 

If N = N ( E )  is sufficiently large, then the right -hand side of (5.9) is strictly 
positive. This proves the necessity of the condition AVO. 

Denote by (A), the set of all contractions A V 0 ,  A: I? (X) --t LZ (X), such 
that A maps 8, into itself, where 8, is a finite - dimensional subspace of simpIe 
functions : 

A,, . . ., A, being mutually disjoint and m(Ai) = p, i = 1, .. ., n.  Identify C, with 
C" and A, = A(&, ( A  restricted to &,), A E { A ) , ,  with the matrix (aij), 
i, j = 1, . . . , n. Clearly, A, O 0 is equivalent to aij 2 0, i ,  j = 1, . . ., n, and A, 
issub-Marko~ifandonlyif(A,I)~<l,i= 1, ..., n,where 1 = ( I ,  ..., ~ ) E R " .  

Denote by LZ(Z", the set of all functions F: Z", C1 ,  Z", ((Z,)", 

2, = (0 ,  1 ,  . . .) , such that 

For any F E C(Z;), A E [ A ) , ,  r ( A )  F ( p )  is' ag&n a(p) -measurable and 
defines a function T(A) F E C (Z", by 

We prove below in the Appendix that for any contraction A, A E (Aj,, and 
any w = (w, , . . . , w,) E C we have 
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(for w ,  > - 1, . . . , w, > - 1 and sub - Markov A this follows also from (5.6)). 
Set 

r l +  ...+ z, 
Fw = liW(z1, .:., z,J = ( l + w )  WER'. 

By (5.1 I), we have 

[r(A)Fw]{zI, zn) = fi ( l + ( ~ ~ l ~ i ~ ~ e ~ ~ { ~ ~ ( l - ( ~ n l ) i ) ] *  
i =  1 

Note that F ,  2 0 (resp. -- - T{A) F ,  3 0) if and only if 1 +w 2 0 (resp. 1 + 
+ w (A,  1); 3 Q, i = 1;. . . , n). Therefore, the relation T(A) V 0 for operators 

A E (A], implies that A, = A1 B, is sub - Markov. 
Define operators I,: ,!? ( X )  + 8, by - 

jfdm/m(A,) if X E A ~ ,  i = l ,  ..., n, 

otherwise 

and set B("] = I,A. It can be shown that both operators A and r ( A )  can be 
approximated strongly by B'") and T(B4")), respectively, by taking the space b, 
"sufficiently large". Moreover, if all operators B(")I C, are sub - Markov, it can 
be shown that A is also sub- Markov. Now, as r(BCn)) = T(l,JT(A) and I, is 
doubly sub - Markov, T(A) V 0 implies r (8'")) V 0. Since B'") E (A),, using the 
assumption that T(A) V 0 but A is not sub - Markov we get a contradiction. 

Finally, by (5.8), T(A)VO implies T(A*) VO, i.e., A* is also sub-Markov. 
Remark 5.3. Let A,, t 2 0, be a continuous time contraction semigroup in 

P(X). Then from Theorem 5.1 it follows that the corresponding semigroup 
T(A,), t 2 0, in P(C2) is Markov if and only if all operators A,, t 2 0, are 
doubly sub - Markov. In this case, we can also define the analogical continuous 
time Markov process r,, t 2 0, with the state space 8, with immigration, and 
with Poisson measure P, as the invariant measure. 

Let us present the formula for the transition function of the process r,, t 
2 0, in the simplest case where X = (x), m ( { x ) )  = m, A, = e-", c > 0. Set C2 
= (0, 1, . . .) and 

CF 

r(e-")f(i)= C f(j)r,(t,i,~], ~ E Q .  
j= 0 

Then 

rC(t, i, j) = exp {rn(e-"- 1)) (1 -e-c3'-je-aj x 
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Thus rt is a stationary birth and death process with invariant Poisson 
measure e-" m'/ i ! ,  I' EQ, and transition rates 

invariant also with respect to time reversion. 

6. A p p d x  Proof  of reIation(5.11). By the definition of r ( A )  and (1.6), 
we have 

for any integers k (1) 2 0, . . . , k(n) 3 0, where the sum 1 is taken over all non - 
(r) 

negative integers r( i ,  j), i, j = 1, . . . , n, such that r (j, 1 )  +. . . + r (i, n) = kb], 
and t = r ( 1 ,  J]  + . . . + P (n, I] ,  j = 1 ,  . . . , n . Introduce "shifted Charlier poly- 
nomials" ji (x)  = j, (x - p ; p), x = 0, 1, . . . , p = m (A,).  By (6.1) and (2.5), we get 

(6-2) rMI..&i) ( X I )  - -ji(n, (xn) 

=z Ii kf.8 ! 
4y . - . aiym) jit1, (xl ) . . . ji(nl (x,J . 

(,) j=l  r ( j ,  I ) !  ... r(j ,  n)! 

(6.3) fl ( 1  + wilXi = fl wpi) jLi) (a ew7k ( i )  ! 
i= 1 i = l  k(i)=O 

and the right -hand side is convergent in L~ (Z", for any w1 , . . . , wn E G1, by 
' (6.2) we obtain 

XC fi k bl! 
a;y I ) .  . . u p n ) J t l )  ( x l ) .  . . ji(,,) (x,,) = G. 

(r) j = l  r( j ,  I ) ! .  . . r ( j ,  n)! 
- 

Replace now summation in (6.4) over k ( 1 ) ,  . . . , k (n) 2 0 by summation over 
integers t (1), . . . , t (n) 2 0 ;  this yields 

m (ai,  wl)fllyQ . . . (ainwJ(,,si) 
= C j i l )  ( X I )  . - j i (n~ Z 

t ( l ) ,  ..., t(n)= o Irl i = l  ~ ( 1 ,  i)! ... r (n ,  i ) !  



Poisson stochmtic integralrr 239 

where the sum is taken over a11 integers r ( . ,  .) such that 
Irl 

r(1,  I)+ ...+ r (n ,  1) = t ( l ) ,  

Now, (6.5) and (6.3) results in (5.11). 
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