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Abstract. In this paper we derive closed-form solutions for the cumu-
lative distribution function and the average value-at-risk for five subclasses
of the infinitely divisible distributions: classical tempered stable distribu-
tion, Kim–Rachev distribution, modified tempered stable distribution, nor-
mal tempered stable distribution, and rapidly decreasing tempered stable
distribution. We present empirical evidence using the daily performance of
the S&P 500 for the period January 2, 1997 through December 29, 2006.
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1. INTRODUCTION

In finance, numerous studies of return and price distributions of different as-
set classes and national financial markets reject the notion that the distributions
are normal. The most popular alternative to the normal distribution is the class α-
stable and tempered stable distributions. Although the α-stable distribution does
not have finite moments, generally, tempered stable distributions have finite mo-
ments for all orders and finite exponential moments. Moreover, tempered stable
distributions include non-Gaussian α-stable distributions as the limiting case. For
this reason, tempered stable distributions have been preferred to the normal and
used as extension of α-stable distributions for modeling the distribution of asset
returns.
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There is ample empirical evidence that daily asset returns are skewed and lep-
tokurtic. These well-documented findings reported for asset returns are not mere
academic conclusions that hold little interest for practitioners. Rather, they have
important implications for asset managers and risk managers. Not properly ac-
counting for these stylized facts can result in models that result in inferior invest-
ment performance by asset managers and disastrous financial consequences for
financial institutions that rely upon them for risk management. More specifically, a
thorough understanding of the tail loss distribution for a portfolio or trading posi-
tion is critical for the design of stress tests. The failure of stress tests in identifying
potential losses has been identified by several researchers as the cause of the failure
of risk management systems to identify the losses suffered by the major dealers in
the subprime mortgage market in 2007−2008. Although the risk management sys-
tems of these financial entities were structured such that they were compatible with
what was thought to be the historical performance of subprime mortgage returns,
they proved to be inadequate because of their failure to focus on the distribution in
the tails. Better modeling of asset return distributions is an essential component of
stress testing and should be considered in bank stress tests that are currently being
formulated by bank regulators.

It is important to mention that random variables with tempered heavy tails,
which are still infinitely divisible distributed, retain many of the properties of ran-
dom variables with usual heavy tails such as α-stable random variable (see Grab-
chak and Samorodnitsky [10], Klebanov et al. [17], and Rachev and Mittnik [20]).

In particular, risk calculations with tempered heavy tails will have much in
common with risk calculations with the usual heavy tails, although they are not
identical. In particular, the density functions of a tempered stable random variable
and an α-stable random variable are comparable in the center, even if the tail be-
havior is slightly different. Furthermore, at the level of processes, if the time scale
increases, a tempered stable process converges to a Brownian motion, while if the
time scale decreases, it converges to an α-stable one. This property seems to be
common for financial asset return processes. For this reason, in the class of in-
finitely divisible distributions we select distributions that belong to the tempered
stable family.

The value-at-risk (VaR) measure has been adopted as a standard risk measure
in the financial industry. Nevertheless, it has a number of well-known limitations
as a risk measure. For example, it does not satisfy the subadditivity property, and
hence VaR is not a coherent risk measure.1

The average value-at-risk (AVaR) is the average of VaRs larger than the VaR
for a given tail probability.2 AVaR is a superior alternative to VaR because it sat-

1The notion of a coherent risk measure was introduced by Artzner et al. [2].
2AVaR is also known as conditional value-at-risk (CVaR). See Pflug [19] and Rockafellar and

Uryasev [22], [23].
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isfies all axioms of coherient risk measures and it is consistent with preference
relations of risk-averse investors (see Rachev et al. [21]).3 Moreover, AVaR is still
a coherent measure, while VaR is not. Consequently, in dealing with risk man-
agement and portfolio optimization problems, it is important to compute AVaR
accurately for non-normal distributions. The closed-form solutions for AVaR for
the α-stable distribution and on the skewed-t distribution have been presented by
Stoyanov et al. [24] and Dokov et al. [9], respectively. Explicit formulas for VaR
and AVaR are of great importance in operational risk assessment because of the
need to calculate these risk measures at the extreme tail when the use of Monte
Carlo methods is impractical.

In this paper, we develop a closed-form solution for the calculation of VaR and
AVaR on some subclass of infinitely divisible distributions. We apply this formula
to five classes of tempered stable distributions, which are a parametric subclass
of infinitely divisible distributions. The remainder of this paper is organized as
follows. The integral representation of the cumulative distribution function and
AVaR are presented in Section 2. Section 3 discusses the computational issues.
Section 4 reviews the five classes of tempered stable distributions and applies the
formula for VaR and AVaR to each class. The empirical results are reported in
Section 5. Section 6 summarizes the principal conclusions of the paper. In the
Appendix we give the proofs of our propositions and tables containing formulas for
the discussed functions for tempered stable and log tempered stable distributions.

2. VaR AND AVaR ON INFINITELY DIVISIBLE DISTRIBUTIONS

In this section, the random variable X represents the loss of a portfolio, and
FX(x)=P (X ¬ x), F̄X(x)=P (X ­ x), fX(x)= d

dxFX(x), ϕX(u)=E[eiuX ]
stand for the cumulative distribution function (CDF), the survival function (SF),
the probability density function (PDF), and the characteristic function (Ch.F) of
X , respectively. For convenience, in this paper we put (x)+ = max(x, 0), and
ℜ(z) and ℑ(z) represent the real part and imaginary part of a complex number z,
respectively.

We first investigate an integral representation of FX .

PROPOSITION 2.1. Suppose a random variable X is infinitely divisible.
(i) If there is ρ > 0 such that |ϕX(z)| <∞ for all complex z with ℑ(z) = ρ,

then

(2.1) FX(x) =
exρ

π
ℜ
(∞∫

0

e−ixu
ϕX(u+ iρ)

ρ− ui
du

)
for x ∈ R.

