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Abstract. Multiple stochastic integrals (m.s.i.)

@ = [ f(xy, s xDqldxy) ... qldxy), n=1,2, ..,
Xn -

with respect to the centered Poisson random measure ¢(dx), E [q(dx)]
=0,E[(q (dx))z] = m(dx), are discussed, where (X, m) is a measurable
space. A “diagram formula” for evaluation of products of (Poisson}
ms.. as sums of m.s.i. is derived. With a given contraction semigroup
A, t 20, in I?(X) we associate a semigroup I'(4,), t = 0, in I?(Q) by
| A the relation

r'(4) (](") ql ® .. ®fu) = q(n) (4.5, ® .. ®A,f,,)

and prove that I'(4,), t = 0, is Markov if and only if 4,, t =20, is
doubly sub - Markov; the corresponding Markov process can be de-
scribed as time evolution (with immigration) of the (infinite) system of
particles, each moving independently according to 4,, t > 0.

0. Introduction. It is well known that the analysis of the structure of I#(Q) -
spaces arising from the Gaussian and the Poissonian white noises has certain
common features, the main one being the existence of an orthogonal system of
“polynomials” (“orthogonal polynomial chaos™) defined by means of multiple
stochastic integrals (m.s.i.). In the Gaussian case, such integrals were first
discussed by Wiener [15] and Ito [4] (on this ground called also Wiener - Ito
integrals), and in the Poissonian case by Ito [5]. M.s.. of both types have been
applied to deal with non-linear problems in engineering (see, e.g., [16], [9],
[10]), while “Gaussian” m.s.i. appeared to play a major role in many areas of
mathematical physics (e.g., quantum field theory [11], statistical physics [1],
[12], statistical turbulence [8], etc.). This physical interest led to a number of
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remarkable mathematical results about (Gaussian) m.s.i. some of which have
no analogues yet in the Poissonian theory. In particular, we are interested in
the properties of the semigroup I'(4,), t > 0, acting in I?(€), which is defined
for a given contraction semigroup 4,, t = 0, in I?(X) by the relation

F(A,)q‘"’(f1® e @fn) = q(n) (Atfl® e ®Arfn),

where

1) = | /Ga, s X)a(dxy) ... q(d,)

denotes m.s.d. with respect to the noise (Gaussian or Poissonian) q(dx) on X
with E[q(dx)] =0, E[(q (dx)) ] =m(dx), and m is a ¢ -finite measure on a
measurable space (X #(X)). In the Gaussian case the semigroup I' (4,) enjoys
two remarkable properties: first, I'(4,) is positivity preserving and actually a
Markov semigroup in I?(Q) for any contraction semigroup 4,, t > 0, in I2(X),
and second, I'(A,) admits some I -estimates, known as “hypercontractivity
estimates”, which are fundamental in constructive quantum field theory [11].
In this paper we are mainly concerned with the Poissonian analogue of the first
property ; it turns out that, in the Poissonian case, I'(4,) is Markov if and only
if A, is doubly sub-Markov, which means — roughly speaking — that 4, and
the dual (semigroup) A} are positivity preserving and max (4,1, A¥1) < 1,r >0
(Theorem 5.1). The Markov process associated with I'(4,) can be interpreted ‘s
time evolution of the (infinite) system of unit masses (particles), distributed
initially at t = 0 in X according to the Poisson law with mean m(dx), such that
each particle evolves independently according to 4,, t > 0, with immigration at
random moments of time of new independent identically behaving particles.
One hopes that this result can provide a better understanding of the probabil-
istic sense of the corresponding Markov process in the Gaussian case as the
Gaussian noise can be approximated by suitably normalized Poissonian ones
and it is reasonable to expect the corresponding approximation of I'(A4,).
 Apart from the semigroup I'(4,) we discuss also some properties of
Poisson m.s.i,, in particular an alternative definition of mis.i. which is close
to the well-known definition of Gaussian m.s.i. by means of “Wick polyno-
mials™[2], [117] (Section 1), the relation between Poisson m..i. and Charlier
polynomials (Section 2), the interpretation of Poisson m.s.i. as multiple in-
tegrals with respect to random point measure (Section 4), and a “diagram
formula” for evaluation of products of ms.i. as sums of ms.. (see [6] for
a particular case and [1] for an analogous formula for Gaussian ms.i.). For
other discussion of Poisson ms.. and related topics we refer to [3], [6],
[9], and [10].

1. Poisson m.s.i.: definition and basic properties. Denote by M (X) the set of
all o -finite measures m on a measurable space (X, #(X)). Given me M (X),
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write I?(X) = (X, m) for the space of all measurable functions f: X - C!
such that

fIfPPdm < + 0.
) |

By a Poisson random measure (r.m.) on X with intensity me M (X) we mean the
integer-valued random measure p = p(4), A€ #(X), defined on a probability

. space (Q, #, P) such that, for any n>1 and any non-intersecting

Ayso.., A,e B(X), p(A,), ..., p(A,) are independent and, for each Ae#A(X)
such that m(4) < + o, p(A) is distributed according to the Poisson law with
mean-m(A):

P(p(4) = k) = e ™ (m(4)/k!, k=0,1,...

A random signed measure q = q(A), q(4) = p(4)—m(A), Ae #(X), will be
called the centered Poisson r.m. It is well known that for any meM (X) the
Poisson r.m. with intensity m exists.

Assume that the o -algebra #(X) contains points of X, i.e., for every xeX,
{x}e#(X). Denote by M’'(X) = M(X) the set of diffuse measures on
X: me M'(X) if m({x}) = O for every xe X. In this paper we discuss m.s.i. with
respect to the Poisson r.m. with diffuse intensities, as a rule.

