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1. INTRODUCTION

Suppose we have a d-dimensional semimartingale Z = (Z',..., Z%)7, a Lip-
schitz continuous function o : R? — R?% @ R, and a nonnegative d X d matrix )
with zeros on the diagonal and spectral radius p(Q) strictly less than one. Consider
a d-dimensional stochastic differential equation (SDE) on orthant Ri with oblique
reflection:

t
(1.1) Xi=Xo+ [o(Xs-)dZs+ (1 - QT)Ky, teR,.
0

The equation of type (1.1) was introduced by Harrison and Reiman [9]. Later it
was discussed by Dupuis and Ishi [5]. Czarkowski and Stominski [3] introduced
a numerical scheme for approximation of solution of SDE (1.1). In this paper we
will define a new numerical scheme.

Throughout the paper we assume p} = max{i/n;i € NU{0},i/n < t}
and Zt(n) is a discretization of Z, i.e. Zt(n) = Z,n, —p denotes convergence in
probability, D(R;, RY) means the space of cadlag function y : R, — R%, Ay; =
Yt — yi— and wy /, (y, [0, ¢]) denotes the modulus of continuity of y on [0, #].

Let us define the function [2]* = max{z, 0} for z € R and, by analogy, the
function [2]7 = ([z1]T,..., 29T for z = (z',..., 29T € R We will use the

norm [| Q|| = maxi<i<a Y5 ¢ij-
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In the simplest form our new numerical scheme is given in Section 3 (see (3.3)):

i1y m = T+ Aypym + (L= Q)= — Aygiayml ™

In Section 3 we prove also convergence in some topology for the cadlag and
continuous function y (see Theorem 3.1 and Corollary 3.1). We show that our
scheme satisfies the Lipschitz property for the cadlag function. In Section 4, we
use the scheme for SDE driven by a semimartingale Z;. In Section 5, we prove that

1 p
Esup | X" — X,|? = O((nn) )
s<t n
for diffusion X;.

The Appendix includes a description of some properties of I projection on
the orthant ]Ri, which connects this paper with [3].

2. THE SKOROKHOD PROBLEM ON AN ORTHANT

Let ) be a nonnegative matrix with zeros on the diagonal and spectral radius
p(Q) < 1andlety € D(R;, R?) with yg € RZ. Following Harrison and Reiman
[9] a pair (z, k) € D(R, R??) is called a solution to the Skorokhod problem

@2.1) ze=y+ I —QN)k, teER,,

on le_ associated with y, if (2.1) is satisfied and
€ RE L ER,,
k7 is nondecreasing, k3 = 0 and gmi dkl =0forj=1,...,d, t € R,.
REMARK 2.1 ([3], Theorem 1).
1. For every y € D(R,, R?%) with yo € Ri there exists a unique solution

(x¢, k¢) of the Skorokhod problem.
2. If additionally || Q|| < 1, then k; satisfies the equation

2.2) ky = F(k)q,
where

F(u)t = Sup[QTus - ys]+'
s<t

In this paper, like in [9] and [3], we make a technical assumption that

(2.3) QI < 1.
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3. FAST APPROXIMATION SCHEME

Let (z,k) be a solution to the Skorokhod problem for y € D(R., R%) with
Yo € Ri.
For every n € N we define the approximations (z", k™) of (z, k):

ki =0, zy = yo,
k?i—&-l)/n = [QTkzn/n - y(i+1)/n]+ N k?/n’
(3.1) N TNom
T(ip1ym = Yary/m + (= Q)G s
kit =k, af =y, fort € [i/n, (i +1)/n).
REMARK 3.1. We can write another but equivalent form of k™, z”. Note that
foreveryn € N, i € NU {0}:
(3.2) klyaym = QT = DE! = ysayml ™ + k)
= [ (@ + AYgr1y )T+ ki
3.3) ZZJFU/” = x?/n -+ Ay(iJrl)/n + (I - QT)[_‘,L.:L/TL B Ay(i+1)/n]+’
where Ay 1)/n = Y(it1)/n — Yi/n-

Formulas (3.1) and (3.3) are equivalent, but (3.3) looks better and is simpler
to calculate. The form (3.3) can be used in computer simulations.

REMARK 3.2. We can see that £}’ satisfies the equations
(3.4) k= F (k™)

where F™(u); = sup,«;[Q us — ygn)]Jr, ugn_) = u(_1)/m.t € [i/n, (i+1)/n).

The next two theorems describe some properties of scheme (3.1). In Theo-
rem 3.1 we estimate a “distance” between a function x and its approximation
2™ (and k and k™), and in Theorem 3.2 we prove the Lipschitz property for our
scheme.