3AVaR and another popular risk measure, expected tail loss (ETL), coincide if the loss distri-
bution is continuous at the corresponding VaR level. However, if there is discontinuity, then AVaR
and ETL differ.
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(ii) If there is ρ < 0 such that |ϕX(z)| <∞ for all complex z with ℑ(z) = ρ,
then

(2.2) F̄X(x) =
exρ

π
ℜ
(∞∫

0

e−ixu
ϕX(u+ iρ)

ui− ρ
du

)
for x ∈ R.

The VaR of X at tail probability ε is defined as

VaRε(X) = inf{y ∈ R : P (X ­ y) ¬ (1− ε)}
= inf{y ∈ R : FX(y) ­ ε}.

The AVaR at tail probability ε is defined as the average of the VaRs which are
larger than VaRε(X), that is

(2.3) AVaRε(X) =
1

1− ε

1∫
ε

VaRt(X)dt.

If FX(x) is continuous, then we have

(2.4) VaRε(X) = F−1X (ε) = F̄−1X (1− ε)

and
1∫
ε

VaRt(X)dt =
1∫
ε

F−1X (t)dt =
∞∫

F−1
X (ε)

s dFX(s) = E[X1{X­F−1
X (ε)}].

By (2.3), we obtain

AVaRε(X) =
1

1− ε
E[X1{X­VaRε(X)}](2.5)

=
1

1− ε
E
[
VaRε(X)1{X­VaRε(X)} +

(
X − VaRε(X)

)+]
= VaRε(X) +

1

1− ε
E
[(
X − VaRε(X)

)+]
.

Therefore, we obtain the closed-form solution of AVaRε(X) for the infinitely di-
visible random variable X .

PROPOSITION 2.2. Suppose X is infinitely divisible and FX(x) is continuous.
If there is ρ < 0 such that |ϕX(z)| <∞ for all z ∈ C with ℑ(z) = ρ, then

(2.6) AVaRε(X)

= VaRε(X)−
exp

(
VaRε(X)ρ

)
π(1− ε)

ℜ
(∞∫

0

exp
(
−iuVaRε(X)

)ϕX(u+ iρ)

(u+ iρ)2
du

)
.
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In operational risk management, the loss is always positive, and its distribution
is right skewed and has a heavy right tail; see Chernobai et al. [7]. For this reason,
the log-normal and log-α-stable random variable have been often used to model
operational loss. We will derive the closed-form solution of the AVaR for a more
general class of distributions, including the log-normal distribution.

Consider a random variable Y such that log Y is infinitely divisible. Then the
random variable Y is referred to as the log infinitely divisible random variable.
Since a normal random variable is infinitely divisible, the log-normal random vari-
able is also log infinitely divisible. Using Proposition 2.1, we obtain the following
corollary.

COROLLARY 2.1. Assume a random variable Y is log infinitely divisible and
ϕlog Y is the Ch.F of log Y .

(i) If there is ρ > 0 such that |ϕlog Y (z)| <∞ for all complex z with ℑ(z) =
ρ, then

(2.7) FY (y) =
yρ

π
ℜ
(∞∫

0

y−iu
ϕlog Y (u+ iρ)

ρ− ui
du

)
, y > 0.

(ii) If there is ρ < 0 such that |ϕlog Y (z)| <∞ for all complex z with ℑ(z) =
ρ, then

(2.8) F̄Y (y) =
yρ

π
ℜ
(∞∫

0

y−iu
ϕlog Y (u+ iρ)

ui− ρ
du

)
, y > 0.

P r o o f. Since

FY (y) = P(Y ¬ y) = P(log Y ¬ log y)

= Flog Y (log y), y > 0,

where Flog Y is the CDF of log Y , we can prove (i) and (ii) by substituting x =
log y into (i) and (ii) of Proposition 2.1, respectively. �

If the CDF FY (y) of a log infinitely divisible random variable Y is continuous,
then we have

(2.9) VaRε(Y ) = F−1Y (ε) = F̄−1Y (1− ε).

A closed-form solution of AVaRε(Y ) for the log infinitely divisible random vari-
able Y is obtained as follows.
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PROPOSITION 2.3. Let Y be a log infinitely divisible random variable, and
FY and ϕlog Y be the CDF of Y and the Ch.F of log Y, respectively. If FY (x)
is continuous for x > 0 and there is ρ < −1 such that |ϕlog Y (z)| < ∞ for all
complex z with ℑ(z) = ρ, then

(2.10) AVaRε(Y )

= VaRε(Y )−
(
VaRε(Y )

)1+ρ

π(1− ε)
ℜ
(∞∫

0

(
VaRε(Y )

)−iu
ϕlog Y (u+ iρ)

(u+ iρ)
(
u+ i(1 + ρ)

) du

)
.

3. COMPUTATIONAL ISSUES

According to Proposition 2.1, the CDF and the SF of an infinitely divisible
random variable X are equal to

FX(x) =
exρ

π
ℜ
(∞∫

0

e−ixug1(u)du

)
,

F̄X(x) =
exρ

π
ℜ
(∞∫

0

e−ixug2(u)du

)
,

where

g1(u) =
ϕX(u+ iρ)

ρ− ui
and g2(u) =

ϕX(u+ iρ)

ui− ρ
.

By Proposition 2.2, AVaR of X is also obtained by

AVaRε(X) = x− exρ

π(1− ε)
ℜ
(∞∫

0

e−iuxg3(u)du

)
,

where x = VaRε(X) and

g3(u) =
ϕX(u+ iρ)

(u+ iρ)2
.

