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DENSENESS OF CERTAIN SMOOTH LÉVY FUNCTIONALS IN D1,2

BY
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Abstract. The Malliavin derivative for a Lévy process (Xt) can be de-
fined on the space D1,2 using a chaos expansion or in the case of a pure jump
process also via an increment quotient operator. In this paper we define the
Malliavin derivative operator D on the class S of smooth random variables
f(Xt1 , . . . , Xtn ), where f is a smooth function with compact support. We

show that the closure of L2(P) ⊇ S D→ L2(m⊗P) yields to the space D1,2.

As an application we conclude that Lipschitz functions operate on D1,2.
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1. INTRODUCTION

In the recent years Malliavin calculus for Lévy processes has been developed
using various types of chaos expansions. For example, Lee and Shih [5] applied
a white noise approach, León et al. [6] worked with certain strongly orthogonal
martingales, Løkka [7] and Di Nunno et al. [2] considered multiple integrals with
respect to the compensated Poisson random measure and Solé et al. [11] used the
chaos expansion proved by Itô [4].

This chaos representation from Itô applies to any square integrable functional
of a general Lévy process. It uses multiple integrals like in the well-known Brow-
nian motion case but with respect to an independent random measure associated
with the Lévy process. Solé et al. propose in [12] a canonical space for a general
Lévy process. They define for random variables on the canonical space the incre-
ment quotient operator

Ψt,xF (ω) =
F (ωt,x)− F (ω)

x
, x ̸= 0,

∗ Partially supported by the Academy of Finland, project 110599.
∗∗ Supported by the Finnish Cultural Foundation.



2 C. Geiss and E. Laukkarinen

in a pathwise sense, where, roughly speaking, ωt,x can be interpreted as the out-
come of adding at time t a jump of the size x to the path ω. They show that on the
canonical Lévy space the Malliavin derivative Dt,xF defined via the chaos expan-
sion due to Itô and Ψt,xF coincide a.e. on R+ × R0 × Ω (where R0 := R \ {0})
whenever F ∈ L2 and E

∫
R+×R0

|Ψt,xF |2dm(t, x) < ∞ (see Section 2 for the
definition of m). On the other hand, on the Wiener space, the Malliavin deriva-
tive is introduced as an operator D mapping smooth random variables of the form
F = f

(
W (h1), . . . , W (hn)

)
into L2(Ω;H), i.e.

DF =
n∑

i=1

∂

∂xi
f
(
W (h1), . . . ,W (hn)

)
hi

(see, for example, [8]). Here f is a smooth function mapping from Rn into R such
that all its derivatives have at most polynomial growth, and {W (h), h ∈ H} is an
isonormal Gaussian family associated with a Hilbert space H. The closure of the
domain of the operator D is the space D1,2.

In the present paper we proceed in a similar way for a Lévy process (Xt)t­0.
We will define a Malliavin derivative on a class of smooth random variables and
determine its closure. The class of smooth random variables we consider consists
of elements of the form F = f(Xt1 , . . . , Xtn), where f : Rn → R is a smooth
function with compact support.

Analogously to results of Solé et al. [12] about the canonical Lévy space the
Malliavin derivative DF ∈ L2(m ⊗ P), defined via chaos expansion, can be ex-
pressed explicitly as a two-parameter operator Dt,x. For certain smooth random
variables of the form F = f(Xt1 , . . . , Xtn) we have

Dt,xf(Xt1 , . . . , Xtn) =
n∑

i=1

∂f

∂xi
(Xt1 , . . . , Xtn)1I[0,ti]×{0}(t, x)

+ Ψt,xf(Xt1 , . . . , Xtn)1I{x ̸=0}(x)

form⊗ P-a.e. (t, x, ω). Here Ψt,x for x ̸= 0 is given by

Ψt,xf(Xt1 , . . . , Xtn)

:=
f
(
Xt1 + x1I[0,t1](t), . . . , Xtn + x1I[0,tn](t)

)
− f(Xt1 , . . . , Xtn)

x
.

