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LIMIT THEOREMS FOR PRODUCTS OF SUMS
OF INDEPENDENT RANDOM VARIABLES∗
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Abstract. Let {Xn, n ­ 1} be a sequence of independent random
variables with finite second moments and {Nn, n ­ 1} be a sequence of
positive integer-valued random variables. Write Sn =

∑n
k=1(Xk−EXk),

n ­ 1, and let N be a standard normal random variable. In the paper the
convergences

` n∏
k=1

(Sk/ak + 1)
´γn D−→ e

N and
`Nn∏
k=1

(Sk/ak + 1)
´γn D−→ e

N

are considered for some sequences {an} and {γn} of positive integer num-
bers such that Sn + an ­ 0 a.e. The case when γn are random variables is
also considered. The main results generalize the main theorems presented
by Pang et al. [3].
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1. INTRODUCTION

Let {Xn, n ­ 1} be a sequence of independent identically distributed random
variables with mean µ and variance σ. In this paper we are interested in limit theo-
rems for products

∏n
j=1 Sj . This study was begun by Arnold and Villaseñor in [1].

They obtained, for the sequence {Xn, n ­ 1} of i.i.d. exponentially distributed
random variables with µ = 1, the following convergence:

( n∏
j=1

(Sj/j)
)1/
√

n D−→ e
√

2N .
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This result was generalized by Rempała and Wesołowski. In the paper [7] they omit
the assumptions that Xn are exponentially distributed and obtain the convergence

(∏n
j=1 Sj

n!µn

)1/γ
√

n D−→ e
√

2N .

On the other hand, this result was generalized by Qi [6] and Lu and Qi [2] to the
case of a stable limit law. Furthermore, in [3] the following result was obtained:

THEOREM 1.1. Assume that the positive random variable X has mean µ
(µ > 0) and is in the domain of attraction of the normal law and let tn be a pos-
itive integer-valued random variable. In addition, assume that there is a positive
constant sequence {bn} tending to infinity as n→∞ such that tn/bn

P→ ν, where
ν is a positive random variable and independent of {Xi, i ­ 1}. Then

(∏tn
k=1 Sk

tn!µtn

)µ/Vtn D−→ e
√

2N ,

where V 2
n =

∑n
i=1(Xi −X)2, X = n−1

∑n
i=1 Xi, n ­ 1.

It is worthwhile to remark that all the above-mentioned results deal with the
case of independent identically distributed random variables. If we omit the as-
sumption that {Xn, n ­ 1} are identically distributed, the computations become
very complicated and so far there are no results for products of sums of random
variables, which are only independent. In this paper we fill this gap. Furthermore,
we consider random normalization similar to that in Theorem 1.1 (selfnormaliza-
tion) and also randomly indexed products.

2. MAIN RESULTS

Let {Xn, n ­ 1} be a sequence of independent random variables such that
σ2

n = Var(Xn)<∞, V 2
n =

∑n
k=1 X2

k , Sn =
∑n

k=1 Xk, s2
n =

∑n
k=1 σ2

k = EV 2
n .

For simplicity of the notation we assume that the sequence {Xn, n ­ 1} is cen-
tered, i.e. EXn = 0, n ­ 1 (except for Corollaries 2.1 and 2.3). In the whole
paper {an, n ­ 1} denotes a sequence of positive reals divergent to infinity (we
put a0 = 0).

THEOREM 2.1. Let Xn ­ an−1 − an a.s., n ­ 1, and

(2.1)
∞∑

n=1

E|Xn|p/ap
n <∞

for some p, 0 < p ¬ 2, and let {γn, n ­ 1} be a sequence of positive real numbers
convergent to zero such that
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γn

n∑

k=1

(s2
k/a2

k)→ 0 as n→∞,(2.2)

γ2
n

n∑

k=1

(An
k)2σ2

k → 1 as n→∞,(2.3)

and for all ε > 0

γ2
n

n∑

k=1

(An
k)2E

[
X2

kI[γnAn
k |Xk| > ε]

]→ 0 as n→∞,(2.4)

where Aj
i =

∑j
k=i(1/ak), 1 ¬ i ¬ j. Then

(2.5)
( n∏
k=1

(Sk/ak + 1)
)γn D−→ eN as n→∞.