By Proposition 2.3, AVaR of a log infinitely divisible random variable Y is also
obtained by

AVaRε(Y ) = ex − ex(1−ρ)

π(1− ε)
ℜ
(∞∫

0

e−iuxg4(u)du

)
,

where x = logVaRε(Y ) and

g4(u) =
ϕX(u+ iρ)

(u+ iρ)
(
u+ i(1 + ρ)

) .
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Therefore, we can obtain the CDF, the SF, and AVaR, if we can compute the inte-
gral

∞∫
0

e−ixug(u)du = 2π
∞∫
0

e−2πixug(2πu)du.

Let

f(x) =
∞∫
0

e−2πixug(2πu)du.

Then we can approximate the value of f(x) using the discrete numerical integra-
tion:

f(x) ≈ f̂(x) =
N−1∑
n=0

exp

(
−2πix

(
nK

N

))
g

(
2πnK

N

)
K

N
,

where K and N are large positive integers with N > K. If xk = (k −N)/K,
k = 0, 1, 2, . . . , N − 1, then we have

exp

(
−2πixk

(
nK

N

))
= (−1)n exp

(
−2πi

(
nk

N

))
,

and hence

f̂(xk) =
K

N

N−1∑
n=0

wnkgn,

where w = e−2πi/N and gn = (−1)ng
(
(2πnK)/N

)
. To compute

∑N−1
n=0 wnkgn

we can use the fast Fourier transform, which is implemented by many numerical
software packages. If xk < x < xk+1, then f̂(x) can be obtained by the interpola-
tion of f̂(xk) and f̂(xk+1).

The value VaRε(X) = F̄−1X (1− ε) is a solution to the following equation:

F̄X(x) + ε− 1 = 0.

We can find the solution by various numerical methods such as the Newton–Raph-
son method. Using the Newton–Raphson method, we iterate the following

xi+1 = xi +
F̄X(xi) + ε− 1

F̄ ′X(xi)
,

until the relative error between xj and xj+1 becomes sufficiently small. In this
case, F̄ ′X(xi) = −fX(xi) is the PDF of X , and it can be obtained numerically.
The Newton–Raphson method is also implemented by many numerical software
packages.
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4. TEMPERED STABLE DISTRIBUTIONS

In this section, we present five subclasses of infinitely divisible distributions
for modeling a portfolio loss distribution: classical tempered stable distribution,
Kim–Rachev distribution, modified tempered stable distribution, normal tempered
stable distribution, and rapidly decreasing tempered stable distribution. In the lit-
erature, these distributions have been referred to as tempered stable distributions.
In general, these distributions do not have closed-form solution for the probability
density function. Instead, they are defined by their Ch.Fs.

Below we will let a random variable X denote a tempered stable distributed
random variable. Consider a random variable Y such that log Y is a tempered
stable distribution. Then the random variable Y is referred to as the log tempered
stable random variable.

4.1. Classical tempered stable distribution. For the definition see Koponen
[18], Boyarchenko and Levendorskiĭ [5], and Carr et al. [6]. Let α ∈ (0, 2), C > 0,
λ+, λ− > 0, and m ∈ R. X is said to follow the classical tempered stable (CTS)
distribution if the Ch.F of X is given by

ϕCTS(u) := ϕX(u)

= exp
[
ium− iuCΓ(1− α)(λα−1

+ − λα−1
− )

+ CΓ(−α)
(
(λ+ − iu)α − λα

+ + (λ− + iu)α − λα
−
)]
,

and we put X ∼ CTS(α,C, λ+, λ−,m). The mean of X is m, and cumulants
cn(X) = (dn/dun) log ϕX(u)|u=0 of X are

cn(X) = CΓ(n− α)
(
λα−n
+ + (−1)nλα−n

−
)

for n = 2, 3, . . .
By analytic continuation in complex analysis, the function ϕCTS(u) can be ex-

tended analytically to the region {z ∈ C : ℑ(z) ∈ (−λ+, λ−)}, i.e. |ϕCTS(z)| <∞
for all complex z with ℑ(z) ∈ (−λ+, λ−). Therefore, there exists ρ < 0 such that
|ϕCTS(z)| < ∞ for all complex z with ℑ(z) = ρ. Hence, F̄X(x), VaRε(X), and
AVaRε(X) are obtained by Proposition 2.1, equation (2.4), and Proposition 2.2 for
−λ+ < ρ < 0.

If a random variable Y is a log infinitely divisible distribution such that

log Y ∼ CTS(α,C, λ+, λ−,m),

then Y is referred to as a log-CTS random variable. If λ+ > 1, then there exists
ρ < −1 such that |ϕCTS(z)| <∞ for all complex z with ℑ(z) = ρ. Hence, F̄Y (x),
VaRε(Y ), and AVaRε(Y ) are obtained by Corollary 2.1, equation (2.9) for−λ+ <
ρ < 0, and Proposition 2.3 for −λ+ < ρ < −1.
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4.2. Kim–Rachev distribution. For the definition see Kim et al. [11], [12]. Let
α ∈ (0, 2) \ {1}, k+, k−, r+, r− > 0, p+, p− ∈ {p > −α | p ̸= −1, p ̸= 0}, and
m ∈ R. X is said to follow the Kim–Rachev (KR) distribution if the Ch.F of X is
given by

ϕKR(u) := ϕX(u)

= exp

[
ium− iuΓ(1− α)

(
k+r+
p+ + 1

− k−r−
p− + 1

)
+ k+H(iu;α, r+, p+) + k−H(−iu;α, r−, p−)

]
with

H(x;α, r, p) =
Γ(−α)

p

(
2F1(p,−α; 1 + p; rx)− 1

)
,

where 2F1 is the hypergeometric function (see Andrews [1]) and we write

X ∼ KR(α, k+, k−, r+, r−, p+, p−,m).

