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Abstract. In this paper * we discuss the construction of differential
metrics in probability spaces through entropy functionals and examine
their relations with the information metric introduced by Rao using the
Fisher information matrix in the statistical problem of classification and
discrimination, and the classical Bergman metric. It is suggested that the
scalar and Ricci curvatures associated with the Bergman information
metric may yield results in statistical inference analogous to those of
Efron using the Gaussian curvature.

1. Introduction. Distance measures between probability distributions play
an important role in the discussion of problems of inference (see, e.g., [19],
[20], p. 6-23, and [24], p. 317 - 332). A wider class of measures, which may not
satisfy all the requirements of a distance function, called dissimilarity or
divergence measures, are used extensively in problems of taxonomical clas-
sification in biology. Some discussion on the choice of these measures and their
application to live data can be found, for instance, in [15], [18], [23],
p. 19-34, and [27]. A unified approach to the construction of distance and
dissimilarity measures is given in recent papers by Burbea and Rao [10] and
Rao [25]. v :

One method of specifying the difference between two probability distri-
butions is through the geodesic distance induced by a suitably chosen quadra-
tic differential metric in th space of probability distributions. This was done in
earlier papers by Rao [21], [22] where the Fisher information matrix is used to

* The work of the second-named author is spoﬁsored by the Air Force Office of Scientific
Research under Contract F49620-79-C-0161. Reproduction in whole or in part is permitted for
any purpose of the United States Government. .
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construct the differential metric for a parametric family of probability distrib-
utions, which will be referred to as the information metric. The choice of the
information matrix arose in a natural way through the concept of statistical
discrimination.

In this paper we discuss the construction of differential metrics through
entropy functionals and examine their relations with the information metric. In
particular, we study the connection between the classical Bergman metric and
the information metric. We suggest the possibility of using the scalar and Ricci
““curvatures assoc1ated w1th the Bergman mformatzon metric in stat1st1cal
mference -

2. Information differential metric. In this paper u stands for a ¢ -finite
measure on a o -algebra of the subsets of a sample space 2. By

, 9 = gj;f(t)E(T)du(r) and  |Ifll, = V/(f, ),

we denote the inner product and norm, respectively, of the (separable) Hilbert
space L,(Z'; p) of complex - valued functions which are square -integrable on
& with respect to the measure u. We shall also write

Sy ={feLy(Z; p: Ifll,=1}

and

P, = {IfleLy(Z; p): |f|V2€S,)

for the unit sphere of L, (% ; u) and the set of probability densities, respectively.

Let D be a parameter space in R* consisting of k -tuples x = (x,, ..., x;) of
real continuous parameters. Usually, D is a smooth manifold imbedded in R*;
however, when k = 2n, it is convenient to consider D as a manifold imbedded
in C" = R*" consisting of n-tuples z =(zy, ..., z,) of complex continuous
parameters z; = x;+iy;, j = 1, ..., n. In this case we shall use the formalism of
complex differentiation

-1 ) R, . . i
aZj - 2 (ax_, layl)’ azj - 2 1{6x1+'ay1) - ’(]_ 1’ ey n),
_and ‘thus, for a C! -function f around zeD,
df =(@+90)f, df=df(z), zeD,
with
o =Y o, fdzy, o =Y ofdz
j=1 j=1

In this ndtation, 0z, can be written as J, , and if all the y; are zero, i.e,, if D is
a manifold imbedded in R", then the complex formahsm reduces to the former
real setting.
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In this paper, in view of the above remarks, we shall assume that D is
indeed a manifold imbedded in C* and we shall freely use the complex
formalism. A family & = % (%] D) of probability density functions p = p(1’)
defined on & x D with the property that, for any zeD, p(-|z)e P, is specified
by the following regularity conditions:

(i) for p-almost all teZ, p(t|-) is differentiable in D;
| (i) o { p@l2)du@®) = j&zj p(t]|z)du(t) and, therefore, the latter is equal to
N+ T .
zero. . T

In certdin instances of this paper it may be required to assume additional
regularity properties on p(-|-)e #(Z|D). Sometimes, however, these ad-:
ditional requirements will not be mentioned explicitly in order to avoid lengthy
discussion.