Our main result is that the smooth random variables f(Xt1 , . . . , Xtn) are
dense in the space D1,2 defined via the chaos expansion. This implies that defin-
ing D as an operator on the smooth random variables as in Definition 3.2 below
and taking the closure leads to the same result as defining D using Itô’s chaos
expansion (see Definition 2.1).

The paper is organized as follows. In Section 2 we shortly recall Itô’s chaos
expansion, the definition of the Malliavin derivative and some related facts. The
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third and fourth sections focus on the introduction of the Malliavin derivative op-
erator on smooth random variables and the determination of its closure. Applying
the denseness result from the previous section we show in Section 5 that Lipschitz
functions map from D1,2 into D1,2.

2. THE MALLIAVIN DERIVATIVE VIA ITÔ’S CHAOS EXPANSION

We assume a càdlàg Lévy process X = (Xt)t­0 on a complete probability
space (Ω,F ,P) with Lévy triplet (γ, σ2, ν), where γ ∈ R, σ ­ 0 and ν is the
Lévy measure. Then X has the Lévy–Itô decomposition

Xt = γt+ σWt +
∫

[0,t]×{|x|­1}
xdN(t, x) +

∫
[0,t]×{0<|x|<1}

xdÑ(t, x),

where W denotes a standard Brownian motion, N is the Poisson random measure
associated with the process X and Ñ the compensated Poisson random measure,
dÑ(t, x) = dN(t, x)− dtdν(x). Consider the measures µ on B(R),

dµ(x) := σ2dδ0(x) + x2dν(x),

andm on B(R+ × R), where R+ := [0,∞),

dm(t, x) := dtdµ(x).

For B ∈ B(R+ × R) such thatm(B) <∞ let

M(B) = σ
∫

{t∈R+:(t,0)∈B}
dWt + lim

n→∞

∫
{(t,x)∈B:1/n<|x|<n}

xdÑ(t, x),

where the convergence is taken in the space L2(Ω,F ,P). Now EM(B1)M(B2)
=m(B1 ∩B2) for allB1, B2 withm(B1)<∞ andm(B2)<∞. For n = 1, 2, . . .
let us write

Ln
2 := L2

(
(R+ × R)n,B(R+ × R)⊗n,m⊗n

)
.

For f ∈ Ln
2 Itô [4] defines a multiple integral In(f) with respect to the random

measure M . It follows that In(f)=In(f̃) a.s., where f̃ is the symmetrization of f ,

f̃(z1, . . . , zn) =
1

n!

∑
π∈Sn

f(zπ(1), . . . , zπ(n))

for all zi = (ti, xi) ∈ R+ × R, and Sn denotes the set of all permutations on
{1, . . . , n}.

Let (FX
t )t­0 be the augmented natural filtration of X . Then (FX

t )t­0 is right
continuous ([9], Theorem I 4.31). Set FX :=

∨
t­0FX

t . By Theorem 2 of Itô [4]
the chaos decomposition

L2 := L2(Ω,FX ,P) =
∞
⊕
n=0

In(L
n
2 )
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holds, where I0(L0
2) := R and In(L

n
2 ) := {In(fn) : fn ∈ Ln

2} for n = 1, 2, . . .
For F ∈ L2 the representation

F =
∞∑
n=0

In(fn)

with I0(f0) = EF a.s. is unique if the functions fn are symmetric. Furthermore,

∥F∥2L2
=
∞∑
n=0

n!∥f̃n∥2Ln
2
.

DEFINITION 2.1. Let D1,2 be the space of all F =
∑∞

n=0 In(fn) ∈ L2 such
that

∥F∥2D1,2
:=

∞∑
n=0

(n+ 1)!∥f̃n∥2Ln
2
<∞.

Set L2(m⊗ P) := L2

(
R+ × R× Ω,B(R+ × R)⊗ FX ,m⊗P

)
. The Malliavin

derivative D : D1,2 → L2(m⊗P) is defined by

(2.1) Dt,xF :=
∞∑
n=1

nIn−1

(
f̃n

(
(t, x), ·

))
, (t, x, ω) ∈ R+ × R× Ω.