The mean of X is m, and cumulants of X are

cn(X) = Γ(n− α)

(
k+r

n
+

p+ + n
+ (−1)n

k−r
n
−

p− + n

)
for n = 2, 3, . . . If p+ and p− approach infinity, then KR distribution converges to
the CTS distribution.

The function ϕKR(u) can be extended analytically to the region {z ∈ C : ℑ(z)
∈ (−r−1+ , r−1− )}. Therefore, there exists ρ < 0 such that |ϕKR(z)| <∞ for all com-
plex z with ℑ(z) = ρ. Hence, F̄X(x), VaRε(X), and AVaRε(X) are obtained by
Proposition 2.1, equation (2.4), and Proposition 2.2 for −r−1+ < ρ < 0.

If Y is a log infinitely divisible random variable such that

log Y ∼ KR(α, k+, k−, r+, r−, p+, p−,m),

then Y is referred to as a log-KR random variable. If 1/r+ > 1, then there exists
ρ < −1 such that |ϕKR(z)| <∞ for all complex z with ℑ(z) = ρ. Hence, F̄Y (x),
VaRε(Y ), and AVaRε(Y ) are obtained by Corollary 2.1, equation (2.9) for−r−1+ <

ρ < 0, and Proposition 2.3 for −r−1+ < ρ < −1.

4.3. Modified tempered stable distribution. For the definition see Kim
et al. [16]. Let α ∈ (0, 2) \ {1}, C, λ+, λ− > 0, and m ∈ R. X is said to follow
the modified tempered stable (MTS) distribution if the Ch.F of X is given by

ϕMTS(u) := ϕX(u)

= exp
[
ium+ C

(
GR(u;α,C, λ+) +GR(u;α,C, λ−)

)
+ iuC

(
GI(u;α, λ+)−GI(u;α, λ−)

)]
,
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where for u ∈ R

GR(x;α, λ) = 2−(α+3)/2√πΓ
(
− α

2

)(
(λ2 + x2)α/2 − λα

)
and

GI(x;α, λ) = 2−(α+1)/2Γ

(
1− α

2

)
λα−1

[
2F1

(
1,

1− α

2
;
3

2
;−x

2

λ2

)
− 1

]
,

and we write X ∼ MTS(α,C, λ+, λ−,m). The mean of X is m, and cumulants of
X are equal to

cn(X) = 2n−(α+3)/2CΓ

(
n+ 1

2

)
Γ

(
n− α

2

)(
λα−n
+ + (−1)nλα−n

−
)

for n = 2, 3, . . .
The function ϕMTS(u) can be extended analytically to the region

{
z ∈ C :

|ℑ(z)| < min{λ+, λ−}
}

, that is |ϕMTS(z)| < ∞ for all complex z with |ℑ(z)| <
min{λ+, λ−}. Therefore, there exists ρ < 0 such that |ϕMTS(z)| <∞ for all com-
plex z with ℑ(z) = ρ. Hence, F̄X(x), VaRε(X), and AVaRε(X) are obtained by
Proposition 2.1, equation (2.4), and Proposition 2.2 for −min{λ+, λ−} < ρ < 0.

If Y is a log infinitely divisible random variable such that

log Y ∼ MTS(α,C, λ+, λ−,m),

then Y is referred to as a log-MTS random variable. If λ+ > 1 and λ− > 1, then
there exists ρ < −1 such that |ϕMTS(z)| < ∞ for all complex z with ℑ(z) = ρ.
Hence, F̄Y (x), VaRε(Y ), and AVaRε(Y ) are obtained by Corollary 2.1 and equa-
tion (2.9) for−min{λ+, λ−} < ρ < 0, and Proposition 2.3 for−min{λ+, λ−} <
ρ < −1.

4.4. Normal tempered stable distribution. For the definition see Barndorff-
Nielsen and Levendorskii [3] and Kim et al. [15]. Let α ∈ (0, 2), C, λ > 0, |β| <
λ, and m ∈ R. X is said to follow the normal tempered stable (NTS) distribution
if the Ch.F of X is given by

ϕNTS(u) := ϕX(u)

= exp

[
ium+

C
√
π Γ(−α/2)
2(α+1)/2

iuαβ(λ2 − β2)α/2−1

+
C
√
π Γ(−α/2)
2(α+1)/2

((
λ2 − (β + iu)2

)α/2 − (λ2 − β2)α/2
)]

,

and we write X ∼ NTS(α,C, λ, β,m). The mean of X is m. The general expres-
sions for cumulants of X are omitted since they are rather complicated. Instead of
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the general form, we present three cumulants:

c2(X) = κα(λ2 − β2)α/2−2(αβ2 − λ2 − β2),

c3(X) = −καβ(λ2 − β2)α/2−3(α2β2 − 3αλ2 − 3αβ2 + 6λ2 + 2β2),

c4(X) = κα(α− 2)(λ2 − β2)α/2−4

×(α2β4 − 6αλ2β2 − 4αβ4 + 3β4 + 18λ2β2 + 3λ4),

where κ = 2−(α+1)/2C
√
π Γ(−α/2).

The function ϕNTS(u) can be extended analytically to the region {z ∈ C :
ℑ(z) ∈ (−λ + β, λ + β)}, that is |ϕNTS(z)| < ∞ for all complex z with ℑ(z) ∈
(−λ + β, λ + β). Therefore, there exists ρ < 0 such that |ϕNTS(z)| < ∞ for all
complex z with ℑ(z) = ρ. Hence, F̄X(x), VaRε(X), and AVaRε(X) are obtained
by Proposition 2.1, equation (2.4), and Proposition 2.2 for −λ+ β < ρ < 0.

If Y is a log infinitely divisible random variable such that

log Y ∼ NTS(α,C, λ, β,m),

then Y is referred to as a log-NTS random variable. If λ − β > 1, then there ex-
ists ρ < −1 such that |ϕNTS(z)| < ∞ for all complex z with ℑ(z) = ρ. Hence,
F̄Y (x), VaRε(Y ), and AVaRε(Y ) are obtained by Corollary 2.1 and equation (2.9)
for −λ+ β < ρ < 0, and Proposition 2.3 for −λ+ β < ρ < −1.