The  Fisher information matrix of p=p(-|-)eF(Z|D) is the (nxnj-
hermitian matrix F = [g,;] whose entries are :

Giw(2) = | P (9,,p) (T, p) du(2).
x
This can also be Written as
gim(?) = &[ p(2;,log p)(3;, log p)du(?).

Since condition (ii) implies also that E fa,k log p(*|2)} =0,k=1, ..., nthe
information matrix at ze D is the (hermitian) varlance-covarlance matrlx of

{0, log p(*|2): k=1, , n}.
The information dlﬁ"erent:al metric with respect to p( |-)eZ.(%|D) is the
herrmtlan quadratic form

dsz(z) = Z G @218z, G = G (2), 2€D. -
km=1

In terms of the norm of L,(&Z'; p) this form admits the expression

ds*(z) =||p*0log pliZ, p=rp(|2),

and therefore ds?(z) is positive definite. It follows that ds?(z) is (locally)
invariant under holomorphic transformations of z. Indeed, if ¢: D* > D is a
bljectlve holomorphic (or, in short, blholomorphlc) mapping of D* onto D,
then p*=p*C|") deﬁned by

P*(-W) =p(-loM), weD*,
is in & (4| D*)}, and
gita(w) = Bjr P*(0,,p*)(0,,, p*) dp(t)
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are the entries of its information matrix while

ds} (w) = Z gk...dWadwm, gita = gia(w), weD*,

k.m=1
is the corresponding information metric. Consequently, using the chain rule, we
have

z, cz'J

Z gijiz

ihj=1 W

which means that the entries of the information matrix are transformed by a
biholomorphic transformation as components of a covariant tensor of the
second order. Moreover, this also shows that ds2(w) = ds?(z), as asserted.

The induced geodesic distance of ds?, with respect to p(-|‘)e #(Z|D),
defines a pseudo - distance S, on D x D, rcferred to as the information pseudo -
distance with respect to p = p() (see [2], [10], and [21]). By a pseudo -
distance on D x D we mean any function é on D x D that satisfies all axioms of
a distance function except that é(z, {) can be zero even if z # {. Under some
additional regularity requirements on p = p(-), which guarantee that ds? is
strictly positive definite, the information pseudo-distance S, becomes a proper
distance on D x D, known as the information distance with respect to p
= p(-|*). In the latter case, D becomes a metric space (D, Sp). This metric
space is said to be complete if for each point { €D and every r > 0 the closed
ball {zeD: S,(z, {) <r}is a compact subset of D. Since S, is induced from the
Riemannian metric ds?, completeness in the above sense is equivalent to

- completeness in the ordinary sense (see, e.g., [16], p. 53).

An alternative and simpler expression of g,;(z) in the form of

2.1 9 (2) = —E{2,2, log p(12)} -

- is also available, provided that p(:|-)e % (Z|D) satisfies the additional regu-
larity condition: .

(iii) for p-almost all teZ and for every zeD, 6,;5,'"' log p(t| z) exists.
_If this condition is fulfilled, then ds?(z) takes the form

ds?(z) = —E{ddlog p(‘|2)}.

An attractive feature of the information metric ds* is based on the
following considerations: Let zeD and let f be u- measurable on 1".Since
1=(p(-]2), 1),, we deduce that 0 =(cp, 1),, where p = p(- I’) and p(-|-)e
F(Z'| D). Therefore

(ap’f)u = (ﬁp,f—tx ) 1),1
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for any scalar « and, by the Cauchy inequality, we have
I@p, £)? = (Bp, f —a-1))* = |(p? 2log p, p'2(f —a- 1), [*
< |lp** dlog pliF l1p"? (f—a- DI
: = ds?(2)||p"* (f-a- DII3.
Equality holds if and only if there exists a scalar f = f(z) such that

S =a+pdlog p(tl2)

for pi-almost all e Z". Now, the minimum of lip*2(f— o |2 is attalned by a
= f(z), where f(2) = (f, p(- ]z)) and therefore

Gp, N2 <ds? @2 (7@ VE- .