THEOREM 3.1. There exists a constant C > 0 depending only on Q) such that
for every y € D(R, R?) with o € Ri,t eRy:

(3.5) sup |[xy — x| +sup [kf — ks| < Cwy (v, [0, 1]).
s<t st
Proof. Sincesup,c, |27 — 5| < 1Q supyey k2 — ksl + w1/, [0, 1), we

estimate only the first term, i.e. sup,<, |k — ks
We assume that (2.3) is satisfied, i.e. ||Q| < 1.
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From Remarks 2.1 and 3.2 we obtain
sup [k? — kg| = sup |[F™ (k™) — F(k)|
s<t s<t

< sup |7 () — P (k)| + sup [P ("), — F(K")s

+sup |F'(k™)s — F'(k)s|

s<t
=0+ 17+ 17

Now we estimate every part separately:

I} = sup |[F™ (k™)) — F™(k™)s| < ||Q| %aé kG—1)/n — Kiynl

s<t

< |QI” max [k o), — kfs_ 1)l + QU max Y(i—1)/n = Yi/nl

i/n<t
Ql
§ PRI n(y7 [O,t]),
1 QI Y
It2 =sup |F"(k")s — F(k")s]
s<t
<sggHQTks—4émrF—[QTMJ—y4+|
< Sup 1Y) — gl = win(y, [0,1]),
I} = sup |F(k")s — F(k)s| < ||Ql| sup |k — k.
s<t s<t

Consequently, we have

n Q n
suplh? — kol < Do 0 10,8]) + wasly, 0,8]) + Q1 sup K — .
s<t 1— Q] s<t

So we can calculate the value of the constant C as follows:

1
sup |ky — k| < W“l/n(ya [0,¢]). =

s<t
COROLLARY 3.1. For every y € C(Ry, R?) with yo € RL we have

sup |z} — xs| +sup |ky — ks| — 0.
s<t s<t

THEOREM 3.2. There exists a constant C > 0 depending only on Q) such that
for every y',y* € D(Ry, RY), yj,y5 € RY:

1n 2,n 1,n 2n 1 2
sup |k — k2" + sup |z — 22" < Csup |y — vzl
s<t s<t s<t
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Proof. Asin Theorem 3.1 we need only to prove the first of the examined
terms. The second can be obtained from (3.1):

sup ’kl n k,g,n’ = sup |Fn(k1,n,(n—)>S - Fn(k2,n,(n—))s|
s<t s<t

= sup [[QT ey ™" — T — [QTAT™MT) — 2]

s<t s
1, 2 2
< Q] Zrﬁlaé |k(iz1)/n - k’(lnl /n’ + max ’yl/n yi/n’
<@ sup [ky™ — E3"| + sup |y, — ys!
s<t s<t
and
sup [k; " — k37| < suply, —y;|. =
s<t ”QH
We obtain an easy corollary:

COROLLARY 3.2. There exists a constant C > 0 such that for every y €
D(Ry, RY) with yo € RY:

k' < Csup |ys| < +oo.
s<t

From previous theorems we can obtain convergence for continuous functions.
For a cadlag function, we expect some problems with convergence in points of
discontinuity.

LEMMA 3.1. Assume that y € D(R,, R?) with yo € Ri has the form

(3.6) Zyt (tastisn) ()

where 0 =ty < t; < ... Then
(3.7) xp > a1 asnm— oo
fort #t;,1 € N, where (x4, ki) is a solution of the Skorokhod problem for y;.

Proof. We prove the lemma by induction. It is well known that if ¥ is of the
form (3.6), then

T = {yo; te [Ovtl)v
HQ(Z'ti_1 + Ayti>’ t e [tl‘,tzq_l), 7€ N.

1. Fort € [0,t1) the assertion is satisfied by definition.
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2. By (3.3) we have:

T+ DYy + (= QD)= = Aygrnyml*
for i suchthati/n <t; < (i+1)/n,

:zf/n + (I - QT)[—a:;‘/n]Jr for i such that t; < i/n < tjt1.

Tlip1)n =

The second part, the sequence z;/, between jumps looks like z; (by (6.2) in
the Appendix) for a starting point zp = (z¢, + Ay, ).

Now, from Corollary 6.1 we have

lim z} =Ig(xy, + Ayy,) fort e (ti,tiy1). =

n—-+00

In the next example we show that (3.7) cannot be straightened to the conver-
gence in the Skorokhod topology J;.