4.5. Rapidly decreasing tempered stable distribution. For the definition
see Bianchi et al. [4] and Kim et al. [14]. Let α ∈ (0, 2) \ {1}, C, λ+, λ− > 0,
and m ∈ R. X is said to follow the rapidly decreasing tempered stable (RDTS)
distribution if the Ch.F of X is given by

ϕRDTS(u) = ϕX(u) = exp
[
ium+ C

(
G(iu;α, λ+) +G(−iu;α, λ−)

)]
with

G(x;α, λ) = 2−α/2−1λα Γ

(
− α

2

)(
M

(
− α

2
,
1

2
;
x2

2λ2

)
− 1

)

+ 2−α/2−1/2λα−1x Γ

(
1− α

2

)(
M

(
1− α

2
,
3

2
;
x2

2λ2

)
− 1

)
,

where M is the confluent hypergeometric function (see Andrews [1]), and we write
X ∼ RDTS(α,C, λ+, λ−,m). The mean of X is m, and cumulants of X are

cn(X) = 2(n−α−2)/2C Γ

(
n− α

2

)(
λα−n
+ + (−1)nλα−n

−
)

for n = 2, 3, . . .
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The function ϕRDTS(u) is expandable to an entire function on C. Hence,
AVaRε(X) is obtained by equation (2.6) if ρ < 0, that is |ϕRDTS(z)| < ∞ for all
complex z. Therefore, there exists ρ < 0 such that |ϕRDTS(z)| < ∞ for all com-
plex z with ℑ(z) = ρ. Hence, F̄X(x), VaRε(X), and AVaRε(X) are obtained by
Proposition 2.1, equation (2.4), and Proposition 2.2 for ρ < 0.

If Y is a log infinitely divisible random variable such that

log Y ∼ RDTS(α,C, λ+, λ−,m),

then Y is referred to as a log-RDTS random variable. Since |ϕRDTS(z)| < ∞ for
all complex z, we have |ϕRDTS(z)| < ∞ for all complex z with ℑ(z) = ρ < −1.
Hence, F̄Y (x), VaRε(Y ), and AVaRε(Y ) are obtained by Corollary 2.1, equation
(2.9) for ρ < 0, and Proposition 2.3 for ρ < −1.

Ch.Fs, SFs, VaRs, and AVaRs of tempered stable and log tempered stable ran-
dom variables are presented in Tables 1 and 2 with ranges of ρ.

5. EMPIRICAL EXAMPLE

In this section, we present a simple empirical example for calculating the VaR
and the AVaR values using equations (2.4) and (2.6). Our application in this paper
is to the U.S. equity market. Because in this empirical study we do not focus on
operational risk, the closed-form solution for AVaR for log infinitely divisible ran-
dom variables as given by equation (2.10) will not be estimated here. We use daily
closing prices for the S&P 500 index (a proxy for the U.S. equity market) from
January 2, 1997 through December 29, 2006 obtained from Yahoo! Finance. We
use maximum likelihood estimation to estimate the parameters.

The VaR and the AVaR values for confidence levels {90%, 91%, . . ., 99%,
99.1%, 99.2%, . . ., 99.9%} are provided in the upper and the lower panels of
Figure 1, respectively. We plot the values of the normal, the KR, and the RDTS
distributions4 in the two figures and compare the values with empirical VaR and
empirical AVaR.5 From the results shown in the upper panel of Figure 1, the nor-
mal VaR is larger than the empirical VaR, and the two tempered stable VaRs are
smaller if the confidence level is less than or equal to 95%. If the confidence level
is larger than 96%, the two tempered stable VaRs are larger than the empirical VaR,
and the normal VaR is smaller. Moreover, by the results shown in the lower panel
of Figure 1, the AVaRs of the two tempered stable distributions are relatively sim-
ilar to the empirical AVaR compared to the normal distribution. More details for
this empirical investigation including parameter estimation results and calculated
values of the VaR and the AVaR for the five tempered stable distributions can be
found in Kim et al. [13].

4Since the VaR and the AVaR values of the CTS, the MTS, the NTS, and the KR distributions
are very similar, and the values of the RDTS distribution are more or less different from the KR case,
we plot only the values of the KR and the RDTS distributions in the two figures.

5We use empirical AVaR provided in Rachev et al. [21].



Computing VaR and AVaR in infinitely divisible distributions 235

0.9 0.92 0.94 0.96 0.98 1

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

ε

V
aR

 

 
Empirical
Normal
KR
RDTS

0.9 0.92 0.94 0.96 0.98 1

10
−1

ε

A
V

aR

 

 
Empirical
Normal
KR
RDTS

Figure 1. One-day VaR (upper) and AVaR (lower)

6. CONCLUSION

In this paper, we derive closed-form solutions for the AVaR for five subclasses
of the infinitely divisible distribution. If a loss distribution is infinitely divisible and
the Ch.F of the loss distribution is defined on the complex subset {z∈C : ℑ(z)=ρ}
for some ρ < 0, then we can obtain the closed-form solution of AVaR. If a loss dis-
tribution is log infinitely divisible and its Ch.F is defined on the complex subset
{z ∈ C : ℑ(z) = ρ} for some ρ < −1, then we can also obtain closed-form so-
lutions of the CDF and the AVaR. In order to apply the closed-form solution we
derived, we considered five tempered stable distributions: classical tempered sta-
ble distribution, Kim–Rachev distribution, modified tempered stable distribution,
normal tempered stable distribution, and rapidly decreasing tempered stable dis-
tribution. We calculated VaR and AVaR values using closed-form solutions for the
S&P 500 index. In our investigation, the estimated values for the tempered stable
VaR and AVaR are more realistic than the normal VaR and the normal AVaR.
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7. APPENDIX

7.1. Proof of Proposition 2.1. (i) By the definition of the CDF, we have

FX(x) = P (X ¬ x) =
x∫
−∞

fX(t)dt.