Furthermore, if the sequence of random variables {λn, n ­ 1} satisfies

λ2
n

n∑

k=1

(An
k)2X2

k
P−→ 1 as n→∞,

then

(2.6)
( n∏
k=1

(Sk/ak + 1)
)λn D−→ eN as n→∞.

COROLLARY 2.1. Let {Xn, n ­ 1} be a sequence of independent, positive
random variables such that EXn = µn, and

∞∑

n=1

(σ2
n/L2

n) <∞,

γn

n∑

k=1

σ2
k

n∑

j=k

(1/L2
j )→ 0 as n→∞,

γ2
n

n∑

k=1

( n∑

j=k

(1/Lj)
)2

E
[
(Xk − µk)2I

[
γn

( n∑

j=k

(1/Lj)
)|Xk − µk| > ε

]]→ 0

as n→∞,

where

Ln =
n∑

k=1

µk, γn =
( n∑

k=1

σ2
k

( n∑

j=k

(1/Lj)
)2

)−1/2
.

Then ( n∏
k=1

(Sk/Lk)
)γn D−→ eN as n→∞.
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COROLLARY 2.2. Let {Xn, n ­ 1} be a sequence of independent random
variables such that E|Xn|2+δ <∞ for some δ > 0, n ­ 1. Condition (2.4) may
be then replaced by

γ2+δ
n

n∑

k=1

(An
k)2+δE|Xk|2+δ → 0 as n→∞.

COROLLARY 2.3. Let {Xn, n ­ 1} be a sequence of independent identically
distributed random variables with EX1 = µ. Then Theorem 2.1 holds for the se-
quence {Xn − µ, n ­ 1} with

γn =
µ

σ
√

2n
,

where σ2 = σ2
1, ak = µk.

Thus our Theorem 2.1 generalizes Theorem 1 given in [7].
Let us consider γn = s−1

n , n ­ 1, as the normalizing sequence. We will as-
sume that sn →∞ as n→∞. We get

THEOREM 2.2. Let Xn ­ an−1 − an a.s. and assume that (2.1) holds with
some p, 0 < p ¬ 2. If

(2.7)
1
sn

n∑

k=1

(s2
k/a2

k)→ 0 as n→∞

and

(2.8)
1
s2
n

n∑

k=1

(An
k − 1)2σ2

k → 0 as n→∞,

and, for every ε > 0 (the Lindeberg condition):

(2.9)
1
s2
n

n∑

k=1

EX2
kI[|Xk| > εsn]→ 0 as n→∞.

Then

(2.10)
( n∏
k=1

(Sk/ak + 1)
)1/sn D−→ eN as n→∞.

Furthermore, if
∞∑

n=1

(σ2
n/s2

n) <∞,

then

(2.11)
( n∏
k=1

(Sk/ak + 1)
)1/Vn D−→ eN as n→∞.
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Now, let {Nn, n ­ 1} be a sequence of positive integer-valued random vari-
ables and let {kn, n ­ 1} be a sequence of positive integers divergent to infinity.
We assume that

Nn
P−→∞ as n→∞

and that sn →∞ as n→∞. We put M(n) = kn ∨Nn, m(n) = kn ∧Nn. Under
the notation of Theorem 2.1 we will consider the following conditions:

γNn

γkn

P−→ 1 as n→∞,(A)

γknsm(n)A
M(n)
m(n)+1

P−→ 0 as n→∞,(B)

γ2
kn

M(n)∑

i=m(n)+1

(AM(n)
i )2σ2

i
P−→ 0 as n→∞,(C)

γknsknA
M(n)
m(n)+1

P−→ 0 as n→∞,(D)

P [|s2
Nn
− s2

kn
| > cs2

m(n)]→ 0 as n→∞ for some 0 < c < 1.(E)

LEMMA 2.1. Let the assumptions of Theorem 2.1 be satisfied and consider
the following cases:

(i) (A) jointly with (D),
(ii) (C) jointly with (D),
(iii) (B) jointly with (E).