We consider (as Solé et al. [12]) the operators D·,0 and D·,x, x ̸= 0, and their
domains D0

1,2 and DJ
1,2. For σ > 0 assume that D0

1,2 consists of random variables
F =

∑∞
n=0 In(fn) ∈ L2 such that

∥F∥2D0
1,2

:= ∥F∥2L2
+
∞∑
n=1

n · n!∥f̃n1I(R+×{0})×(R+×R)n−1∥2Ln
2
<∞.

For ν ̸= 0, let DJ
1,2 be the set of F ∈ L2 such that

∥F∥2DJ
1,2

:= ∥F∥2L2
+
∞∑
n=1

n · n!∥f̃n1I(R+×R0)×(R+×R)n−1∥2Ln
2
<∞,

where R0 := R \ {0}. If both σ > 0 and ν ̸= 0, then

(2.2) D1,2 = D0
1,2 ∩ DJ

1,2.

In case ν = 0, D·,0 coincides with the classical Malliavin derivative DW (see, for
example, [8]) except for a multiplicative constant, DW

t F = σDt,0F .
In the next lemma we formulate a denseness result which will be used to de-

termine the closure of the Malliavin operator from Definition 3.2 below.

LEMMA 2.1. Let L ⊆ L2 be the linear span of random variables of the form

M(T1 ×A1) . . .M(Tn ×An), n = 1, 2, . . .

where the Ai’s are finite intervals of the form (ai, bi] and the Ti’s are finite disjoint
intervals of the form Ti = (si, ti]. Then L is dense in L2, D1,2, D0

1,2 and DJ
1,2.
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P r o o f. 1o First we consider the class of all linear combinations of

M(B1) . . .M(Bn) = In(1IB1×...×Bn),

n = 1, 2, . . . , where the sets Bi ∈ B(R+ ×R) are disjoint and fulfill the condition
m(Bi) <∞. It follows from the completeness of the multiple integrals in L2 (see
[4], Theorem 2) that this class is dense in L2. Especially, the class of all linear
combinations of 1IB1×...×Bn with disjoint sets B1, . . . , Bn of finite measure m is
dense in Ln

2 = L2

(
(R+ × R)n,B(R+ × R)⊗n,m⊗n

)
. Let Hn be the linear span

of 1I(T1×A1)×···×(Tn×An), where Ai = (ai, bi] and Ti = (si, ti]. One can easily see
that Hn is dense in Ln

2 as well. Indeed, because m is a Radon measure, there are
compact sets Ci ⊆ Bi such thatm(Bi \ Ci) is sufficiently small to get

∥1IB1×...×Bn − 1IC1×...×Cn∥Ln
2
< ε

for some given ε > 0. Since the compact sets (Ci) are disjoint, one can find dis-
joint bounded open sets Ui ⊇ Ci such that ∥1IC1×...×Cn − 1IU1×...×Un∥Ln

2
< ε. For

any bounded open set Ui ⊆ (0,∞) × R one can find a sequence of ‘half-open
rectangles’ Qi,k = (sik, t

i
k] × (aik, b

i
k] = T i

k × Ai
k such that Ui =

∪∞
k=1Qi,k (tak-

ing half-open rectangles Qx ⊆ Ui with rational ‘end points’ containing the point
x ∈ Ui gives Ui =

∪
Qx⊆Ui

Qx).
Hence for sufficiently large Ki’s we have

∥1IU1×...×Un − 1IP ∥Ln
2
< ε, where P :=

K1∪
k=1

Q1,k × . . .×
Kn∪
k=1

Qn,k

and where the Qi,1, . . . , Qi,Ki can now be chosen such that they are disjoint. This
implies that the linear span of 1IQ1×...×Qn , where the Qi’s are of the form Ti ×Ai,
is dense in Ln

2 .
2o For the convenience of the reader we recall the idea of the proof of Lem-

ma 2 in [4] to show that the intervals Ti can be chosen disjoint. Consider the situa-
tion (all other cases can be treated similarly) where for the set

(T1 ×A1)× . . .× (Tn ×An)

we have T1 = T2. To shorten the notation we write

Q := (T3 ×A3)× . . .× (Tn ×An).

Choosing an equidistant partition (Ej)
k
j=1 of T1 we have

1I(T1×A1)×(T1×A2)×Q =
∑
j ̸=l

1I(Ej×A1)×(El×A2)×Q +
k∑

j=1

1I(Ej×A1)×(Ej×A2)×Q.