This may also be written as

& @)% < ds*@) {lip(-1 2> F 12— 1F @7}

The expression in the last curly brackets is non - negative and it vanishes if
and only if f is p-almost everywhere a constant on Z.

The usefulness of the above lower - bound estimate is by now well known
(see [24], p. 317-332), and therefore it will not be discussed here. For further
details on the metric ds?(z), we refer the reader to [2], [10], and [21].

3. Entropies and divergence measures. For convenience we regard the family
F = F (%) D) as a subset of an open set U, where U itself is an open subset of
some Fréchet space # of functions f = f (| ) defined on & x D, that includes
the tangent space of U. The tangent of f(t|z) at zeD in the direction of
(u, v)eC" x C" may be expressed as

dunf (-12) = 8.f (-|2)+8,f ("] 2),

where
Gy 6J(-IZ)="Z":1 0, (12)u, 5»f('|2)=§1_Ez,f__('IZ)Un-

The tangent, therefore, is composed of the holomorphic direction d,f (‘| z)
and the anti-holomorphic direction J,f(*|z).

Let ¢ be a concave C2-function on the interval R, = (0, oo) and consider
the ¢-entropy functional '

{H,(P)}(2) = ; olp(t121du(®), p=p(-|")e F(@ID).

We shall suppress the dependence on zeD and write

(3.2) Hy(p)= [ o[p(®1dp(), p@)=p(tl2)eF (Z]D).
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The derivative of H, at peU in the direction of fe % is given by

dH,(p; f) = “H o P+ _ s

and so : ‘
dH, (p;f) = | ¢ [p 91/ ®) du).
"~ The derivative of this at peU in the direction of geﬂ'...i's.
d*H,(p;f, g) = ; ¢"Ip()1 /(g () du()

while the (complex) Hessian at pe U in the direction of f €% is defined by

. . ' . _. 4,H,(p) = 4d? H,p(p;fsf)s

AeH,(p) = 4 i " [pM11f (O du ().

Since ¢ ié concave, we: obtain
(3.3) o —4H,(p)20, fe#.

In particular, when f is chosen to be.a,,p, ueCr, .we have
A H@)0) =4 [ 0" p( (o) du (),

where 0,p(z)is as given in (3.1). When u = (dz,, ..., dz,)e C", this méy also be
written as i

(G4 45 Hy ()} (2) = 4 I ¢" [p(tl 2)][op(tl 2| du (o).

We specialize the above concave function ¢ to the a - order entropy Junction
@y, a > 0, defined by

@=D7'(~s), a#l,’
(P,(S)={

(3:3) —slogs, a=1.

This function is defined for se R, and can be extended to s = O by using the
convention Olog 0 = 0. With this choice of ¢ = @, we call H,=H, the a-
order entropy (see [14]). It follows that

(=1~ [1~ Ip“dﬂ(t)] a#l,

( _
)0 = | _{plogpdu®s.  a=1, p=p(aeF(@ID)
x
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From (3.3)-(3.5) we see that with H, there is associated a (hermitian)
differential metric

1
ds: (Z) = —EAap {Ha: (p)}(Z)

which is positive definite and, therefore, a metrlc of a Riemannian geometry
This metric can be also expressed as

dsZ(z) = E g}“‘,l,,dz,,dfm, Tl

k,m=1

where tile metric coefficients are given by
gz I p*(0;,log p)(d;, log pdpu(®).

The (hermitian) matrix [¢®] and the metric ds? will be called the o-order
entropy matrix and the o-order entropy metric, respectively.

Of greap, importance as far as applications are concerned is the special case
of = 1 and for this reason the index a = 1 will be deleted from the above
quantities. In this special case, H = H, is the familiar Shannon’s entropy, and
ds? =ds} and [g;;] = [gi¥)] are the previously defined information differential
metric and 1nformat10n matrix, respectively.