The probability density function fX(t) can be obtained from the Ch.F ϕX by the
complex inverse formula (see [8]). Thus, we have

fX(t) =
1

2π

∞+iρ∫
−∞+iρ

e−itzϕX(z)dz,

and consequently

FX(x) =
x∫
−∞

1

2π

∞+iρ∫
−∞+iρ

e−itzϕX(z)dzdt =
1

2π

∞+iρ∫
−∞+iρ

x∫
−∞

e−itzdt ϕX(z)dz.

Note that if ρ > 0, then

lim
t→−∞

|e−it(a+iρ)| = lim
t→∞
|eit(a+iρ)| = lim

t→∞
e−ρt = 0, a ∈ R,

and hence
x∫
−∞

e−itzdt = − 1

iz
[e−itz]x−∞ = − 1

iz
e−ixz,

where z ∈ C with ℑ(z) = ρ. Thus, we have

FX(x) = − 1

2π

∞+iρ∫
−∞+iρ

1

iz
e−ixzϕX(z)dz

= − 1

2π

∞∫
−∞

1

i(u+ iρ)
e−ix(u+iρ)ϕX(u+ iρ)du

=
exρ

2π

∞∫
−∞

e−ixu
ϕX(u+ iρ)

ρ− iu
du.

Let

gρ(u) =
ϕX(u+ iρ)

ρ− iu
;

then we can show that gρ(−u) = gρ(u) with u ∈ R, and hence we have

∞∫
−∞

e−ixugρ(u)du = 2ℜ
(∞∫

0

e−ixugρ(u)du
)
.

Therefore we obtain (2.1).
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(ii) By the definition of the SF and the complex inverse formula, we have

F̄X(x) =
∞∫
x

fX(t)dt

=
1

2π

∞+iρ∫
−∞+iρ

∞∫
x

e−itzdt ϕX(z)dz.

Note that if ρ < 0, then

lim
t→∞
|e−it(a+iρ)| = lim

t→∞
eρt = 0, a ∈ R,

and hence
∞∫
x

e−itzdt = − 1

iz
[e−itz]∞x =

1

iz
e−ixz,

where z ∈ C with ℑ(z) = ρ. Using similar arguments to those in the proof of (i),
we can prove (ii).

7.2. Proof of Proposition 2.2. In order to prove Proposition 2.2, we need the
following lemma.

LEMMA 7.1. Let K ∈ R. If X is infinitely divisible and there is ρ < 0 such
that |ϕX(z)| <∞ for all complex z with ℑ(z) = ρ, then

(7.1) E[(X −K)+] = −e
Kρ

π
ℜ
(∞∫

0

e−iuK
ϕX(u+ iρ)

(u+ iρ)2
du

)
.

By Lemma 7.1, we obtain the closed-form solution of AVaR for continuous
and infinitely divisible random variable as follows:

P r o o f o f L e m m a 7.1. Since the Ch.F ϕX(z) of X is defined for all
complex z with ℑ(z) = ρ, the probability density function fX(x) of X equals

fX(x) =
1

2π

∞+iρ∫
−∞+iρ

e−ixzϕX(z)dz

by the complex inversion formula. Thus, we have

E[(X −K)+] =
∞∫
K

(x−K)fX(x)dx

=
∞∫
K

(x−K)
1

2π

∞+iρ∫
−∞+iρ

e−ixzϕX(z)dzdx

=
1

2π

∞+iρ∫
−∞+iρ

(∞∫
K

(x−K)e−ixzdx
)
ϕX(z)dz.
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Note that if ρ < 0, then

lim
x→∞

∣∣∣∣1 + ix(a+ iρ)

(a+ iρ)2
e−ix(a+iρ) − iK

(a+ iρ)
e−ix(a+iρ)

∣∣∣∣ = 0

for a ∈ R. We have
∞∫
K

(x−K)e−ixzdx =

[
1 + ixz

z2
e−ixz − iK

z
e−ixz

]∞
K

= −e
−iKz

z2
,

where z ∈ C with ℑ(z) = ρ. Therefore,

E[(X −K)+] = − 1

2π

∞+iρ∫
−∞+iρ

e−iKz

z2
ϕX(z)dz.

By using u+ iρ instead of z, we obtain

E[(X −K)+] = −e
Kρ

2π

∞∫
−∞

e−iKuϕX(u+ iρ)

(u+ iρ)2
du.

Let
hρ(u) =

ϕX(u+ iρ)

(u+ iρ)2
;

then we can show that hρ(−u) = hρ(u) with u ∈ R, and hence

∞∫
−∞

e−iuKhρ(u)du = 2ℜ
(∞∫

0

e−iuKhρ(u)du
)
,

which completes the proof. �

P r o o f o f P r o p o s i t i o n 2.2. Equation (2.5) leads to (2.6) by substitut-
ing K = VaRε(X) into (7.1). �

7.3. Proof of Proposition 2.3. In order to obtain Proposition 2.3, we need the
following lemma.

LEMMA 7.2. Assume a random variable Y is the log infinitely divisible and
ϕlog Y is the Ch.F of log Y . If there is ρ < −1 such that |ϕlog Y (z)| < ∞ for all
complex z with ℑ(z) = ρ, then

(7.2) E[(Y −K)+] = −K
1+ρ

π
ℜ
(∞∫

0

K−iuϕlog Y (u+ iρ)

(u+ iρ)
(
u+ i(1 + ρ)

)du)
for K > 0.