It can be easily checked that
∥∥∑k

j=1 1I(Ej×A1)×(Ej×A2)×Q
∥∥
Ln
2
→ 0 as k →∞.
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3o The denseness of Hn in Ln
2 implies that L is dense in L2 and D1,2. The

remaining cases follow from the fact that

∥fn1I(R+×{0})×(R+×R)n−1∥Ln
2
¬ ∥fn∥Ln

2

and
∥fn1I(R+×R0)×(R+×R)n−1)∥Ln

2
¬ ∥fn∥Ln

2
. �

3. THE MALLIAVIN DERIVATIVE AS OPERATOR ON S

Let C∞c (Rn) denote the space of smooth functions f : Rn → R with compact
support.

DEFINITION 3.1. A random variable of the form F =f(Xt1 , . . . , Xtn), where
f ∈ C∞c (Rn), n ∈ N, and t1, . . . , tn ­ 0, is said to be a smooth random variable.
The set of all smooth random variables is denoted by S.

DEFINITION 3.2. For F = f(Xt1 , . . . , Xtn) ∈ S we define the Malliavin de-
rivative operator D as a map from S into L2(m⊗P) by

Dt,xf(Xt1 , . . . , Xtn)

:=
n∑

i=1

∂f

∂xi
(Xt1 , . . . , Xtn)1I[0,ti]×{0}(t, x)

+
f
(
Xt1+ x1I[0,t1](t), . . . , Xtn+ x1I[0,tn](t)

)
− f(Xt1 , . . . , Xtn)

x
1IR0(x)

for (t, x) ∈ R+ × R.

The following lemma holds true:

LEMMA 3.1. We have DF = DF in L2(m⊗ P) for all F ∈ S.
Since for f(Xt1 , . . . , Xtn) ∈ S we get

E
∫
R+

|Dt,0f(Xt1 , . . . , Xtn)|2dt <∞

and
E

∫
R+×R0

|Dt,xf(Xt1 , . . . , Xtn)|2dm(t, x) <∞,

Lemma 3.1 follows for the canonical Lévy space from Propositions 3.5 and 5.5
in [12].

A proof of Lemma 3.1 for the situation where the Lévy process (Xt) is a
square integrable pure jump process which has an absolutely continuous distribu-
tion can be found in [7].



Smooth Lévy functionals in D1,2 7

An outline of the proof in the general case is given in the Appendix. Like in
[7], Proposition 8, one can derive from the proof an explicit form for the functions
(fn) of the chaos expansion f(Xt1 , . . . , Xtk) =

∑∞
n=0 In(fn),

fn
(
(s1, x1), . . . , (sn, xn)

)
=E

∑
I⊂{1,...,n}∪∅

(−1)n−|I|

n!

f
(
Xt1+

∑
i∈Ixi1I[0,t1](si), . . . , Xtk+

∑
i∈Ixi1I[0,tk](si)

)
x1 . . . xn

,

with the convention that to get fn
(
(s1, x1), . . . , (si, 0), . . . , (sn, xn)

)
one has to

take the limit lim|xi|↓0 fn
(
(s1, x1), . . . , (sn, xn)

)
.

Especially, since any F ∈ L2 ⊇ S has a unique chaos expansion, we conclude
that also DF does not depend on the representation F = f(Xt1 , . . . , Xtn). Using
the equality of D and D on S and the fact that S is closed with respect to multi-
plication we are now able to reformulate Proposition 5.1 of [12] for our situation:

COROLLARY 3.1. For F and G in S we have

Dt,x(FG) = GDt,xF + FDt,xG+ xDt,xFDt,xG

form⊗ P-a.e. (t, x, ω) ∈ R+ × R× Ω.

4. THE CLOSURE OF THE MALLIAVIN DERIVATIVE OPERATOR

The operator D : S → L2(m ⊗ P) is closable if for any sequence (Fn) ⊆ S
which converges to 0 in L2 such that D(Fn) converges in L2(m ⊗ P) it follows
that (DFn) converges to 0 in L2(m⊗ P). As we know from the previous section
that D and D coincide on S ⊆ D1,2, it is clear that D is closable and the closure
of the domain of definition of D with respect to the norm

∥F∥D := [E|F |2 + E∥DF∥2L2(m)]
1/2

is contained in D1,2. What remains to show is that the closure is equal to D1,2.