Another natural way for the derivation of the « -order entropy metric is
via the notion of divergence. We consider any C?-function F(-, ) on
R, xR, sothat F(s, t) > 0and F(s, s) = 0for s, teR. For p, qu we define
the divergence of p and q with respect to F as

DF(p’ q) = i F[p(t)s q(t)]d_u(t), P qEPﬂ'

Fixing pe P, and letting q vary we find that
D (p, p) = dDp(p, @llg=p =0,  d*De(p, @lg=; > 0.

~In particular, when p = p(t|z) and g = p(¢[{) with z, {eD and p(:|)e
F(Z| D), we have for the (complex) Hessian, in analogy with (3.4), :

Ay (De(p, D} () = 4 [ G2 F 0, ale=y o0l (0.

This, of course, is also a (hermitian) positive definite differential quadratic

form.
A very simple example is furnished by the J -divergénce (see [11]D

JP(p, q) = H,(Ap+(1-Aq)—AH,(p)—(1-)H,(q9), 0<i<l,
induced by the ¢-entropy functional H,. According to (3.2) we have

JP(, @ = {o(dp+(1-Dq)—io(p)—(1—-) ¢ (9)} du(),




248 o J. Burbea and C. R. Rao

and therefore .
A5 TP (p, P}Hz) = —4A(1-2) | (P"(P)laplzdﬂ(t)-
x

The concavity of ¢ implies that this is a positive definite form. In particular,
when ¢ is the « - order entropy function ¢, of (3.5), the « - order entropy metric
emerges again.

A more interesting example is furnished by the K -divergence (see [11])
which is defined as follows: Let i be a C>-function in R, with the property
that sy (s“)+n/1(s) > 0 and with the normalization y"”(1)> 0. The K -
divergence is -

K@= 8',1,,(1)“ ()+qw( )}_@(t}l

Its Hessian is therefore
4: Ky (p, P)}(2) = | p| dlog pl*du(1),
¥

which is the information metric. If y = — @,, where ¢, is the a - order entropy
function of (3.5), the resulting K -divergence K, is called the «-order K -
divergence (x > 0). Note that in this case .

(VR 1=e1), a#1,
—[S(Pa(s—1)+(pu(s)] ={ ET s))log(s ls, )(s ) o = 1’

" is indeed non - negative for se R, and that — "(l) =a > 0. Moreover,
@=n7'[f @ g +q’""p")d#(t) 2, a1,

K,(p, 9) = _
BP9 {I[qlogp 'q+plog q~ p]du(t), x=1.

In particular, 8K 1(p, q) is the familiar Kullback - Leibler dwergence (see
[17)).

Another example of a divergence measure is prov1ded by the Hellinger
divergence o

Hy (@, 9 = | ¥ (7)-¥ @F du0),

where  is any C2-function on R, . Obviously, {H, (p, g)}'/* defines a pseudo-
distance on P, x P,. In particular, if p = p(t] z) and q = p(¢{{) with z, {e D and
p(:|-)e # (%] D), we have the function

0i(z,0) = {Hy(pC12), p(-O)}"".
which is the Hellinger - pseudo - distance on D x D,

0 0= i [ (ptl2)—¥ (p(t1 )] du(t)}”’
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The Hessian, in analogy with (3.4), is given by
45 {Hy (p, P}2) = 8 [ [V (D)} 10pI dp (o).
¥

The choice

W(s) = (seR,,a> 0}

givg_sr the a-order Hellinger divergence

H(p, =53 f[p“’z—q“”]zdu(t)
T

and the o -order Hellinger pseudo - distance

1/2

(3.6) ez, ) = ffi { ! (Lo (] 212 — [p (012’ du(t)} -

It follows that
Aap {Ha(pa p)}(z) =16 _’. pul alog plzdﬂ(t),.
- T

which is (modulo the factor of 16) the a-order entropy metric.

4. The projective pseudo - distance. The 1 - order pseudo - distance g, defined
in (3.6) is known as the Hellinger pseudo -distance on D and is also denoted by
Q. Ev1dent1y,

0z 0 = {1-[ [p(t12)p( 01 du@)"™ 2 ¢eD,
with p(-|-)eZF (Z]D). 1t is also evident that
| ~ 0%z, 2) = do*(z, D=2 = O

“and

_ . |
d%0*(z, = = 3 fp“ |dpl du(t).