P r o o f o f L e m m a 7.2. Let X = log Y . Since the Ch.F ϕX(z) of X is
defined for all complex z with ℑ(z) = ρ, the probability density function fX(x)
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of X is equal to

fX(x) =
1

2π

∞+iρ∫
−∞+iρ

e−ixzϕX(z)dz

by the complex inversion formula. Thus, we have

E[(Y −K)+] = E[(eX −K)+] =
∞∫

logK

(ex −K)fX(x)dx

=
∞∫

logK

(ex −K)
1

2π

∞+iρ∫
−∞+iρ

e−ixzϕX(z)dzdx

=
1

2π

∞+iρ∫
−∞+iρ

( ∞∫
logK

(ex −K)e−ixzdx
)
ϕX(z)dz.

Note that if ρ < −1, then

lim
x→∞

∣∣∣∣ e(1−i(a+iρ))x

1− i(a+ iρ)
+

Ke−i(a+iρ)x

i(a+ iρ)

∣∣∣∣ = 0

for a ∈ R. We have
∞∫

logK

(ex −K)e−ixzdx =

[
e(1−iz)x

1− iz
+

Ke−izx

iz

]∞
logK

= − K1−iz

z(i+ z)
,

where z ∈ C with ℑ(z) = ρ. Therefore,

E[(Y −K)+] = − 1

2π

∞+iρ∫
−∞+iρ

K1−iz

z(i+ z)
ϕX(z)dz.

By using u+ iρ instead of z, we obtain

E[(Y −K)+] = −K

2π

∞∫
−∞

K−i(u+iρ)ϕX(u+ iρ)

(u+ iρ)
(
u+ i(1 + ρ)

)du
= −K

1+ρ

2π

∞∫
−∞

K−iuϕX(u+ iρ)

(u+ iρ)
(
u+ i(1 + ρ)

)du.
Let

hρ(u) =
K−iuϕX(u+ iρ)

(u+ iρ)
(
u+ i(1 + ρ)

) ;
then we can show that hρ(−u) = hρ(u) with u ∈ R, and hence

∞∫
−∞

hρ(u)du = 2ℜ
(∞∫

0

hρ(u)du
)
,

which completes the proof. �

P r o o f o f P r o p o s i t i o n 2.3. Equation (2.5) leads to (2.10) by substi-
tuting K = VaRε(Y ) into (7.2). �
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Table 1. The Ch.F, SF, VaR, and AVaR for the tempered stable distribution

X ∼ CTS(α,C, λ+, λ−,m)CTS

ϕCTS(u) = exp
[
ium− iuCΓ(1− α)(λα−1

+ − λα−1
− )Ch.F

+ CΓ(−α)
(
(λ+ − iu)α − λα

+ + (λ− + iu)α − λα
−
)]

F̄CTS(x) =
exρ

π
ℜ
(∞∫

0

e−ixu
ϕCTS(u+ iρ)

ui− ρ
du

)
, −λ+ < ρ < 0SF

VaRCTS(ε) = F̄−1CTS (1− ε)VaR

AVaRCTS(ε) = VaRCTS(ε)−
exp

(
ρVaRCTS(ε)

)
π(1− ε)

AVaR

×ℜ
(∞∫

0

e−iuVaRCTS(ε)
ϕCTS(u+ iρ)

(u+ iρ)2
du

)
, −λ+ < ρ < 0

X ∼ MTS(α,C, λ+, λ−,m)MTS
ϕMTS(u) = exp

[
ium+ C

(
GR(u;α,C, λ+) +GR(u;α,C, λ−)

)
Ch.F

+ iuC
(
GI(u;α, λ+)−GI(u;α, λ−)

)]
,

where GR(x;α, λ) = 2−(α+3)/2√πΓ
(
− α

2

)(
(λ2 + x2)α/2 − λα

)
and

GI(x;α, λ) = 2−(α+1)/2Γ

(
1− α

2

)
λα−1

[
2F1

(
1,

1− α

2
;
3

2
;−x

2

λ2

)
− 1

]
F̄MTS(x) =

exρ

π
ℜ
(∞∫

0

e−ixu
ϕMTS(u+ iρ)

ui− ρ
du

)
,SF

−min{λ+, λ−} < ρ < 0

VaRMTS(ε) = F̄−1MTS(1− ε)VaR

AVaRMTS(ε) = VaRMTS(ε)−
exp

(
ρVaRMTS(ε)

)
π(1− ε)

AVaR

×ℜ

(
∞∫
0

e−iuVaRMTS(ε)
ϕMTS(u+ iρ)

(u+ iρ)2
du

)
, −min{λ+, λ−} < ρ < 0

X ∼ NTS(α,C, λ, β,m)NTS

ϕNTS(u) = exp
{
ium+ iuκβ(λ2 − β2)α/2−1Ch.F

+ κ
[(
λ2 − (β + iu)2

)α/2 − (λ2 − β2)α/2
]}

,

where κ = 2−(α+1)/2C
√
πΓ

(
− α

2

)
F̄NTS(x) =

exρ

π
ℜ
(∞∫

0

e−ixu
ϕNTS(u+ iρ)

ui− ρ
du

)
, −λ+ β < ρ < 0SF
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X ∼ NTS(α,C, λ, β,m)NTS
VaRNTS(ε) = F̄−1NTS (1− ε)VaR

AVaRNTS(ε) = VaRNTS(ε)−
exp

(
ρVaRNTS(ε)

)
π(1− ε)

AVaR

×ℜ
(∞∫

0

e−iuVaRNTS(ε)
ϕNTS(u+ iρ)

(u+ iρ)2
du

)
, −λ+ β < ρ < 0

X ∼ KR(α, k+, k−, r+, r−, p+, p−,m)KR

ϕKR(u) = exp

[
ium− iuΓ(1− α)