Let (4), k =1, 2, ..., be a monotone (i.e. (4); = (4),,) sequence of (count-
able) partitions of X by measurable sets 4 such that

(1.1) max m(4)—>0 (k — o0).
Ae(Ay,

A complex - valued function f =f(Xg5-.-s ,,), X1, ..., X,€X, is said to be
simple if
i (a) f is symmetric (i.e. invariant with respect to all permutatlons of its
arguments x;, ..., X,),
. (b fis constant on subsets

DcX"=Xx...xX

of the form D = A4, x...x 4, (“quasi - intervals”), .Al, , ZI,,e(A)k for some k
=1,2,..., and f vanishes but on a finite number of such D’,

(c) f vanishes on “diagonals”: f(x,, ..., x,) =0 if x; = x; for some i # j,
ihj=1,...,n

Denote by I?(X") the Hilbert space of all symmetric functions f: X" — C*
such that

1l = (J 1 Gty s 5 m(dy)..m(dx) " < + o0,
Xn

while IZ,(X™) stands for the set of all simple f”s. Clearly, I% (X" is a linear dense
subset of I2(X").
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For any feI?(X") which equals fd-l""’d" on A x...x4,< X" Ay, ...
.2 AnE(A)k’ set

(1.2) (= Y  friga,)...q4,).

A Poisson ms.i.
a”(f) = | f(xy, ..., x)q(dx,)...q(dx,)
Xﬂ

is defined for every feZ (X" as the square - mean limit of integral sums 21‘"’ )
of the form (1.2), where (f});Z , is a sequence of simple functions convergent to f
in I?(X" as j— oo, and has the following properties:

@) 4" () e ©);

(@2) E[4" (/)] =0;

@3) E[@™ (] =n'fI2;

(q4) if fe>(X"), geI?(X™), and n# m, then

E[4"(f)g™(g]1=0

(i7 denotes the complex conjugate of ueC?).

Properties (q1)-(q4) can be easily verified for simple functions and then
extended to the general case by (g3). It follows from (q3) that the definition of
g™ (f) does not depend on a particular choice of the sequence of simple
functions convergent to f in I?(X") as well as of the sequence of monotone
- partitions of X satisfying (1.1).

Set (X% =Ct, q@(f)= feC. It is known [5] that Poisson ms.. con-
stitute a complete orthogonal system in I2(Q) (}): any random variable (r.v.)
'éeLz(Q) can be umquely expanded in series of ms.i. convergent in 2(Q):

'(1-3) o &= Z g™ (1), f,.eLz(X") n=0,1,.

As B(X ") can be identified w1th the n-tuple symmetric tensor product
(® I?(X)) [2(9) is unitary equivalent to the direct sum (the: Fock space)

C_-BB (& B (X)) = exp {I}(X)}
with the ndrr_n ’

0= (Z WY, f = o i - deexp 20},

(*) Here and in the sequel I?(©) stands for the set of all (complex) square integrable r.v.’s,
measurable with respect to the ¢ -algebra o (p(4), A€ #(X)), generated by the Poisson r.m. p.
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the unitary 'rrllapping‘ i: exp{[?(X)} - I?(R) being given by
(14) i)=Y a"Unts  f=forfis - Jeexp (X},
. n=0 .

_ Poisson m.s.i. can be defined also in a more abstract manner which does
not involve integral sums, similarly as Wick polynomials are defined in the

" Gaussian case (see [2] and [11]). Let the linear Poisson process indexed by -

X(X) be given, i.c. a (generalized) random field g = q(f), f eLz(X), Wlth the
charactensnc functional '

(15)  Efexp{iReq(Nu}] .

= exp 1] (e®/™m —1 —iRef (x)uym(dx)}, fe2(X), ueC*

(1n other words q(A) =q(ly), 1,(x)=1 if xed4, 1,(x}=0 otherWise,
AeA(X) is a Poisson r.m. on X with intensity m and q(f) = [ f(x)q(dx)

. , X
= gV (f)). Let & be a linear dense subspace of I?(X) such that & = E(X) for
any p = 2. Sums of products of g(f)’s with f eé*’,r

Z alho)--qUim):  fats --or fin €,

n<n k=1,..,r, will be called polynomials of degfee nn=1,2, ..., while

constants c € I?(Q) will be called polynomials of degree 0. Let I', consist of all

polynomials of degree n and their I?()-limits, and denote by I}, the or-
thogonal complement. (in I?(R)):

O Y n=1,2, ...
Set '

(1.6) q(f))..-q(f) 3=Pf0j(4(ﬁ)---‘1(fn)lrtul)-_
For any f,, ..., f,e I}(X), write

(i® ... ®f(xy, ..., X —Symf(xl) f(xn)

where sym means symmetrization in X, ..., X, and

@®fN)=r&.. ®f

ProrosiTioN 1.1. For any f, ..., f,€6,

(L7 | q()--a(f): =4 (1 ®...8f).

‘'We prove this statement in Section 3. Proposition 1.1 implies that g (f)
can be defined by means of (1.7) on a dense subset of I?(X") and then extended
 to general f’s by (q3). However, (q3) does not readily follow from (1.6). Note
also that the right - hand side of (1.7) is well defined for any f,, ..., fie 2(X)

N
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while the left - hand one is not such in general, as the product q(f;)...q(f;) may
not be square integrable. In this context the following problem remains open:
suppose fy, ..., f, (belonging to I?(X)) are such that q(f;)...q(f)e *(Q); is it
true that g(f;)...q(f,)el', and (1.7) holds?

2. Charlier polynomials. Poisson ms.i. are related to Charlier polynomials
in such a way as Hermite polynomials are related to Gaussian ms.i. (see [3],
[6], [9]); however, the analogy is not complete. In this section we study this

relation which will also appear to be useful later (Section 6). Although many

results discussed below are known, we prefer to provide an independent and
self -contained exposition. As was noted in [9], there is no generally accepted
set of definitions and notation for Charlier polynomials ; our deﬁmtlon follows
that of [6] and differs from it by the factor n!.

As in [6], we define Charlier polynomials j,(x; 1), n=0, 1, ..., of discrete
argument x = —1, —A+1, ...; where A > 0 is a parameter, by means of their
generating function '

(=]

(2.1) Jz, %, )= Y z2%p(x; AYn! =(1+2)"*e
n=0
where the series is convergent to the right - hand side for any 4 > 0, x = — 4,

—A+1, ..., and zeC'. We have jo(x; ) =1, ji(x; ) = x, j,(x; A) = x2—x
—A. Charlier polynomials are related to the (centered) Po:sson distribution
with mean 4 > 0 by the formula

22 Jalxs A) = (=DA% (x5 A)D"]Qx 4),

where j(x; A) =e A% (x+4)!, D"=DD" ', Df (x) = = f(x)—f(x—1), D"f
= f. Relation (2.2) can be verified as follows. Denote by j, (x; 4) the right-hand
side of (2.2) and check that it gives correct values of j,(x; /1) forn=0,1, 2. By
mductlon we verify the recurrence relation

. (23) '"+1(X' '1) = (x—n)fn(x' j')_'ﬂ'n.;’n-- (x. ‘1)9 n= 1s 29

The same relation is satisfied by the polynomlals Jalx; l) with the generat-
mg functlon (2.1), which follows from the 1dent1ty
24) (1+2)dJ/0z = (x—Az)J.