Then (i) and (ii) are equivalent and (iii) implies (i) and (ii).

The stronger result that (iii) is equivalent to (i) and (ii) cannot be proved.
Indeed, if we take ak = k(k + 1), σ2

k = k, kn = n, and

P [Nn = 2n] = P [Nn = n/2] = 1/2,

then conditions (A)–(D) are true, but condition (E) fails.

THEOREM 2.3. Let the assumptions of Theorem 2.1 hold. Assume that

(2.12) γkn

M(n)∑

i=m(n)+1

|Xi|AM(n)
m(n)+1

L1−→ 0 as n→∞.

Then under the conditions (A) and (D) the following convergences hold:

(2.13)
( Nn∏
k=1

(Sk/ak + 1)
)γkn D−→ eN as n→∞

and

(2.14)
( Nn∏
k=1

(Sk/ak + 1)
)γNn D−→ eN as n→∞.
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3. PROOFS

LEMMA 3.1. Let {Xn, n ­ 1}, {Yn, n ­ 1} and {Zn, n ­ 1} be sequences
of random variables such that

Xn
D−→ F (·), Yn

P−→ 0, Zn
P−→ 1 as n→∞

with continuous distribution function F (·). Then

XnZn + Yn
D−→ F (·) as n→∞.

Proof of Lemma 3.1 is elementary and will be omitted.

P r o o f o f T h e o r e m 2.1. Let us put

Cn = Sn/an + 1, n ­ 1.

Then from (2.1) and Theorem 6.6 in [4] we have

Cn − 1 = Sn/an
a.s.−→ 0 as n→∞.

Thus
∀δ>0∃R∀r>R P [sup

k­r
|Ck − 1| > δ] < δ,

and hence there exist two sequences of real numbers, δm ↓0 (δ1 = 1
2) and Rm ↑ ∞,

such that
P [ sup

k­Rm

|Ck − 1| > δm] < δm.

Proceeding as in the proof of Theorem 1 in [7] we see that it is enough to show
that:

γn

Rm∑

k=1

(
log(Ck)− Ck + 1

) P−→ 0 as n→∞,(3.1)

4γn

n∑

k=1

(Ck − 1)2 P−→ 0 as n→∞,(3.2)

γn

n∑

k=1

(Ck − 1) D−→ N as n→∞,(3.3)

but the first follows from the fact that γn → 0 as n → ∞, and the second from
Markov’s inequality and (2.2):

P
[
4γn

n∑

k=1

(Ck − 1)2 > ε
] ¬ 4γn

ε

n∑

k=1

E(Ck − 1)2 =
4γn

ε

n∑

k=1

(s2
k/a2

k)→ 0.
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Now we prove (3.3). We have

γn

n∑

k=1

(Sk/ak) = γn

n∑

k=1

k∑

i=1

(Xi/ak) = γn

n∑

i=1

An
i Xi.

Let us define

Yi,n = An
i Xi, 1 ¬ i ¬ n.

Thus we have

Zn = γn

n∑

k=1

(Ck − 1) = γn

n∑

k=1

Yk,n.

Let us observe that EYk,n = 0 and Var(Yk,n) = (An
k)2Var(Xk) = (An

k)2σ2
k

imply by (2.3)
EZn = 0, n ­ 1,

Var(Zn) = γ2
n

n∑

k=1

(An
k)2σ2

k → 1 as n→∞,

and in order to get (3.3) it is enough to prove the Lindeberg condition, but it follows
from (2.4). Thus we get

lim
n→∞

∣∣P [
γn

n∑

k=1

log(Ck) ¬ x
]− Φ(x)

∣∣ ¬ 2δm,

and (2.5) holds when we take limit as m tends to infinity.
For the proof of (2.6), by Lemma 3.1, it is enough to show that

(3.4) λn/γn
P−→ 1 as n→∞,

which is equivalent to

(3.5) In = γ2
n

( n∑

k=1

(An
k)2X2

k −
n∑

k=1

(An
k)2σ2

k

) P−→ 0 as n→∞.