THEOREM 4.1. The closure of S with respect to the norm ∥ · ∥D = ∥ · ∥D1,2

is the space D1,2.

Theorem 4.1 implies that the Malliavin derivative D defined via Itô’s chaos
expansion and the closure of the operator L2 ⊇ S

D→ L2(m⊗ P) coincide. Before
we start with the proof we formulate a lemma for later use.



8 C. Geiss and E. Laukkarinen

LEMMA 4.1. For φ ∈ C∞c (R) and partitions πn := {s = tn0 < tn1 < . . . <
tnn = u} of the interval [s, u] it follows for ψ(x) := xφ(x) that

D1,2 − lim
|πn|→0

( n∑
j=1

ψ(Xtnj
−Xtnj−1

)− E
n∑

j=1

ψ(Xtnj
−Xtnj−1

)
)

=
∫

(s,u]×R
φ(x) dM(t, x),

where |πn| := max1¬i¬n |tni − tni−1|.

P r o o f. To keep the notation simple, we drop the n of the partition points tnj .
Notice that ∫

(s,u]×R
φ(x) dM(t, x) = I1(1I(s,u] ⊗ φ).

We set

Gn :=
n∑

j=1

ψ(Xtj −Xtj−1)− E
n∑

j=1

ψ(Xtj −Xtj−1)

and

G :=
∫

(s,u]×R
φ(x) dM(t, x).

In general, ψ(Xtj −Xtj−1) ̸∈ S but we can conclude from Lemma 3.1 that

Dt,xψ(Xtj −Xtj−1) = Dt,xψ(Xtj −Xtj−1)

m ⊗ P-a.e. using a suitable approximation of ψ(Xtj − Xtj−1) by a sequence of
smooth random variables from S. So we can write Dt,xG

n explicitly as

Dt,xG
n =

n∑
j=1

ψ′(Xtj −Xtj−1)1I(tj−1,tj ]×{0}(t, x)

+
n∑

j=1

ψ(Xtj −Xtj−1 + x)− ψ(Xtj −Xtj−1)

x
1I(tj−1,tj ]×R0

(t, x).

Moreover, we have Dt,xI1(1I(s,u] ⊗ φ) = 1I(s,u](t)φ(x) m-a.e. Using the general
fact that for any F ∈ D1,2 with expectation zero the inequality

∥F∥2D1,2
¬ 2∥DF∥2L2(m⊗P)
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holds true, we obtain

∥G−Gn∥2D1,2
¬ 2∥DG−DGn∥2L2(m⊗P)

= 2σ2E
∫
R+

n∑
j=1

1I(tj−1,tj ](t)[φ(0)− ψ
′(Xtj −Xtj−1)]

2dt

+ 2E
∫

R+×R0

n∑
j=1

1I(tj−1,tj ](t)[ψ(x)− ψ(Xtj −Xtj−1 + x)

+ ψ(Xtj −Xtj−1)]
2dtdν(x)

→ 0

as n→∞ because of dominated convergence and the a.s. càdlàg property of the
paths of (Xt). �

P r o o f o f T h e o r e m 4.1. According to Lemma 2.1 it is sufficient to show
that an expression like M(T1 ×A1) . . .M(Tn ×An), where the Ai’s are bounded
Borel sets and the Ti’s finite disjoint intervals, can be approximated in D1,2 by a
sequence (Fk)k ⊆ S.

1o In this step we want to show that it is enough to approximate

(4.1) I1(1IT1 ⊗ φ1) . . . I1(1ITn ⊗ φn)

by (Fk)k ⊆ S, where φi ∈ C∞c (R). Since the intervals Ti are disjoint, the defini-
tion of the multiple integral implies that

M(T1 ×A1) . . .M(Tn ×An) = In(1IT1×A1 ⊗ . . .⊗ 1ITn×An) a.s.