S x

In particular, ds?(z) = 24,,0%(z, {)|;=. is the information metric.

In spite of the importance of the Hellinger pseudo -distance ¢ in the
theory of statistical inference (see [20], p. 6-23), it is found more convenient
for our purpose to study an alternative pseudo - distance 4 defined below. To
do so we shall follow the convention of statistical quantum mechanics and
consider p(-|-)e # (Z|D) as a square of the modulus of a normalized wave
Sunction Y (+|+). Thus,

4.1 . plz) =W (¢ 2)e %D,
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where y(‘|z) is a complex-valued function in S,, the unit sphere of
LZ(‘%‘; ﬂ): i'e':

@2 (|22 =1, zeD.
In this way we obtain

4.3) e(z, O) = {1—[ W@ DwE O|du®}”.
. z i
We define "

1
Mz, )= _ﬁminllexp {16y} W l2)—exp {0} ¥ (| Oll, 2, (eD,

where the minimum is taken over all 6,, 6,€[0, 2r]. Since also

Ma0=$% min [ (12)— €% ({0},

0€0<2n

it is seen that A is indeed a pseudo -distance on D. An alternative and useful

expression for this pseudo -distance in the form of
(a4) Mz, O = {1-|] ¥ @ Dv @ O dp]}'"
E .

is als_ov available. Comparing this expression with that of (4.3) we see that

0z, ) <Az, 0, =z (eD.

A routine calculation based on

P =112, ¥(-10))
and A%(z, z) = dA%(z, {)|;=, = O shows that

@5 22, O =yl —Ip, dp)l>, o =y (12,

which is clearly non-negative.

We call 4 the (u, Y)- projective pseudo - distance of D. The reasons for this
name lie in the following more general considerations. Let H be an abstract
Hilbert space and consider any two non-zero elements 4, and h, of H. We
say that h; is equivalent to h,, in short h, ~ h,, if there exists a non-zero
scalar ¢ such that h; = ch,. The set of all equivalence classes [k], he H— {0},
forms the projective space P(H) which, in general, is of infinite dimension. This is
a complete metric space with respect to the distance.

d(Thy], Thy]) = —=dist([hy] A S, [hy] A S),

NG
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where S is the unit sphere of H. It follows that

2

exp {if, } exp{ z}

&[], [h) =14 inf ||h I ”h2“

— min {I—Re[exp{i(ol o)t ]}

01,02 |h1“ ”hz”
and thus

I(hy, By) }” 2
ALl

It is also clear that any hnear isometry T: H — H between two Hilbert
spaces induces an isometry Pp: P(H)— P(H) between the corresponding
projective spaces, given by P;([h]) =[Th].

In our case, the Hilbert space H is L,(% ; ¢) and the unit sphere of H is
S, In view of (4.2) for any ze D, the wave function ¥ (| z) belongs to S,. We
define the mapping 7 : D— P(L,(Z; W) by 7 (2)=[¥('|2)], zeD, and
note that this mapping is injective if and only if for any two distinct points
z, {e D the wave functions Y (-|z) and Y (-|{) are hnearly independent. We
also define

46 A(Chy1, [h]) = {1—~

A O=d(7 @, T Q)= (¥ (|2, v (-10]),

which in view of (4.6) is identical with (4.4).