From (2.4), for every ε > 0,

Bn(ε) = γ2
n

n∑

k=1

(An
k)2EX2

kI[γnAn
k |Xk| > ε]→ 0 as n→∞.

Thus, there exists a sequence {εn, n ­ 1} such that εn → 0 and Bn(εn) → 0.
Then

In = γ2
n

[ n∑

k=1

(An
k)2X2

kI[γnAn
k |Xk| ¬ εn]−

n∑

k=1

(An
k)2EX2

kI[γnAn
k |Xk| ¬ εn]

]

+ γ2
n

n∑

k=1

(An
k)2X2

kI[γnAn
k |Xk| > εn]− γ2

n

n∑

k=1

(An
k)2EX2

kI[γnAn
k |Xk| > εn]

= Pn,1 + Pn,2 −Bn(εn).



80 T. K. Krajka and Z. Rychl ik

From Markov’s and Hölder’s inequalities, for arbitrary δ > 0, we have

P [|Pn,1| > δ] ¬ γ4
n

∑n

k=1
(An

k)4EX4
kI[γnAn

k |Xk| ¬ εn]
δ2

¬ ε2
nγ2

n

∑n

k=1
(An

k)2σ2
k

δ2
∼

ε2
n

δ2
→ 0 as n→∞.

On the other hand, we get

P [|Pn,2| > δ] ¬ Bn(εn)
δ

→ 0 as n→∞.

Thus the proof of Theorem 2.1 is completed. ¥

P r o o f o f C o r o l l a r y 2.2. We have

γ2
n

n∑

k=1

(An
k)2E

[
X2

kI[γnAn
k |Xk| > ε]

] ¬ γ2
n

n∑

k=1

(An
k)2EX2

k |Xk|δγδ
n(An

k)δ/εδ

= γ2+δ
n

n∑

k=1

(An
k)2+δE|Xk|2+δ/εδ. ¥

P r o o f o f C o r o l l a r y 2.3. We have s2
n =nσ2, and γn =µ/(σ

√
2n)→0

as n→∞. Here and in the sequel we put

Hn =
n∑

k=1

1
k
,

the harmonic numbers. Then

lim
n→∞Hn − ln(n) = γ,

where γ is Euler’s constant, and consequently

γn

n∑

k=1

s2
k

a2
k

=
µ

σ
√

2n
Hn → 0 as n→∞.

By induction on n we have:

n∑

k=1

(Hn −Hk−1)
2 = 2n−Hn, H0 = 0.

Thus

γ2
n

n∑

k=1

(An
k)2σ2 =

1
2n

n∑

k=1

(Hn −Hk−1)
2 = 1− Hn

2n
→ 1 as n→∞,
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and

γ2
n

n∑

k=1

(An
k)2E(Xk − µ)2I[γnAn

k |Xk − µ| > ε]

¬ CE(X1 − µ)2I[ln(n)|X1 − µ| > εσ
√

2n]→ 0 as n→∞. ¥

P r o o f o f T h e o r e m 2.2. Firstly we will prove

(3.6)
n∑

k=1

(Xk/sn)−
n∑

k=1

An
k(Xk/sn) P−→ 0 as n→∞.

From (2.8) and Markov’s inequality we have

P

[ n∑

k=1

An
k − 1
sn

Xk > ε

]
¬

∑n

k=1
(An

k − 1)2σ2
k

ε2s2
n

→ 0 as n→∞.