This proves (2.2).

To discuss the relation between Charlier polynomials and Poisson m.s.i., let
A,, ..., A; be measurable subsets of X, let iy, ..., i, be non -negative integers,
iy+...+i, =n, and set

AL X X AF = (A X . xA) XX (A% ... xA)eB(XN = X B(X).
iy . ik . S i=1
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o a2
If sym 1,4'11 >(".M;‘,‘GL (XM, set
(431 Iy _ ) L .
q" (A x ... x A5 = q"™ (sym lAlllx...XA;‘k)'

ProposITION 2.1 (cf. [3] and [6]). Let Ay, ..., A, be pairwise disjoint
measurable subsets of X, m(A) < +o0,i=1,...,k, and let i, ..., i, be non-
negative integers, i, +...+i, =n. Then

25 qmAx ... x4 = J.l(q(Al), m(4,)).. ]uk(Q(Ak) m(Ak))
Let us prove first
ProposiTIQN 2.2. (i) For any fel?(X), e eI?(Q) is equivalent to

(2.6) L | exp{2Ref(x)}m(dx) < +o0. -

: ~ Ref(x)>1 :

(ii) For any he (X", n=1,2, ..., and f e ?(X) satisfying (2.6),
27) '

E [t ¢™ (h)] —E[e““’] j [] (ef"‘ﬁ—nh (X1s --es X M(dXy)...m(dx,).

xn =1
Proof. (i) If feI*(X) is simple, then e"(”eLz'(Q) and
(28) | ELexp {q(/)}] = exp {{ F(f)dm},

where F(f)(x) = ¢ —1—f(x). Observe that, for f eLz(X), formula (2.6) is
equivalent to :

[IF(f)dm < +oo.
X

For any feI?(X), there exists a sequence (f});2, of simple functions
convergent to f in I?(X) such that

2.9y ' Refi(x) <Ref(x), j:=1,2,...

Now, if f satisfies (2.6), then by (2.8) and the above observation U7 s a
Cauchy sequence in I?(2) which converges to ¢?) in probability. Therefore,
Ve 2(Q) and (2.8) holds.

Conversely, let f € I?(X) be such that (2.6) is not true; we want to prove
that ¢?) is not in IZ(Q). In fact, it suffices to prove this for f real and such
that f > 1 m-ae. as

a(f) = a(flys1)+a(fly<n) = () +a(f ),

. where the last two integrals are independent and exp 19(f")} e Z(2) by the
discussion above. As

jfdm&jfzdm'< +0 (f>1),

X

7 — Prob. Math. Statist. 3 (2)
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the assumption e e I?(2) implies ¢’ e I?(Q), where p(f) =q(f)+[f dm.
Consider a sequence (f);2,, 0 <f;1f (j > c©); then '

p(f)<p(f) and lim Efexpi2p(f)}]= +oo,

which yields a contradiction.

(ii) By (i) it suffices to prove (2.7) for simple f and h equal to f4 and
R4 on quasi-intervals 4 and 4, x...xd4,, respectively, 4, 4y, ...
very 4,€(A). Then .. ' ‘

(210)  E[exp{q(f)} 4™ ()]

=, X, Bl (S /4a)a(dy)...a )] K"

"2, Bl WP IRACET I1 Elexpif Y949} q(A)TH*"
We have :

A P
E[exp{f4q(M)}q(] = EE[‘?XP (' +a) g (D)} a=0

5 |
: =ézexp{m(A)(e’A“—1—(f"+a))}|a=0
= exp {m(d) (¢~ 1~f H} (e~ 1) m(4),

which together with (2.8) implies (2.7).
CoroLLarY 2.1. For any feI?(X) such that e’ e I?(8), we have

(2.11) e = Y exp![ F(f)dm) ¢ ((® (" —1)))n!.
i n=0 X
Proof of Proposition 2.1. It suffices to verify that
212 Y  Elexplig(f)}q™ % x
il,...,ik=0

(A x ... x AW 2

= 3 E[ewp g0}, (a(40); m(A)...

ll,..,lk=

o Jy (@(AY; m(AN)] 2 2¥ gty
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for any real fel?(X), z;, ..., zz€R?, |z] < 1. Denote by S the right - hand
side of (2.12). By (2.1), we have

k
S =E[exp {ig(N} [1 ¢ +2)" P exp { —z;m(4,)}]

=E[exp {q(f)}Jexp{ Z (In(1+2z)—z;)m(A)},

where

.
f’i"'z ln(l'f'z-")'].Aj—!;f.
- j=1 .
By (2.8), we obtain '

(2.13) S S= E[expllq(f),]explz z; | (¥ —1)dm}.

j=1 A4
The left - hand side of (2.12) can be evaluated by means of (2.7) and the
result is also (2.13).

CoroLLARY 2.2. Under conditions and notation of Proposition 2.1,
g7 (AL x . x4 =g (AD)...g¥ (4.