The difference between the Hellinger and the projective pseudo -distance
is now more apparent. Both are based on the normalized wave function
¥ (|7 of S,, but while the Hellinger pseudo -distance admits the expression

Q*(z, ) =1=|(W (12, W (1 0I),];

the projective pseudo -distance admits the more analytic expression of (4.4).
Consequently, 0 < o(z, {) < A(z, {) €1 for every z, {e€D. Moreover, while g
is a distance of D if and only if for any two distinct points z, { € D the wave-
function amplitudes [ (:|z)| and |y (-|{) are different on Z except for a
subset of 2 of zero u-measure, A is a distance on D if and only if for any
two distinct points z, {e D the wave functlons W(-|2) and ¥ (:|{) are linearly
independent. _

5. Sesqui  holomorphic kermels. In most cases a given wave function

g(:|2)e L,(%'; p), zeD, is not necessarily normalized as in (4.2), in which
case the quantities under considerations will involve certain norming const-
ants detailed below. We write

(5.1) g(-12) =K@ DY (|2},  ¥(-|2)eS,, zeD,
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where the norming constant _
(5:2) K(z, ) =(g(12), g(12)),

is a positive smooth function of ze D. The reason for displaying K (z, z) instead
of , say, K(z) is that the right - hand side of (5.2) is in effect a function of z as
well as Z (zeD), a fact which will become more apparent once we further
require that g(t/)) be holomorphic in D for pu-almost all teZ. With the
notation of (5.1) and (5. 2), formula (4.5) becomes

(3 P, Olg= =K~ 2[K lldgllz - g, dy),Jz]

where K = K(z, 2) and g=49(12), zeD.

A particularly important case occurs when the non-normalized wave
function g(-|-) has the property that g(t| -) is holomorphicin D for p-almost all
te Z. In this case, in view of (5.2) and Hartogs’ theorem, K (z, 2)is holomorphlc
in (z, 2), zeD, and therefore, by polarlzatnon

54 K@z D =(g("12), 9(:10),, =z (eD.
_ It follows that, for any fixed { € D, K (-, {) is holomorphic in D, and because
the kernel is hermitian, ie., K(z, 7) = K({, 2) for any z, { D, it also follows
that K({, ) is anti-holomorphic in D. Another application of Hartogs’
theorem then shows that K (z, {) is holomorphic in (z, {) for (z, {)eD xD. Such
kernels are said to be sesqui holomorphic on D x D. Any sesqui holomorphic
kernel K(z, {) which i is also positive definite on D x D is called a Bergman
kernelon Dx D (see eg., [12], p. 88 -93). This means that, for any finite system
of points zy, ..., zy of D and any corresponding scalars a;, ..., ay of C,

N .
Y Kz Zp)ud, 20
k,m=1
Now, it follows immediately from (5.4) that K(z, {) is indeed a Bergman
kernel on DxD. In fact,

Z K(z, m)“k“m—”Z ug (- |Zk)”

k,m=1

Applymg the classical theory of reproducing kernels (see [1] and [12], p. -
88 -93) we deduce the existence of a unique Hilbert space H (D) of functions
which are holomorphic in D such that k.(z) = K(z, {), z, {eD, is its reproduc-
ing kernel. Let (-, -) be the inner product of H (D) then for any { e D we have
k, eH(D) and

fO=Wk), feH(D).
In particular, ,
| K@ D=k@=(, k), zleD.
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In the other direction, assume that we are given a reproducing kernel space
H(D), with the inner product (-, ), of holomorphic functions in D. Let
k. =K(, D), LeD, be the reproducing kernel of H(D). This kernel, as before,
is a Bergman kernel on D x D. We now consider any isometry of H(D) onto
L,(%; w) and put -

(5.5) - g(-|z)=Tk,, zeD.

Therefore it follows that, for z, {eD,

K(z,0) = (k, k z)-—(Tk;, Tk, = (9 (10, 9(- IZ))

or, expréssed in another form,

K@z D=(@gC12,9(:10), = ig(tl 29 O du(r), —-

which is precisely that of (5.4). We see therefore that there is a canonical
correspondence between holomorphic wave-functions g(-|z)eL,(Z; p) and
the Bergman kernels k,, zeD, of Hilbert spaces H(D) of holomorphic
functions in D. This correspondence is determined by (5.5) and for this
reason g(-|*), which is defined on & x D, is called a generating function of
L,(%; w for H(D) (see [5]). '
~ Under the above circumstances, the second dlﬂ”erentlal in (5 3) takes
the form

APz, D=z = K"[Ké’EK—laKlz]
or ’ ‘ s
d?3*(z, ;= = 00log K, K =K({z, 2), zeD.