EXAMPLE 3.1. Letd = 2,
_JOo 3 _ {0,007, t<1,
Q_{é 0} and yt_{(—l,—l)T,t%.

The following functions are the solution of the Skorokhod problem:

0,007, t <1,
zr=(0,0)", t€Ry, and kt:{222;Tt>1

Now, we use scheme (3.1) for these functions and try to find the limit of
Yy
(=", k™) when n tends to infinity. Then we obtain

(0,07, t<1,
ki =4 (1,17, tel,1+1/n),
(2-1/20,2—-1/29T, te[1+i/n, 14 (i+1)/n), i €N,
and
(0,0)7, t<1,
=9 (=33 tel1+1/n),

(=172t =120 e 1+i/n, 14 (i+1)/n), i €N.

Since sup,<, |2}| = 1, we have the solution 2" / z in Jj.

Using the notation of jump point, we can obtain another type of problems. For
example, for jump at¢; = % the limit limy,, 1 o 7}’ does not exist.
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Classical topology .J; is too strong in order to obtain convergence for our
scheme. There exists a topology S that is weaker than Ji, which is obviously
weaker than the uniform topology. The .S topology has been introduced by Jaku-
bowski in [11] and in the next papers (e.g. [12]) good criteria of convergence in
topology S were given. From the point of view of computer simulation and numer-
ical methods convergence in the .S topology is sufficient.

From Lemma 2.14 in [11] we obtain

COROLLARY 3.3. Ify satisfies the assumption of Lemma 3.1, then
(3.8) (2", k™) — (z, k) in (D(R, R*?),S).
The following theorem can be generalized for cadlag functions.
THEOREM 3.3. Ify € D(R,, R?) and yy € Ri, then
(3.9 (2", k™) — (z, k) in (D(Ry, R*?), ).

Proof. Forall y € D(R,;, R?) and all € > 0 there exists y¢ € D(R, RY)
satisfying the assumption of Lemma 3.1 so that sup,<, |ys — ys| < €.
Lettg = 0 and

tiv1 = inf{s > t; : |ys — ys,| > €}.

Then
Vi =Y, L€ [t tiv1).

Let the pair (z€¢, k) be a solution of the Skorokhod problem for y¢. Then from
Lemma 3.1 we get

(@7 k") — (2%, kF) in (D(Ry, R??), S).
To prove the assertion we need to show that

lim sup sup |kS" — k| = 0.
e—0 p s<t

From Theorem 3.2 we have

sup [kS™ — k2| < Csup [ye™ — y{] < Ce. m

s<t s<t

REMARK 3.3. If y € D(R,, RY) and g € Ri, then 2™ — « for continuity
point of y and {z"} is relatively S-compact.
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4. FAST APPROXIMATION SCHEME FOR SDE

Let Z be an (F;)-adapted semimartingale. Let us recall that the pair (X, K)
of (F;)-adapted processes is said to be a strong solution of (1.1) if (X, K) is a
solution to the Skorokhod problem associated with the semimartingale

t
(4.1) Y =Xo+ [o(X,_)dZs, teR,..
0
REMARK 4.1. If o is Lipschitz continuous, then there exists a unique strong
solution to the SDE (1.1).
Using formulas (3.1) we can define a “fast” scheme for SDE:
Xy =Xo, Kj=0,
T +
K?i«#l)/n = [ Z}n - ( zn/n + U(er;an(H-l)/n - Zz/n))] v in]n7
Xl i1y/m = Xim + 0 (X3) By m = Zipn) + (1= QT)K( ) /s
(X7 K] = (XD, Kl t € [i/n, (i 4 1)/n).

LEMMA 4.1. Assume that there exist stoping times {1;} C Ry such that 0 =
T0<T7 <...and {Z;} C R4, If Z is a semimartingale such that Z, = Z; for
t € [1i,Tit1), 1 € NU{0}, then

4.2) X' — Xy fort#t,.
Proof. We define

X, — XQ, te [0,7’1),
t HQ (X.,—Fl + O'(Xn,l)AZn)a t e [Ti,TiJrl), 1 € N.

The rest of the proof is the same as for Lemma 3.1. We need only to change
Ay((f?—i)-l)/n by o(Xr,_)AZr. =
THEOREM 4.1. Assume that o is Lipschitz continuous. Then

(4.3) (X7, K™) (X, K) in (D(R4, R*),S).