Contrary to Hermite polynomials in the Gaussian case, Charlier poly-
nomials do not constitute a complete orthonormal system in I () (see [3],
[9]), which is easily understandable as only very special Poisson m.s.i. can be
expressed in terms of Charlier polynomials. As linear combinations of ms.i.
of the form g™ (AL x ...x 49, Ay, ..., i€y, iy, ooy i =0, 1, ..., i1 +...+
+ip=nn=0,1,...,r=1, 2,..., are dense in I?(Q), by orthogonalization
one can construct an orthonormal basis in I2(€2) made of linear com-

binations of (multivariate) Charlier polynomials. Somewhat unexpectedly it
turned out that in each subspace

F[n]_ tq(")(f) fELZ(X") n=1,2,.
there exists an orthonormal basis made of linear combmatlons of a finite
number d = d(n) of Chatlier polynomials, where (most likely) d(n) = O(n) (n
— o0). Let us describe such a basis in the case n =2. -
Assume that m(4) are equal for any de(4),, r =1, 2, ..., and that every
Ae(4), splits into two “intervals” A%, 4~ €(4),,,. Introduce r.v’s
‘”(Al xd4,) ifr=1,
if r=2,
&P (4y, 42) = ‘2’(A+ x A7) =4 (47 x43),
‘”(A* xA3)—q B4y xA4F) if 4, # 4,,
. if Al == Az,
£9(4y, 45) = Q‘Z’(Ax x 45)—24P(4Y x 47)—29'P (47 x 47).

é(ﬂr) (A 1s 2)

f(z’) (A 1> 2)
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We leave to the reader. the verification of the fact that the system
{fy)(dla AZ):‘AI! AZE(A)!', r=1,2,...,j=0,1, 2, 3}

is complete and orthogonal in I';;;. Note that all elements of this system can be
expressed by means of linear combinations of at most 3 Charlier polynomials.

3. Products of Poisson ms..: a “diagram formula”. It is well known ['1]

that products of Gaussian m.s.i. can be most conveniently expressed as linear

combinations of m.s.i. by means of the so-called “diagrams”. In the case of
Poisson mss.i. there exists an analogous diagram formalism under the assum-
ption that no arbitrary products of Poisson m.s.i. can be expanded in such a
way (as they need not be square integrable), and the dxagrams are somewhat
more complicated (see below). '

Let f;, ..., f, be symmetric functions depending on ny, ..., n variables
xe X, respectively. Write :

BA)  F(qyeens X0) = f1 X1y ooy X))o iy otm #15 - 5 X,

where N =n;+...+m. By a diagram over (grouped) variables

(32) (xla st xnl)’ (xn1+1 s xn1+n2)a T (xn1+..‘+nk_1+1a tee xN)

or, shortly, a diagram we mean a graph y connectmg variables x,,..., Xy
arranged in groups such that
" (a) y connects only variables which enter different groups (brackets) (or
belong to different functions fi, ..., f;), :
(b) every variable i is directly connected with at most two other variables.
More precisely, if the variables x,, ..., xy are considered as vertices of the
graph.y, we say that x; and x; are directly connected or that the pair (x;, x)) is
directly connected if there is a branch of y which connects x; and x;; and we say

" that x; and x; are indirectly connected or just connected if there exist

Vi, o5 Vm & lxl, sty xN} such that the palrs (xls yl)s (yla y2)3 ree (yms ]) are
d1rect1y connected. Accordmg to (a), variables entermg the same group cannot
be (indirectly) connected by a diagram. Denote by {y} the set of all dlagrams
(over a given set of grouped variables).

With every diagram ye{y} and every function F defined by (3.1) we
associate a formal sum F? of symmetric functions depending on different
number of variables xe X in the following way. If ye{y} is empty (i.c., the
corresponding graph is empty), we set F* =sym F. If ye{y} is not empty,
denote by 7(1), ..., y(r) the connected components of y which connect vari-
ables (x;, je Ty), ..., (x;, j€ T)) respectively, where T;, ..., T; are disjoint sub-
sets of {1, ..., N}. Introduce the linear operator D?‘“’, s=1,...;r, which
transforms a functlon G(xy, ..., Xy) into a (formal) sum of two functlons G,
and G,, where G, is obtained from G by replacing the variables (x;, je T))
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(connected by the component y(s)) by a single new one which we denote, e.g.,
by X,, while G, equals the integral of G, with. respect to m(dxs) Set

(33) . FY =sym D' . D'WF - .

where symmetrization involves all vanahles the new X, ..., X, as well as the

old (unconnected) x;, je{l,..., N} \U ;» which altogether can be enum-

erated in each term of F in a- more convement fashion. For example, let .
h =filxy, x3), [ = = f2(x1, X2, x3),  f3=f3(x1),

Xy, X3, X3€X, v

7 F(xls oees Xg) = f1 (%1, xz)fz(xss.x‘u x5) f3 (x6)-

Consider the following diagram y coﬁsisting of two connected components:

| i - N
(x1-5 fz), (x33 X4, x! 5), (xs)
. Then
F" = sym D"® D' F = sym D™ (f,(%y, x3) f2(%y, X4, X5) f3(xe) +
+ [ f1 (R, X2) f2(%y, Xas X5) f3(x6) m(dXy))
x

= sym (fl (x1, %2) f2(xy, X3, xz)_fa("z)'*‘!{fl (%15 %) f2(%1, X3, %) f3(x) m(dx)
A %1) f2%, X3, %) f3 (xy) m(d)+

+I J"fl(x, N L2 (%, %1, ) fs () m(dx)m(dy)).

F mally, let us introduce the operator g [ -] whlch maps formal sums F? into
sums of Poisson ms.i. Let ' . - i

H= Z H;, where Hie}(X"Y),j= 11, ey k,
=1 - S
then

k
@4 . q[H]= z 4" (H).

Write |F}' for the formal sum (3.3), where F is replaced by |F |
= |F(xy4, ..., Xy5)|. We have

ProrosITION 3.1. Let functions fieZ(X™), j=1,...,k, be such that, for

| every diagram y € {7} over variables (3.2), every functton H H(x,, ..., x;) which
enters the formal sum |F| is in I2(X). Then ¢"V(f)...q™( ﬂ)el?(ﬂ) and
(3.5) ") qP = Y q[F].

ye(y}
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Remark 3.1. This result is not very satlsfactory as it provides only
sufficient conditions on fj, ..., f, under which 4" (). d™ () is in Z(Q)
and can be expanded in series of m.s.i. with integrands determmed by some
given rule. Although necessary conditions for this are not known even in the
case n, =...=n, = 1 (see Proposition 1.1 and the discussion at the end of
Section 1), there remains an open problem whether |F|” in Proposition 3.1 can
be replaced by F?, as the right - hand side of (3.5) in such a case is still well-
deﬁned

" Before proving Proposition 3.1, let us consider two examples where more

exphmt formulae canbe obtained from (3.5).