This is the Bergman metric

(5.6). dbz(z)‘ 6510gK = Z Tadz:dZ,,

k m=1
where ‘ . ]
(5.7) Tia(2) =0,0, logK(z,2, zeD, k,m=1,.,n.

A special instance of this metric was first introduced and studied by
Bergman in 1933 (see also [4], p. 182-186, and [6] and [8], for additional
details). An alternatlve geometncal derivation of this metric is as follows:
We define

S(D) = UeHD): Ifl<1} and  S;(D) = {fS(D: Q=

for a fixed (eD. For_ a direction ve C", we define

68)  blv)=JKE D) max{ia.fQ): feS, D),
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where
.

0.f(2) = kaﬁ,rf(z), b=(vy, ..., ) C"

Standard Hilbert space arguments show that the extremal problem (5.8)
admits a solution which is unique modulo a rotation and that

(59) 4b%(¢; v) = 40,0,log K = d,log K, K =K(, ).
- In particular, when v = dz = (dz,, ..., dz,), we have
T b2(z;: dz) = db(2)

and we once agam obtain the Bergman metric. ThlS metric is also Kahler, 1e
the two-form L o —

. Z 7,",~,-,dz,‘ A dfm
k,m=1
is closed. For more details on such thI'ICS we refer the reader to the mono-
graph of Weil [28].
The (u, ¥)-projective pseudo -distance 4 in (4.4) assumes here a s1mpler
expression. Indeed, using (4:4), (5.1), (5.2), and (5.4), we readily obtain

(5.10) Mz,C)="1—[IK(2,f)lzK(z,f)"K(C,Z)“]”z}”z, z,{eD.-

In this form and when K(z, {) is the classical Bergman kernel (i.e., the
reproducing kernel of H(D) = H,(D), where H,(D) stands for the space of
holomorphic functions in the bounded domain D in C" which are also
square-integrable with respect to the Lebesgue measure on D), this pseudo-
distance becomes a proper distance which was first studied by Skwarczynski
[26]. For this reason, 4 in (5.10) will be also called the Skwarczynski pseudo-

_distance of D (see [9] for further details). A sufficient condition for 4 to be

a distance is provided by the following theorem:

THEOREM 1. Suppose that 1, fi, ..., f,e H(D), where f;(2) = z;, 1<]
and z =(z,, ..., z,)eD. Then Ais a dlstance on D.

Proof. Assume that A(z,{) = 0 for z,{eD. Therefore, by (5.10),
K (z, O)? =K(z, 2)K((, {), which means that k, = ak, for some aeC. It
follows that f §) =af (z) for every feH(D). Puttmg f=land f=f, j
=1, ..., n, we obtain { =z, which completes the proof.

In the present setting, a relation of considerable importance, as far as

applications of statistical inference are concerned, is the fact that the inform- .

ation metric ds? is nothing else but the Bergman metric db2. Indeed, from
4.1), 4. 2), and (5.1) we have

log p(tfz) = log g(tl z)+log g(tl z)—log K (z, 2).
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By virtue of the Cauchy-Rlemann equatlons we deduce that
0, 6 . log p(tlz) —0,,0, Iog K(z, 2),

2z,

which is valid for p-almost all te % and all zeD. This, by (2 1) and (5. 7)

shows that g,-(z) = T,z (2), zeD, and therefore ds?(z) = db?(z).
Suminarizing the above results we have the following theorem:
THEOREM 2. Assume that the probability density function p(-|‘)e # (| D) is

given by -

p(t1z) =lg(t2)*//K(z,2), K(z,2)>0, zeD,

where g(t|") is holomorphic in D for p-almost all teZ'. Then

@) K(z, {) is the Bergman kernel of a Hilbert space H (D) of-holomorphic
Jfunctions in D;

(ii) g(-|*), which ‘is defined on % xD, is the generating functwn of
L,(Z; ) for H(D);

(iii) the projective pseudo - distance A in (4 4) is the Skwarczynskt pseudo-
distance in (5.10);