Proof. AsinTheorem 3.3, for all ¢ > 0 we construct a “piecewise constant”
martingale Z°¢. It follows that for all € > 0 there exists Z€ such that

sup |Zs — Z¢| < e.
s<t

Let the pair (X", K") be a solution of the Skorokhod problem for the semi-
martingale

t
Y= Xo+ [o(X,-)dZ, teRy.
0
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From Lemma 4.1 we have the convergence
(X", K" — (X, K in (D(Ry, R??),S).
To complete the proof we need to show that, for all n > 0,

hm hmsup P(sup | X" — X7 >n)=0.

\

Using Theorem 3.2, we obtain
sup | X¢" — X7| < Csup [Y7" - Y7
s<t s<t

— Csup| [ o(x7 )z — [ o(xg")dzg ™)
0

s<t ‘(/]‘
< Csup ’ j‘o'(XS’_)dZQ(L”) j‘U(Xen a7 n)’
s<t 0 0
+Coup| [ o(X;)dz — [ o(X5m)azg ™)
s<t 0 0

:Csup‘j(a X)) —o(X") )dZ ‘+Csup|H€"|,
0

s<t

t
(XM)dz™M — [ o(X™)dze™

H" = f
0 0
t
_ fo_ Xen ) Ze (n))
0
(n) (7™ _ zoo
=o(XM)(Z" — [(2Y = Z7)do (X ™)
0
— [o(X™), <Z<” — 2z ™).
Obviously,

o (™), (2 = 22" < (lo (XD 2 (2 =z ™))?

By definition, X" has the form

t
X" =Xo+ [o(X%)dZe" + (1 - Q1) K"
0
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So, we can write the inequalities

t

sup | X{"| < | Xo| +sup | [o(X™") +(1—-QT)sup |K<|
s<t s<t s<t

t
< |Xo| 4+ 2Csup | fJ(XGZf)dZZ’"L
s<t 0

From Gronwall’s lemma it follows that {sup | X¢"|} is bounded for o satisfy-
ing the Lipschitz condition. So, if {o(|X¢"|)} is bounded in probability, then

o(Xe=m)dZe"

O%H

satisfies U'I" condition.

Because { K"} is bounded in probability, this means that it also satisfies UT".
{X€"} satisfies UT as a sum of two processes that satisfy UT'. So, o(X¢") satisfies
UT forc € C?. m

5. FAST APPROXIMATION SCHEME FOR DIFFUSION

Consider SDE with reflection on R‘i of the form
(5.1) X, = X0+fb ds+f AW, + (1 — QT K.,

where W is a d-dimensional Wiener process, and b: R — R? o: RY — R4 @ R4,

REMARK 5.1. If b and o are Lipschitz continuous, then there exists a unique
strong solution of the SDE (5.1).

Let us define
Xy =Xo, Ky=0,

Ky = [QTKD, = (X7, +0(X 7 0 +0(X ) (Wit 1) o —Wipn)) ]
VKD,

Xiv1yn = X +b(X;5,)n T+ o (X77) Wi 1y/n — Wign)
+ (1= QMK 1y

(XKD = ( ,Z}n, :;n), te [z/n,(z+1)/n)

We can see that X" satisfies the equation

52) X?—Xo+fb (X )dpl! + f (X2 )W + (1 - QT)KY.
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THEOREM 5.1. Let the assumptions of Remark 5.1 be satisfied and let (X, K)
be a strong solution to the SDE (5.1). Then for every p € N

1 p
(5.3) EsupXQXS\QP:O« n”) >
s<t n

First we prove the following lemma:

LEMMA 5.1. Under the assumptions as in Theorem 5.1 we obtain

(5.4) supEsup|X”\2p < +o0.
s<t

Proof. We have

S S

(5.5)  sup|XD — X§| < Csup| [o(XD_)dW M + [ (XD )dph],
s<t s<t 0 0
which implies
S
sup | X7 — X{[* < 2Csup| [ o(X ‘ —|—2€sup‘fb dpu‘
s<t s<t 0 s<t

Now, because b and o are Lipschitz, we have

t t
Esup |XI — X% < 2CE( [ o(X)dW ) 4 2cE( [ |b(X2)|ds)*
0 0

s<t

< 2CE f P(X™ )dp™ +2CE f VP(X™ )dp?
0

t
<CE [ (XI)% + 1)dp?
0
t
C(1+ [ Esup|Xy — X§|*ds).
0 uULSs

Thus, from Gronwall’s lemma we have the assertion. m

Proof of Theorem 5.1. By definition we have

s

= { (0(X) — (X)) dW ™

+ { (b(XT) = b(Xsm))dpl + (1= Q1) (K] — Ky).
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Because b and ¢ are Lipschitz, we get