By the same reason,

I1(1IT1 ⊗ φ1) . . . I1(1ITn ⊗ φn) = In
(
(1IT1 ⊗ φ1)⊗ . . .⊗ (1ITn ⊗ φn)

)
a.s.

We have∥∥In(1I(T1×A1)×...×(Tn×An))− In
(
(1IT1 ⊗ φ1)⊗ . . .⊗ (1ITn ⊗ φn)

)∥∥2
D1,2

¬ (n+ 1)!∥1I(T1×A1)×...×(Tn×An) − (1IT1 ⊗ φ1)⊗ . . .⊗ (1ITn ⊗ φn)∥2Ln
2

¬ (n+ 1)!|T1| . . . |Tn|∥1IA1×...×An − φ1 ⊗ . . .⊗ φn∥2Ln
2 (µ
⊗n).

The last expression can be made arbitrarily small by choosing φi such that the
expression ∥1IAi − φi∥L1

2(µ)
is small. Indeed, for each i there are compact sets

Ci
1 ⊆ Ci

2 ⊆ . . . ⊆ Ai and open sets U i
1 ⊇ U i

2 ⊇ . . . ⊇ Ai such that

µ(U i
k \ Ci

k)→ 0
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as k →∞. By the C∞ Urysohn lemma ([3], p. 237) there is for each k a function
φi
k ∈ C∞c (R) such that 0 ¬ φi

k ¬ 1, φi
k = 1 on Ci

k and supp(φi
k) ⊂ U i

k. Then

∥1IAi − φk
i ∥2L1

2(µ)
¬ µ(U i

k \ Ci
k)→ 0

as k →∞.
2o Now we use Lemma 4.1 to approximate the expression (4.1) by a sequence

(Fk)k ⊆ S. For i = 1, . . . , n set ψi(x) := xφi(x) and

Gk
i :=

k∑
j=1

1I{tj ,tj−1∈T̄i}ψi(Xtj −Xtj−1)− E
k∑

j=1

1I{tj ,tj−1∈T̄i}ψi(Xtj −Xtj−1).

The partition πk = {0 ¬ tk0 ¬ . . . ¬ tkk} can be chosen such that all end points of
the closed intervals T̄i belong to πk. Put

fk(Xt0 , . . . , Xtk) :=
n∏

i=1

Gk
i

and notice that fk ∈ C∞(Rk+1). Let us choose functions βm ∈ C∞c (R) such that
0 ¬ βm ¬ 1 and βm(x) = 1 for |x| ¬ m, the support of βm is contained in {x;
|x| ¬ m+ 2} and ∥β′m∥∞ ¬ 1. Setting x−1 := 0 and

αm(x0, . . . , xk) :=
k∏

i=0

βm(xi − xi−1),

we have fk(x)αm(x) ∈ C∞c (Rk+1). By dominated convergence one can show that

D1,2 − lim
m→∞

fk(Xt0 , . . . , Xtk)αm(Xt0 , . . . , Xtk) = fk(Xt0 , . . . , Xtk).

Because the intervals (Ti) are disjoint, it follows that the product rule holds in our
case:

(4.2) D
n∏

i=1

Gk
i =

n∑
i=1

Gk
1 . . . G

k
i−1(DG

k
i )G

k
i+1 . . . G

k
n m⊗ P-a.e.

Indeed, because of Dt,xG
k
i = (Dt,xG

k
i )1ITi(t) we have

x(Dt,xG
k
i )1ITi(t)(Dt,xG

k
j )1ITj (t) = 0 m⊗ P-a.e.

for any i ̸= j. Equation (4.2) follows then by induction. Let

Gi := I1(1ITi ⊗ φi).

We observe that Gk
1, . . . , G

k
n as well as Gk

1, . . . , G
k
i−1, DG

k
i , G

k
i+1, . . . , G

k
n are

mutually independent by construction. Hence to show L2-convergence of these
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products it is enough to prove L2-convergence for each factor. From Lemma 4.1
we obtain Gk

i → Gi in D1,2 for all i = 1, . . . , n, so that

L2(m⊗ P)− lim
|πk|→0

Gk
1 . . . G

k
i−1(DG

k
i )G

k
i+1 . . . G

k
n

= G1 . . . Gi−1(DGi)Gi+1 . . . Gn.