(iv) for any z,{eD, 0<g(z, HD<AE <1, where @ is the Hellinger
pseudo - distance in (4.3); -

(v) the information metric ds* is the Bergman metrtc db* which may be
expressed by (5.6)-(5.9);

(vi) A%(z, 2) = dA%(z, Q)l;=, = 0 and d?A*(z, {)l;=, = ds*(z) = dbz(z)

Associated with the Bergman information metric ds? are the standard
invariants as the scalar and the Ricci curvatures which perhaps deserve a
further study in the present context. Such a study will probably yield results
analogous to those of Efron (see [13] and the literature cited therein). For
example, an analogue of the Gaussian curvature of ds” may be given (see
[7]). For a direction ve C" and zeD, the directional curvature of ds?(z) is, in
view- of (5.9), given by

#(z: 0) = — A4,log(4,log K), K =K(z, 2).-

4,log K

For n =1 this curvature reduces to the usual Gaussian curvature of the
one-dimensional Kihler metric ds?(z) = (0,0, log K)dzdz.

The classical Bergman metric and the original Skwarczynski distance (see
[26]) are also globally invariant. under biholomorphic mappings of D. This
property, in general, does not hold for our ds? and A. It holds, however,
when some additional assumptlons are imposed. For this and related results

"we refer to [6].

In the next section we provide a simple example illustrating the theory.
More examples can be generated along silimar lines (see also [5]]).

9 — Prob. Math. Statist. 3 (2)




256 o J. Burbea and C. R. Rao

6. An example. Let ¢ be a holomorphic mapping of the manifold D
(imbedded in C") into the right half-plane R ={zeC: Re z> 0}, thus
Re ¢(z) > 0 for every zeD. Let « > 0 be a real number and consider the
generating function

g.(t|2) =1 V2e 0@ tcR. . zeD.

- - This Vgenerates the Bergman kernel

K Z)=Ig.(r|z)g,(t|c)dt, 2, (eD. -

It follows that

K,(z,) = }0 oo+ o0 m-1 gy
or ’ o
K.z, ) =T@le@+0(]" «>0.

In the present situation the sample space 2 is R, and the measure u is -
the ordinary Lebesgue measure. The probability density function

p('|)eF (X D) is therefore

p(tl2) = %t‘“ e” 2R [Re (2)], Re @(2)>0, zeD.

" The Fisher information matrix has the entries
gn(@) =2, O.mlog K,(z,7, k.m=1,...,n,

and therefore _

g2 =al2Re (1722, 0)(0,,9). ¢ =0()

- It follows that the rank of this matrix is 1. The Bergman information

metric is then

(6.1) ds?(z) = «[2Re ¢(2)]" % do (2> ~

~ Here, of-course, dsZ(z) = db?(z), and thus, in view of (5.9), for a direction
veC" we have '

: " b2(ziv) =a[2Re ¢(2)] do(z: v)f>.
. It follows that _
! C 4,log b2(z: v) = 8[2Re ¢(2)] 2| do(z: v)3,

and hence the directional curvature is »,(z, v) = —4a "', which is a negative
constant and independent of the direction v.
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We recognize the metric in (6.1) as the Poincaré hyperbolic metric of the
right half-plane R. The geodesic pseudo -distance S, induced by ds? is also
the information pseudo -distance and is given by -

1 1+6

S (Z C) \/_logl 6 z, CED9
‘where
(z)—(P(C)
(6.2) ) 0=04(z, )=
ozoe @) +eo o1

The Skwarczynskl pseudo distance is now
Tz, ) = {1-(1=8%P12)112,

where 6 is defined by (6.2). To write this in another form we put w = ¢(2)
and 7 = ¢({), z, (eD, and thus u=Rew>0 and v =Re 7> 0. Then (see
also [9]) :

Az, §) = /1= [uv| (w+r)|/2]*.

On the other hand, it is easily seen that the Hellinger pseudo -distance
admits the expression :

0:(z, O) = 1—[Vuv(u+0v)2F,

and thus, once again, 0 < g,(z, {) < 4,(z, {) <1 for every z, {eD.
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