Example 1. Letk = 2, n, = n, and n, = 1. Every diagram y over variables
(x15 ons x,,) (%44 1) connects x,, , with some x ) =1,..., n(we write y = ()
and {3} = [7(0), ¥(1), ..., y(n)}, where y(O) is empty diagram. Now,
F"O = F =sym f; ®f, and

F'O =sym D'VF =sym fi (Xy, ..., X, ..., %) [2(x)+
+ [ fi(X1y oes Xjy oens X) fo(x)m(dx;) = Fj+ Fj.
x _ .

If f, and f, are in I>(X" and I?(X), respectively, this implies that
|F|y e I2(X""'). Assume, in addition, that |F|;e }(X™), j =1, ..., n, ie, that
Si(%y, ..oy X)) f2(xy) is in IZ(X"). According to Proposition 3.1, we have
(3.6) 4" () 4V () = n(g™ (F1)+q" D (F7))+4"* D (F).

Formula (3.6) under the same assumptlons on f; and f, was obtained earlier
by Kabanov [6], Theorem 2.

Example 2. Let n; =...=n,=1 and N =k. If y€{y} consists of con-

nected components y(1),..., y(r) which connect variables (x;, jeT;),
., (x;, ie T}), respectively, then '

D', . D'WF =[] fi(x )H (Fr, (x.)+JFT dm)
jek®©

where K = {1, ..., k}, Fz() =[] /0, TSK, K=K\U T,

JjeT

It is easy to see that the assumptions of Propos1t10n 3.1 are fulfilled if and
only if : -

(3.7 fiel’(X),i=1,....k, FreE(X), p=1,2, for every T< K.
By Holder’s inequality ' | |

k
[lhy... b < -H1 (J 19",
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we infer that a sufficient condition for (3.7) is of the form
(3.8) fePX)nP*X), j=1,...k

For any disjoint subsets Ty,..., ;<K and ahy Sci{l,...,r}, r
=0,..., k, set

=k—Z IT]|+|S|5 KG=K\U ’1;‘: Sc={1, “ T} \S,
j=1 . j=1
and . :
39 - Jryeat,s —sym II f(xj) I1 FT_,( ;) I Frjdm
jeK© Jjes jes©

(|A| denotes the number of elements in A). Aocording to Proposition 3.1, under
conditions -(3.7) we have
k 'k
(3.10) I] anN=Y X Z 9° (fry....1,:5)
r=0 Ty,...TpcK S<il,...r}
the second sum being taken over all mutua]ly disjoint non-empty subsets
Ty, ..., T, of K such that 7] > 2.

Now we come back to the proof of Proposition 3.1. The idea of the proof s,
roughly spoken, the same as in the Gaussian case (see [1]): one has to justify
the possibility to replace “products of q(dt)’s on diagonals” (q (dt)) nz=2, by
some other differentials, in our case by q(dt)+m(dt) = p(dt). (The reason for
such a replacement is intuitively clear and it can be verified that using such a
formal procedure one arrives at formula (3.4).) Due to this fact and in order to
avoid cumbersome notation we present a somewhat abbreviated version of the
proof. '

Proof of Proposition 3.1. It is sufficient to discuss the case k = 2 ie.,
the product of two ms.i. g™ (f) and g™(g). In this case our diagrams are
identical with “Gaussian” diagrams as they connect only pairs of variables.

Consider two sequences -of simple functions convergent to f and g in the
corresponding - -spaces and expand the products of the corresponding in-
tegral sums just as in the Gaussian case ([1], p. 17). It is not difficult to see that
for the. proof it suffices to show that" . :

= T KM@ q(4) (A a(d) -

(@@ +m(A).. (B +m8)) By a(4) >0 (- )

in LZ(Q), where h, eLz(X ), p=1,2,...,is a sequence of simple functions equal
_toh, AU on Ay x L. x4y, 4y, . 4,&(4),, and convergent to some he I (X")
in LZ(X ) as p— 0. (Note that S corresponds to a diagram over (xy, ..., X,),
(¥1» ---» yw) Which connects k pairs of variables in the two groups,
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k < min(n, m), | = m+n—k.) According to the assumptions of Proposition 3.1,
we can assume without loss of generality that

G.11)
II (§ (g5 ons Xgy <oy x)m(dxy).. m(dxs)) m(dx,sq)...m{dx) < C
X -5 XS

for every s (0 <s<k), where C < + o does not depend on p and s < k.
Assume also that m(4) = u = p(p) for every 4 €(4),. Now, § can be rewritten
as

L B12) S= Y B Y [Ted) T exd) IT es4),

Apsendp- - R#0 jeR JjeK\R jeL\K
where '
01(4) = q(4)*—q(d)—p, 02 (4) = q(A}+u, 03(4) =q(4),

K={1;...k},L={1,..., I}, and the sum Z is taken over all non-empty

R%0
subsets R = K. We have

{3.13) E [ISIZ] - Z hAl »4] hAl Al X
: Arondpdisend] |

X Z E[H QI(AJ) H QZ(Aj) H QS(AJ)H 91(41) H QZ(AJ) n Q3(AJ)]

R #% jeR JEK\R JeL\K JjeR' jeK\R’ _;EL\K
R % : :

Denote the last expectation in (3.13) by dgg- (4, -.., 4;; 1,...,A;).
Consider the sum

(3.14) Y=Y BT e Ay, < A A, ., A)
n (0}
taken over all collections (4,, ..., 4;) and (4%, ..., 4;) in which-r quasi-
intervals A coincide (regardless of their positions), 0 <r<I. In (3.14),
dpre (41, ..., 4;; 4%, ..., 4) does not vanish only if those quasi-intervals
in the collections (4,, ..., 4;) and (43, ..., 4} which are not common to both
of them enter g, as E[g,(4)] =E[03(4)] =0 and if in every collection
(44, ..., 4) quasi-intervals 4,, ..., 4, are different (h, vanishes on diagonals).
Thus dgg- (44, -.., 4;; 43, ..., 4}) # 0 implies ».> I— k. But then there exists at
least one Ae€(4,, ..., 4) n (4}, ..., 4}) which enters g, (once or tw1ce), as R
and -R’' are non- empty If u= m(A) 1, then
put fi=1lorj=1,
O<El@e@l<{s 1ol

Consequently, if u <1 and 7 > [—k, then

(315) IZI Cl Z lhAl ..... Ay hdl ..... Al' ‘uZ(l r)”r
r) 12

<Cu ¥ (X Ihfl’""_”‘lu“’)zu',

A15eendy Api 150004

ij=1,2,3.
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where C; does not depend on p while

Y=0 ifr<I-k.
()

Since the last double sum in (3.15) is just the mtegral (3.11), where s = [ —r,
bounded by C, we obtain E[|S|*] -0 as p— 0.