Noting
Cn = Sn/an + 1, n ­ 1,

similarly to the proof of Theorem 2.1 we must show (3.1)–(3.3). But (3.1) follows
from the fact that sn →∞, (3.2) from Markov’s inequality and (2.7), whereas (3.3)
follows from (3.6) and (2.9). ¥

P r o o f o f L e m m a 2.1. From (2.3), for large k and l, we have

(3.7)
∣∣∣∣
γ2

k

γ2
l

− 1
∣∣∣∣ ≈ γ2

k

( k∧l∑

i=1

(Al
i + Ak

i )σ
2
i A

k∨l
k∧l+1 +

k∨l∑

i=k∧l+1

(Ak∨l
i )2σ2

i

)
,

but

(3.8) γ2
k(Ak∨l

k∧l+1)
2s2

k∧l¬γ2
kAk∨l

k∧l+1

k∧l∑

i=1

(Al
i + Ak

i )σ
2
i ¬γkA

k∨l
k∧l+1

[
γk

γl
+ 1

]
sk∧l.

The lemma follows from (3.7) and (3.8). ¥

It is easy to check that the assumptions of Theorem 2.3 imply (A), (B), (C)
and (D). This fact is a consequence of Lemma 2.1 and the obvious implication
(D)⇒ (B).

P r o o f o f T h e o r e m 2.3. We have

γNn

Nn∑

k=1

log(Sk/ak + 1) =
γNn

γkn

γkn

kn∑

k=1

log(Sk/ak + 1)

+ (−1)I[Nn<kn] γNn

γkn

γkn

M(n)∑

k=m(n)+1

log(Sk/ak + 1),
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and by (A), Lemma 3.1 and Theorem 2.1 it is enough to prove that

γkn

M(n)∑

k=m(n)+1

log(Sk/ak + 1) P−→ 0 as n→∞.

Taking into account that kn →∞, Nn
P→∞, using the notation {Rm, δm, m ­ 1}

for arbitrary ε > 0, we have

P
[∣∣γkn

M(n)∑

k=m(n)+1

log(Sk/ak + 1)
∣∣ > ε,m(n) > Rm

]

¬ P

[∣∣∣∣γkn

M(n)∑

k=m(n)+1

(
(Sk/ak) +

(Sk/ak)2

(1 + θ(Sk/ak))2

)∣∣∣∣ > ε, sup
k>m(n)

∣∣∣∣
Sk

ak

∣∣∣∣ < δm

]

¬ P

[
γkn(1 + 4δ1)

M(n)∑

k=m(n)+1

∣∣∣∣
Sk

ak

∣∣∣∣ > ε

]

¬ P
[
γkn(1 + 4δ1)

(|Sm(n)|AM(n)
m(n)+1 +

M(n)∑

k=m(n)+1

A
M(n)
k |Xk|

)
> ε

]

¬ P [2(1 + 4δ1) sup
k¬kn

|Sk| >
√

εskn , γknsknA
M(n)
m(n)+1 <

√
ε/2]

+ P [γknsknA
M(n)
m(n)+1 ­

√
ε]

+ P
[
2(1 + 4δ1)γknA

M(n)
m(n)+1

M(n)∑

k=m(n)+1

|Xk| > ε
]
.

Now Theorem 2.3 follows from Kolmogorov’s maximal inequality (cf. [4], (2.17),
p. 54), (D) and (2.12). ¥

4. EXAMPLES AND APPLICATIONS

EXAMPLE 4.1. Let {Xn, n ­ 1} be a sequence of independent random vari-
ables with the law P [Xn = ±

√
n(n + 1)] = 1/2, n ­ 1. Then

(4.1)
(

n∏
k=1

(
Sk

k(k + 1)
+ 1

))√3/n D−→ eN as n→∞.

Furthermore, let {Nn, n ­ 1} be a sequence of positive integer-valued random
variables with the law Nn = infk>n−√n[Xk < 0], n ­ 1. Then

(4.2)
(

Nn∏
k=1

(
Sk

k(k + 1)
+ 1

))√3/Nn D−→ eN as n→∞
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and

(4.3)
(

Nn∏
k=1

(
Sk

k(k + 1)
+ 1

))√3/n D−→ eN as n→∞.