Consequently, we have found a sequence (Fk) ⊆ S given by

Fk = fk(Xt0 , . . . , Xtk)αmk
(Xt0 , . . . , Xtk),

where the mk’s are chosen in a suitable way, that converges to expression (4.1) in
D1,2. �

COROLLARY 4.1. The set S of smooth random variables is dense in L2, D0
1,2

and DJ
1,2.

P r o o f. The denseness in L2 is clear. To show that S is dense in D0
1,2 assume

F ∈ D0
1,2 has the representation F =

∑∞
n=0 In(fn). For a given ε > 0 fix Nε such

that
∥∥∑∞

n=Nε
In(fn)

∥∥
D0
1,2
< ε. From F ∈ L2 we conclude

FNε :=
Nε∑
n=0

In(fn) ∈ D1,2.

By Theorem 4.1 we can find a sequence (Fk) ⊆ S converging to FNε in D1,2, and
therefore also in D0

1,2. In the same way one can see that S is dense in DJ
1,2. �

5. LIPSCHITZ FUNCTIONS OPERATE ON D1,2

LEMMA 5.1. Assume that g : R → R is Lipschitz continuous with Lipschitz
constant Lg.

(a) If σ > 0, then g(F ) ∈ D0
1,2 for all F ∈ D0

1,2 and

(5.1) Dt,0g(F ) = GDt,0F dt⊗ P-a.e.,

where G is a random variable which is a.s. bounded by Lg.
(b) If ν ̸= 0, then g(F ) ∈ DJ

1,2 for all F ∈ DJ
1,2, where

(5.2) Dt,xg(F ) =
g(F + xDt,xF )− g(F )

x

form⊗P-a.e. (t, x, ω) ∈ R+ × R0 × Ω.
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P r o o f. (a) We will adapt the proof of Proposition 1.2.4 in [8] to our sit-
uation. Corollary 4.1 implies that there exists a sequence (Fn) ⊆ S of the form
Fn = fn(Xt1 , . . . , Xtn) which converges to F in D0

1,2. Like in [8], we choose a
non-negative ψ ∈ C∞c (R) such that supp(ψ) ⊆ [−1, 1] and

∫
R ψ(x)dx = 1 and

define the approximation of unity ψm(x) := mψ(mx). Then gm := g ∗ ψm is
smooth and converges uniformly to g asm→∞. Moreover, ∥g′m∥∞ ¬ Lg. Hence
gm(Fn)− gm(0) ∈ S and

(
gn(Fn)

)
converges to g(F ) in L2. Moreover,

E
∫
R+

|Dt,0gn(Fn)|2dt ¬ L2
g ∥Fn∥2D0

1,2
.

Since
(
gn(Fn)

)
converges to g(F ) in L2 and

sup
n
∥gn(Fn)∥2D0

1,2
<∞,

Lemma 1.2.3 in [8] states that g(F ) ∈ D0
1,2 and that

(
D·,0 gn(Fn)

)
converges to

D·,0 g(F ) in the weak topology of L2

(
Ω;L2(R+ × {0})

)
. The obvious inequality

E|g′n(Fn)|2 ¬ L2
g implies the existence of a subsequence

(
g′nk

(Fnk
)
)
k

which con-
verges to some G ∈ L2 in the weak topology of L2. One can show that |G| ¬ Lg

a.s. Hence for any element α ∈ L∞
(
Ω;L2(R+ × {0})

)
we have

lim
k→∞

E
∫
R+

g′nk
(Fnk

)(Dt,0 Fnk
)α(t)dt = E

(
G

∫
R+

(Dt,0 F )α(t)dt
)
.

Consequently, Dt,0 g(F ) = GDt,0F dt⊗ P-a.e.
(b) Let (Fn)n ⊆ S be a sequence such that DJ

1,2 − limFn = F. Since the
expression

Z(t, x) :=
g(F + xDt,xF )− g(F )

x
1IR+×R0(t, x)

is in L2(m⊗ P), it is enough to show that the sequence
(
Dgn(Fn)1IR+×R0

)
con-

verges in L2(m⊗ P) to Z, where (gn) is the sequence constructed in (a). Choose
T > 0 and L > 0 large enough and δ > 0 sufficiently small such that

lim sup
n

E
∫

([0,T ]×{δ¬|x|¬L})c
|Z(t, x)|2 + |Dt,xgn(Fn)|2dm(t, x) < ε.