Proof of Proposition 1.1. Set
Observe  that

(3.16) r,cr, n=o0,1,...

In fact, if f;, ... f, €&, then, by Proposition 3.1 and Example 2, q(f})...q(f)
can be written as the sum of ms.i. of order less than or equal to n, ie,

(3.17) q(f)---9(f) = 4" (L ® ...®fu)+ Y 49(hy),
Jj<n
where he (X)), j= , n—1. Therefore (3 16) holds. As & is dense in
(X), F’ =1T,. Assume that I'y=1T;, j<n. Then, by (3.17),
(3.18) Iy=ror_,2 \ "h&..8f)}=D,
' S1seeaS ysf

where \/ {&} denotes the Hilbert subspace of I?(f), spanned by the r.v.
acd -

&,, a€ A. Again, as & is dense in I?(X), (3.18) implies D, = I'{,; < I';. Thus I,
=TI, I'y=1I{, n=0,1, ..., and (1.6) holds.

4, Multiple integrals with respect to randem point measure. It is some-
times useful to interpret Poisson m.s.i. as (multiple) integrals with respect to
random point measure (or point process) [7]. Assume that the Poisson r.m.
p = p(4), Ac #(X), with intensity me M (X) can be written as the (infinite)
sum of unit masses at random points (%) t,, 75, ..., i€,

where 6, (4) = 1'if xe A and 6, (4) = 0 otherwise. Write {t} = {t,, 75, ...}. Let
K,1 X (r » o), where K, € #(X) and m(K,) < + oo for every m > 1. For any n
=1, 2,... and any measurable function .

f=f(x4, ..., x): X">C?

(3) This can be done if (X, #(X)) satisfies some mild topological assumptions [7] or if-
(X, #(X)) is an arbitrary measurable space by the approprlate choice of the probablllty space

@, #) [14].
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the sum

4.1 A

( ) ' XQgenes ’ge(ﬂr\l(,.f(xl’ cees Xp)
xpEXpiE]

is a well -defined r.v. as the number of 7’s in K, is finite with probability 1 for
any r=1,2,.

PROPOSITION 4.1. Let K,, r = 1, be as above and let f e 2(X")n L} (X", n
=1,2,. Then

n! | o
4.2 (")(f) Z (=" kk'(n o . ZthE(t}f(k)(XI, ey Xp)s
x,?x"l¢]

where
fm(xn e Xg) = j F(xg5 005 X, xk+19 xn)m(dxk+l)'~'m(dxu)
xn—k
k=0,...,n—=1,f™ ={, and the interior sum in (4.2) is defined as the limit in
LY(Q) of ﬁmte sums (4.1) with f replaced by f® as r - . .
Proof. If f e IZ,(X¥) is simple and equal to /**"""% on 4, x ... X 4,, then

@3 pP(NH= Y f(xl,...,x,,)= Y % p(dy)...p(4)),
X1se-mXgelt} ’ Agseensdg
x,#xjﬁk] :

which implies _
44 ELp™ (N < I Nl em -

Therefore, p™(f) can be extended by I!(£)-continuity to an arbitrary
f e I (X" preserving (4.4). In particular, .

p(f) = lim PO 1, ) = lim o SO
X1 5. Xpeft}nK,

x§ #kj,l' #j

in L} (2), and the right -hand side of (4.2) is well defined. By the linearity of

both sides of (4 2) in f, it suffices to establish (4.2) for s1mp1e f=sym1l, « x4,
where 4,, ..., 4, are mutually disjoint. Then

@5 4OU) =q(dy)...q(4) = (p(d) - m(A)...(p(4)~m(4,)
= L 0 3 1@ [ mid),

where the second sum is taken over all subsets a of {1, ..., n} such that |a| =
From (4.5) and (4.3) we obtain easily (4.2).
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Let R be an automorphism of (X, m), i.e., a measurable 1-1 mapping of X
onto X preserving the measure m. For geLz(X") n=1,2,..., introduce

(RQ) (%1, ...s %) = g(Rx;, ..., Rx,).
Clearly, R is a unitary operator in I?(X"). Set Rg = g, ge }(X° = C, and
Rf = (Rfy, Rfy, ..) for f =(fo, f1, .. )eexp {I?(X)}. The following statement
was proved to be useful in construction of new classes of self - similar random
fields by means of Poisson msi. [13]:

PROPOSITION 42 For any feexp{3(X)}, f = (fo,fl,. ), the ru’s
i(f) = Z 4" (f)/m!  and  i(Rf) = Z q‘"’(Rm/nv |

are I'identically dzstrtbuted. N

Proof: It suffices to prove this fact for f = (fy, f;, .. ) such that allfy, f;, ...
. are simple and all but a finite number of them are zero. By Proposition 4.1, we
~ have - ‘

RN =Y 3 (—1y~*Ckp™ (R )

n=0 k=0

=3 T (— IR YOG,

n=0 k=0

where R™'p= ) Og;; is a Poisson r.m. identically distributed with p.
i=1 : .
5. The operator I'(A). Let A be a contraction in I?(X), ie., a continuous
linear operator with norm less than or equal to 1. There exists a unique
contraction I'(4) in I?(Q) such that

(5.1) FAO L& .81 = 4" (4 ®..® 4f),

fis o fhe2(X), n=1,2,... (we set I'(4)q'?(f) =q®(f)). An analogical
operator in the Gaussian case plays an important role in quantum field theory,
in connection with the second quantization, and exhibits two remarkable
properties mentioned in the Introduction, namely: (a) it is positivity preserving
in I2(Q) and (b) it is hypercontractive in E(€2)-spaces, p > 1 (see, e.g., [11] for -
details). In this section we establish the Poissonian analogue of (a) which is
different from the Gaussian one. .