E'sup | X7’ - ﬁp<%uhgﬁﬁ |%+fE%ﬁX"—XFMQ
s<t s<t uLs

From Gronwall’s lemma we obtain

Esup | X" — X,|* < 2CEsup |[K" — K,|*!.

s<t s<t

In the same way we can prove that

Esup | X"|* < CEsup|K"|?.
s<t

s<t
Since
KP = sup [QTK™") — (X7 + Zb( _)dpt + f )dw )"
and
Ky = sup [QTK, — (X0 + Zb( _)dpu + f )dw,)] T,
we have

K" — Ky = sup [QTK™") — (X7 + j"b( )dpy + f (Xp_)aw ™
s<t 0

S
—sup [QTEY — (X§ + [ 0(X])dpy, + f (X7 )aw ]+
S 0

+sup [QTKY — (X{ + [b(X[_)dpl! +
0

s<t

—sup [QTKY — (Xo+ [ b(Xu )dpu +
0

s<t

+ sup [QTK§ — (Xo + fb( _)dpy + fa )]+
s<t 0 0

— sup [QTKS — (Xo + f b(Xy—)dpy + f )]+
s<t 0 0

=I'+ 7+ 1.
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Now we estimate every part separately:

It1<sup|K?’(") K| < Suplff( D)W = W) 45X )(s = o),

32\1( qlnwﬁ+2(d )~ o(Xun)) W),

It X sup |Ks - Ks|
s<t

and we have

Esup K, — K} < C(Esup|W, — W} |2p+fEsup\K — K% du)
s<t u<s

< CE(w (W, [0,1]))%
nn p
_O<(1n ) > .

6. APPENDIX. IIo PROJECTION

Finding the projection 7 on the domain D is the standard technique to obtain
a solution of the Skorokhod problem. In [3] we define a projection on the orthant
Ri as follows:

REMARK 6.1. IIg : R? — R is defined by

lg(z) =z + (I - Q)7
where 7 satisfies the equation 7 = [QTF — 2] ™.

In that definition, we have to find the fixed point . Typically, we use the
approximation sequence of 7 and Z:
7o =0,
20 = 2,
Fop1 = [QT7, — 2]7, neNuU{0},
Zop1 =24+ (I — Q1)7ny1, neNU{0}.

6.1)

It is easy to see that

ngrfoorn:r and nETooZ”_HQ<)
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Using simple calculations, we can obtain an equivalent formula for 7,4 1:
REMARK 6.2. We have

Fap1 = [QT7n — 2 = [ = (2 + (T = Q1)) + 7] = [20 + 70T
Now we define another sequence starting from the same point:

20 = 2,

2
(6:2) Zng1 = 2n + (I — Q1) [—zn)t, n e NU{0}.

That sequence looks like that in our scheme used for a constant function y; = 2
(Ay; = 0).
Once again simple calculations lead to obtaining an equivalent formula:

REMARK 6.3. We have

ot = 2+ (L= QD)= 2]t = 2 + (I — QT) 20 2"

Sequences z, and Z,, look different, but in fact they are only different repre-
sentations of the same sequence.

LEMMA 6.1. For every z € R% and for all n € N U {0} we have
6.3) 2o = 2.
Proof. The proof will be done by induction. For n = 0 we have

20 = 2 = 2p.

Now assume that z; = z; for ¢ = 0,...,n. Then from (6.1) and Remark 6.2 we
have

(6.4) i = Ti-1 4 [—Zi1] "

fori=20,...,n.

Now we check
Znil — i1 =24+ (I — QD)1 — 20+ (I — QT) [—2z] "
=z + (I = Q) (2, + 7T —7n) — 20+ (I — QF) [~2,) T
=(Zn—2) + (I — QT) (=20 + Tult = = [=20] )
= =Q") ([Fza+ Tt =70 — [~z ).
Let us define

(6.5) R, = [z, +#]" — 7, — [-2)
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It is easy to show that if # < 0, then R}, =0.To complete the proof we need to
check whether Ry, = 0 when z}, > 0.

Consequently, if Zn > 0, then Z;,

Without loss of generality we can assume that j = 1. Then

-1 1
Zn:Zn
= }L 1+ [= 711 1]+—Q21[—Z721—1]+‘|'-~-—qdl[—zg—ﬂJr
<z + [zt
=z + [zt
1

_; > 0. In the same way we can prove that z} > 0

fori=n—-1,...,0.If 2& > 0, then f% = 0, and by (6.4) we have F}l = 0. Thus
R}L =0. m

(1]
(2]
(3]

(4]
(5]

(6]
(7]
(8]
(9]
[10]
[11]
[12]
[13]
[14]

[15]

COROLLARY 6.1. We have
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