(
k+r+
p+ + 1

− k−r−
p− + 1

)
Ch.F

+ k+H(iu;α, r+, p+) + k−H(−iu;α, r−, p−)
]
,

where H(x;α, r, p) =
Γ(−α)

p

(
2F1(p,−α; 1 + p; rx)− 1

)
F̄KR(x) =

exρ

π
R
(∞∫

0

e−ixu
ϕKR(u+ iρ)

ui− ρ
du

)
, −1/r+ < ρ < 0SF

VaRKR(ε) = F̄−1KR (1− ε)VaR

AVaRKR(ε) = VaRKR(ε)−
exp

(
ρVaRKR(ε)

)
π(1− ε)

AVaR

×ℜ
(∞∫

0

e−iuVaRKR(ε)
ϕKR(u+ iρ)

(u+ iρ)2
du

)
, −1/r+ < ρ < 0

X ∼ RDTS(α,C, λ+, λ−,m)RDTS
ϕRDTS(u) = exp

[
ium+ C

(
G(iu;α, λ+) +G(−iu;α, λ−)

)]
Ch.F

where G(x;α, λ) = 2−α/2−1λαΓ

(
− α

2

)(
M

(
− α

2
,
1

2
;
x2

2λ2

)
− 1

)
+ 2−α/2−1/2λα−1xΓ

(
1− α

2

)(
M

(
1− α

2
,
3

2
;
x2

2λ2

)
− 1

)
F̄RDTS(x) =

exρ

π
ℜ
(∞∫

0

e−ixu
ϕRDTS(u+ iρ)

ui− ρ
du

)
, ρ < 0SF

VaRRDTS(ε) = F̄−1RDTS(1− ε)VaR

AVaRRDTS(ε) = VaRRDTS(ε)−
exp

(
ρVaRRDTS(ε)

)
π(1− ε)

AVaR

×ℜ
(∞∫

0

e−iuVaRRDTS(ε)
ϕRDTS(u+ iρ)

(u+ iρ)2
du

)
, ρ < 0
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Table 2. The SF, VaR, and AVaR for the log tempered stable distribution

log Y ∼ CTS(α,C, λ+, λ−,m)log-CTS

F̄logCTS(y) =
yρ

π
ℜ
(∞∫

0

y−iu
ϕCTS(u+ iρ)

ui− ρ
du

)
, −λ+ < ρ < 0SF

VaRlogCTS(ε) = F̄−1logCTS(1− ε)VaR

AVaRlogCTS(ε) = VaRlogCTS(ε)−
(
VaRlogCTS(ε)

)1−ρ
π(1− ε)

AVaR

×ℜ
(∞∫

0

(
VaRlogCTS(ε)

)iu
ϕCTS(u+ iρ)

(u+ iρ)
(
u+ i(1 + ρ)

) du

)
, −λ+ < ρ < −1

log Y ∼ MTS(α,C, λ+, λ−,m)log-MTS

F̄logMTS(y) =
yρ

π
ℜ
(∞∫

0

y−iu
ϕMTS(u+ iρ)

ui− ρ
du

)
,SF

−min{λ+, λ−} < ρ < 0

VaRlogMTS(ε) = F̄−1logMTS(1− ε)VaR

AVaRlogMTS(ε) = VaRlogMTS(ε)−
(
VaRlogMTS(ε)

)1−ρ
π(1− ε)

AVaR

×ℜ
(∞∫

0

(
VaRlogMTS(ε)

)iu
ϕMTS(u+ iρ)

(u+ iρ)
(
u+ i(1 + ρ)

) du

)
,

−min{λ+, λ−} < ρ < −1

log Y ∼ NTS(α,C, λ, β,m)log-NTS

F̄logNTS(y) =
yρ

π
ℜ
(∞∫

0

y−iu
ϕNTS(u+ iρ)

ui− ρ
du

)
, −λ+ β < ρ < 0SF

VaRlogNTS(ε) = F̄−1logNTS(1− ε)VaR

AVaRlogNTS(ε) = VaRlogNTS(ε)−
(
VaRlogNTS(ε)

)1−ρ
π(1− ε)

AVaR

×ℜ
(∞∫

0

(
VaRlogNTS(ε)

)iu
ϕNTS(u+ iρ)

(u+ iρ)
(
u+ i(1 + ρ)

) du

)
, −λ+ β < ρ < −1
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log Y ∼ KR(α, k+, k−, r+, r−, p+, p−,m)log-KR

F̄logKR(y) =
yρ

π
ℜ
(∞∫

0

y−iu
ϕKR(u+ iρ)

ui− ρ
du

)
, −1/r+ < ρ < 0SF

VaRlogKR(ε) = F̄−1logKR(1− ε)VaR

AVaRlogKR(ε) = VaRlogKR(ε)−
(
VaRlogKR(ε)

)1−ρ
π(1− ε)

AVaR

×ℜ
(∞∫

0

(
VaRlogKR(ε)

)iu
ϕKR(u+ iρ)

(u+ iρ)
(
u+ i(1 + ρ)

) du

)
, −1/r+ < ρ < −1

log Y ∼ RDTS(α,C, λ+, λ−,m)log-RDTS

F̄logRDTS(y) =
yρ

π
ℜ
(∞∫

0

y−iu
ϕRDTS(u+ iρ)

ui− ρ
du

)
, ρ < 0SF

VaRlogRDTS(ε) = F̄−1logRDTS(1− ε)VaR

AVaRlogRDTS(ε) = VaRlogRDTS(ε)−
(
VaRlogRDTS(ε)

)1−ρ
π(1− ε)

AVaR

×ℜ
(∞∫

0

(
VaRlogRDTS(ε)

)iu
ϕRDTS(u+ iρ)

(u+ iρ)
(
u+ i(1 + ρ)

) du

)
, ρ < −1
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