Let (K, #(K)) be a measurable space with a ¢ - finite measure m and let 4
be a bounded linear operator in I?(K). We say that A is positivity preserving
and write AV O if f > 0 m-a.e. implies Af > 0 m-a.e. (}). We call AV 0 sub-
Markov 1f Af(x) <1 for any f <1, and Markov if

su"p Af,(x) = 1

() In the sequel we omit the phfase “m-a.e” (m-almost everywhere). -
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for an increasing sequence f,e >(K), 0 < f, T1. Finally, we say that A is doubly
sub - Markov (tesp. doubly Markov) if both A and A* (A* is the dual of 4 in
I?(K)) are sub-Markov (resp. Markov).

. TuHEorREm 5.1. T (A) is positivity preserving if and only if A is doubly sub-
Markov (in the latter case I'(A) is also doubly Markov).

Remark 5.1. It follows from Riesz - Thorin theorem (see, e.g., Theorem 1.13
in [11]) that every doubly sub-Markov operator is a contraction.

Remark 5.2. We prove Theorem 5.1 by a probabilistic argument which at
the same time reveals the probabilistic sense of the Markov semigroup I'(4"), n
=0, 1, ... An alternative analytic proof reduces to the computation of the
kernel of I'(4) in the finite -dimensional case, which is more cumbersome.

Proof of Theorem 5.1. Sufflclency Let A be doubly _sub - Markov.
We prove that I'(4)VO0.

Identify (Q, %) with the space of all random point measures on X (see
Section 4). Set p(A)(w) = w(A4), A€ B(X). Given a measure me M (X), denote
by P,, the probability on (2, %) such that p = p(4), AEQ(X) is a Poisson
rm. on X with intensity m

Every sub - Markov operator A in I?(X) determines (sub - Markov) trans-
ition kernel

P(x.s B) = P(A)(x: B) =lim A- IBnK,.(x)

(K, were introduced in Section 4), 0< P(x, B)<1, xeX, Be%(X). Set
P*(x, B) = P“9(x, B). - :

Define a Markov process w,, t = 0, 1, ..., with the state space (2, %) as the
time evolution of the initial point measure w, €2 such that every atom x of wg
evolves intime t = 0, 1, ..., { (£ is the life time) according to the transition law
P(x, B) independently of others, and the initial distribution of wy is P,,. More
exactly, if w, is fixed and written in the form

a0
Wy = Z 5:,{0)1
=1 )

then - B
i e W, = Z 5:.;1-0)9
. . jE{j:;th} .
where x; = (x_, ®,t=0, 1 . Cj) j=1,2,..., are independent Markov pro-
cesses havmg the same transmon function P(x B). Write w,,t =0, 1, ..., for

. the analogical process with the initial distribution P;, #i(dx) = ¢(x) m(dx), and
o(x) = 1 — P*(x, X) instead of P,,. Finally, let ¥®, k=1,2,...,t=0,1,...,
be independent copies of ‘W, which are also independent of w,, and set

C t
(5.2 r,=w+ 3, Wl t=1,2,..., ro=w,.
. i=1
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Clearly, r, is a homogeneous Markov process with the state space ©, which
can be interpreted as time evolution of a Poisson point measure w, during
which every unit mass evolves independently within its life time according to
the transition function P(x, B), with the consequent immigration at the mo-
ments of time ¢t = 1, 2, ... of identically behaving independent Poisson point
measures with initial dxstrlbutlons P;. .

Let Fel?(2). We claim that

X F(AF =E[F(r)lrol,

Wthh 1mphes T(A)V 0. Let L denote the linear space of functlons F Q- C‘, A

of the -form

54  F@)=Y gep{-pf}, n=12, ..., g, ..., a,eC,

j=1 .
where f; = 0, ..., f, = 0 are simple functions. As L is dense in I?(£), it suffices

to prove (5.3) for F € L. By the linearity of both sides of (5.3) in F, it is.enough
to consider the case n=1, a; =1, f; =f. By (2.11), we have

(5.5) F =exp{[ (e —1)dm} E q""((@ (e — 1))")/11!
X n=0 .

and

(5.6)

T(A)F =exp{] (e‘f— 1)‘dm}_' i q” ((® Ale™ - 1))")/n!
X n=0
=exp{p(In[A(e™'—1)+1])} exp {f (e —1)dm— j A(e™/ —1)dm}

(all the mtegrals in (5.5) and (5.6) are well defined). On the other hand, we
obtain

5.7 E[F(ri)lro]=Ea[exp{—p(f)}]E...[expl— Y f ()} wol

jeigz 1)
= exp {SE (el — l)a'.ﬁi} -l=—I1 (}j{ P(x;, dy)e_'f"”-i-_(l_—P(xj, X)))

= exp{f (e‘.f_l)Qdm}exp{i In[A (e~ ~ 1)(x)+ 11}
X

Jj=1

=exp{f (e’ —1)gdm}exp{p(In[A(e™ —1)+1])},
3 s

where E,, denotes the expeétation with respect to P,,I By the definition of g,

fef—1)gdm=f(e/—1)dm—| A(e™’ —1)dm,
x X X -

which proves (5.3).
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From the general definition (5.1) of I'(4) and the uniqueness of expansion
(1.3) it_follows that I'(4)-1 =1, ie, r4 is Markov, and

(58) [(A)* = I'(4%),

which implies that I'(4)* is also Markov. This completes the proof of the
sufficiency of Theorem 5.1, including the statement in brackets.