P r o o f o f E x a m p l e 4.1. We put an = n(n + 1), n ­ 1, and observe that
An

k = 1/k − 1/(n + 1). Furthermore EXn = 0, σ2Xn = EX2
n = n(n + 1), and

s2
n =

n∑

k=1

k(k + 1) =
n(n + 1)(n + 2)

3
, n ­ 1.

It is obvious that for p = 2

∞∑

n=1

E|Xn|p
ap

n
=
∞∑

n=1

(
1
n
− 1

n + 1

)
= 1.

We have
n∑

k=1

(An
k)2σ2

k =
n∑

k=1

(
k + 1

k
− 2

k + 1
n + 1

+
k(k + 1)
(n + 1)2

)
=Hn− 8n

6(n + 1)
+

2n2

6(n + 1)
.

Hence γn =
√

3/n, and
√

3
n

n∑

k=1

k(k + 1)(k + 2)
3k2(k + 1)2

=

√
1
3n

(
Hn+1 + 1− 2

n + 1

)
→ 0 as n→∞.

We also have

I[γnAn
k |Xk| > ε] = I

[√
k(k + 1) >

ε√
3/n

(
1/k − 1/(n + 1)

)
]

= I

[√
k + 1

k
−

√
k(k + 1)
n + 1

>

√
nε√
3

]
= 0

for n > 6/ε2, because

√
2 >

√
k + 1

k
>

√
k + 1

k
−

√
k(k + 1)
n + 1

.

Since for any fixed n0 we have

γ2
n

n0∑

k=1

(An
k)2E

[
Xk

2I[γnAn
k |Xk| > ε]

] ¬ γ2
n

n0∑

k=1

(
1
k
− 1

n

)2

k(k + 1)

¬ γ2
n(n0 + Hn0) =

3
n

(n0 + Hn0)→ 0 as n→∞,

so (2.4) holds.
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Let us put N ′n = Nn ∧ (n + b√nc), n ­ 1. Because

P [Nn 6= N ′n] ¬
(

1
2

)2
√

n

→ 0 as n→∞,

it is enough to use N ′n instead of Nn in Theorem 2.3. Furthermore, conditions (A)
and (D) are reduced to

N ′n
n

P−→ 0 as n→∞,

whereas (2.12) may be expressed as

|N ′2n − n2|(N ′n + n)
N ′nn
√

n

P−→ 0 as n→∞,

which holds for the above-defined sequence of random indices {N ′n, n ­ 1}.
EXAMPLE 4.2. Let {Xn, n ­ 1} be a sequence of independent random vari-

ables with the Poisson law and parameter n, i.e.

P [Xn = k] =
e−nnk

k!
, k = 0, 1, 2, . . .

Then

(4.4)
(

n∏
k=1

2Sk

k(k + 1)

)1/(2
√

ln(n)) D−→ eN as n→∞.

P r o o f o f E x a m p l e 4.2. Putting an = n(n + 1)/2, n ­ 1, we have An
k =

2
(
1/k − 1/(n + 1)

)
. Since the moments of Poisson’s random variable are

EXn = µn = n, σ2
n = n, E(Xn −EXn)4 = 3n2 + n, n ­ 1,

we have

s2
n =

n∑

i=0

i =
n(n + 1)

2
, n ­ 1.

It is easy to check that (2.1) holds with p = 2,

∞∑

n=1

E|Xn − µn|p
ap

n
=
∞∑

n=1

4
n(n + 1)2

<∞.

Furthermore,
n∑

k=1

(An
k)2σ2

k = 4
(

Hn − 3n

2n + 2

)
;

hence γn = 1/
(
2
√

ln(n)
)
, and

γn

n∑

k=1

s2
k/a2

k =
1√

ln(n)

n∑

k=1

1
k(k + 1)

=
1√

ln(n)

(
1− 1

n + 1

)
→ 0 as n→∞.
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Moreover,

γ4
n

n∑

k=1

(An
k)4E(Xk − µk)

4 ¬ 16
ln2(n)

n∑

k=1

4
k2
→ 0 as n→∞,

and (4.2) follows from Corollary 2.2 with δ = 2.
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