Necessity. Let 4 be a contraction in I?(X) but not positivity preserving.
Then there exist a function f >0, feI?(X)n I} (X), and &> 0 such that
m(B,) > ¢, where B, = lxeX Af(x) < —e}. Let ¢ be anr.v. and ¢ a constant.
Then £ = g{f}+c>=0if ‘and only if ¢ > jfdm As

raé< —SP(Bé)+X& Af (Dqdd)+e, -

we have

69 P(rA)¢ <0)>P(p(B) > N)P( | Af (9 q(dx)+c < eN).
€
If N = N(e) is sufficiently large, then the right - hand side of (5.9) is strictly
positive. This proves the necessity of the condition AV 0.
Denote by {A}, the set of all contractions AV 0, 4: I?(X)— I?(X), such
that A maps &, into itself, where &, is a finite - dimensional subspace of simple
functions:

=1/ =X flyi frronfueClh,
=1

44, ..., 4, being mutually disjoint and m(4;,) = u, i =1, ..., n. Identify &, with
C" and A, =A|8, (A restricted to &,), Ac{A}, with the matrix (a;);
i,j=1,..., n Clearly, 4,V 0 is equivalent to 4;; >0, i,j=1, ..., n, and 4,
is sub-Markov if and only if (4,1); <1,i=1, ..., n,where 1 =(1, ..., 1)eR".

- Denote by L*(Z%) the set of all fUHCtIOIIS F:Zn -C, Z" =(Z,),
Z,=1{0,1,...}, such that

EDF@IY] < +o, @ =(p(4y), .... p(4,).

For any FelI?(Z%), Ac!A},, T'(A)F(p) is again o(p)-measurable and
defines a function I'(4) FeI?(Z"%) by

(5.10) (T(A)F)(p) = T (A)(F (p)).

We prove below in the Appendix that for any contraction A Aei{A)},, and
any w=(w,, ..., w,)eC" we have

(11) - I [”1 (1w = T (1 (A" exp {40}
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(for wy > —1, ..., w‘,l > —1 and sub- Markov A this follows also from (5.6)).
Set '

zyt..+z

F,=F,(z4,.:0,z)=(1+wy*" "™ weR.
By (5.11), we have

[T(A)F, 1z, ..., 2) = H (1+(4,1); w)’i exp {uw(1—(4, 1);)}.

i=1

N(;t_ér that F;, > 0 (resp. I'(A)F,, > 0) if and only if 1+w >0 (resp 1+

+w(4,1);,=20,i=1; n) Therefore, the relation I'(4) V0 for operators ;

Ae A}, implies that A,l = A| &, is sub-Markov.
Define operators I,: I*(X)—~ &, by e

[ fam/m(4,) if xed;, i=1,...,n,
1, f)(x) = % 4 '

0 otherwise

‘ and set B™ = I A4. It can be shown that both operators A and I'(4) can be
‘ approximated strongly by B™ and I"(B™), respectively, by taking the space &,
“sufficiently large”. Moreover, if all operators B™| &, are sub - Markov, it can

doubly sub - Markov, I'(4) V 0 implies I'(B™) V0. Since B®e{A4},, using the
assumption that I'(4) V0 but A is not sub-Markov we get a contradiction.
Finally, by (5.8), I'(4) V 0 implies I’ (A*)VO, ie, A* is also sub-Markov.
Remark 5.3. Let A4,, ¢t > 0, be a continuous time contraction semigroup in
| I?(X). Then from Theorem 5.1 it follows that the corresponding semigroup
I'(A), t >0, in I?(Q) is Markov if and only if all operators 4,, { > 0, are
doubly sub - Markov. In this case, we can also define the analogical continuous
time Markov process r,, t > 0, with the state space @, with 1mm1grat10n, and
with Poisson measure P, as the invariant measure.
Let us present the formula for the transition function of the process r,, t
; ; 0 1n the simplest case where X = {x}, m(lx}) =m, A, =e “ c>0.Set Q
! = ...} and

FEef®=3 fOrih ieQ.

j=0
Then
I.(t,i,j)=exp{m(e—1)}(1—e ) Te 4 x

j .
x Y m(l—e e CTHk!.

k=max(0,j—1)

be shown that A is also sub - Markov. Now, as I'(B™®) =I'(I,)I'(A) and I, is
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Thus r, is a stationary birth and death process with invariant Poisson
measure e~ "m'/i!, ieQ, and transition rates

g = Gii+1 =M, ¢ =¢;-1=ci, i=0,1,...,

qij = a-rc(ta is j)/atlt=01
invariant also with respect to time reversion.

6. Appendnx Proof of relation (5.11). By the definition of F(A) and (1.6),
we have

61 T gy gy = (3 aug(@)®...(3 a,-nq(A,-))"‘"’z

j=1 j=1

” ! . .
_§ 1 5o (i)r(] R L (G AR (VR

for any integers k(1) > 0, ..., k(n) > 0, where the sum Y is taken over all non -
()
negative integers r(i, j), i,j =1, ..., n, such that r(j, 1)+...+r(j, n) = k(j),

and t(j) =r(1, j)+...+r(n, j), j=1, ..., n. Introduce “shifted Charlier poly-
nomials” ji (x) = jy (x—p; ), x=0,1,..., p= m(4;). By (6.1) and (2.5), we get

62 r (A)j;c(l) (xl) .- 'j;:(n) (xn)

n k(i
(Z 1;1 r(, 1)! wr(} n)' i P iy (1) i (%)
" As '
(6.3) [MTA+w)* =11 ¥ Wi (xe ™k G)!
i=1 i=1 ki)=0

~ and the right - hand side is convergent in I?(Z%) for any w,, ..., w,eC’, by
~ (6.2) we obtain :

64 TAJ]A+w)" = Y w0 wiwexp {u(wl +. W)l x
. i=1 . k(1),....k(m)=0 :
- kG)! G G
Z): l:[ G, 1), G, m! LS VAR, .]t(l)(xl) . (xn) =o.
) Replace now summation in (6.4) over k(1), ..., k(n) > 0 by summation over

integers t(1), ..., t(n) > 0; this yields
(65)  oexp{—p(w,+...+w,)}
- o (a;;w,)" b < (aaw,) )
= ity (%1) - Jem (% .
‘(1).";'(")=0 t(l)( 1 [t )( 'l)é 'l_[ r(l l)! ”.r(n l)'

v Jun (%) i () ‘
- ( wy+.. +a W (i)
r(l),..;l(n)=0 t(D)!...t(n)! 'l;[ ;1 Wy JO,
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where the sum ) is taken over all integers r(-, -) such that
Il

r(1, D+...+r(n, 1) = (1),

r(l, ) +...4+r(n, n)=t(n).
Now, (6.5) and (6.3) results in (5.11).
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