Then, for n ­ n0,

∥Z −Dgn(Fn)1IR+×R0∥2L2(m⊗P)

¬ ε+ 2E
∫

[0,T ]×{δ¬|x|¬L}

∣∣∣∣Z(t, x)− g(Fn + xDt,xFn)− g(Fn)

x

∣∣∣∣2dm(t, x)

+ 8δ−2Tµ({δ ¬ |x| ¬ L})∥g − gn∥2∞.

Hence we obtain (5.2) from the Lipschitz continuity of g and the uniform conver-
gence of gn to g. �
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PROPOSITION 5.1. Let g : R → R be Lipschitz continuous. Then F ∈ D1,2

implies g(F ) ∈ D1,2, where Dg(F ) is given by (5.1) and (5.2).

P r o o f. The assertion is an immediate consequence of Lemma 5.1 and the
equality (2.2). �

6. APPENDIX

P r o o f o f L e m m a 3.1. We denote by Jn(fn) the multiple integral∫
R+×R

∫
[0,tn)×R

. . .
∫

[0,t2)×R
fn

(
(t1, x1), . . . , (tn, xn)

)
dM(t1, x1) . . . dM(tn, xn),

where for the definition of a stochastic integral with respect to M we refer to [1].
We have

(6.1) In(f̃n) = n!Jn(f̃n).

Let us first prove on S a Clark–Ocone–Haussman type formula for the operator D.
By the Fourier inversion formula (see, for example, [1]) we infer for f ∈ C∞c (Rk)
that

f(Xt1 , . . . , Xtk) =
∫
Rk

f̂(u) exp
(
2πi

k∑
j=1

ujXtj

)
du =

∫
Rk

f̂(u)eη(u,T )YT (u)du,

where eη(u,t) = E exp
(
2πi

∑k
j=1(ujXtj∧t)

)
and

Yt(u) = exp
(
2πi

k∑
j=1

ujXtj∧t − η(u, t)
)

for 0 ¬ t ¬ T := max{t1, . . . , tk}.

We rewrite YT (u) by Itô’s formula using ξ(u, s) := 2πi
∑k

j=1 uj1I[0,tj ](s) and get

(6.2) f(Xt1 , . . . , Xtk)

=
∫
Rk

f̂(u)eη(u,T ) du

+
∫
Rk

f̂(u)eη(u,T )
( T∫

0

Ys−(u)ξ(u, s) σdWs

)
du

+
∫
Rk

f̂(u)eη(u,T )
( ∫
(0,T ]×R0

Ys−(u)(e
xξ(u,s) − 1)dÑ(s, x)

)
du.

It follows by Fubini’s theorem that∫
Rk

f̂(u)eη(u,T ) du = E
∫
Rk

f̂(u) exp
(
2πi

k∑
j=1

ujXtj

)
du = Ef(Xt1 , . . . , Xtk).
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Now we deal with the second term on the right-hand side of (6.2). Using the fact
that the process (Yt)t∈[0,T ] is a square integrable martingale, we infer by the con-
ditional theorem of Fubini (see, e.g., [1]) and Fubini’s theorem for stochastic inte-
grals (see, e.g., [10]) that it can be written as

T∫
0

E
[ ∫
Rk

YT (u)f̂(u)e
η(u,T )ξ(u, s) du

∣∣Fs−]σdWs.

Applying Theorem 8.22 (e) of [3] and the Fourier inversion formula we rewrite the
inner integral as follows:∫

Rk

YT (u)f̂(u)e
η(u,T )ξ(u, s) du

=
k∑

j=1

1I[0,tj ](s)
∫
Rk

2πiuj f̂(u) exp
(
2πi

k∑
j=1

ujXtj

)
du

=
k∑

j=1

1I[0,tj ](s)
∂f

∂xj
(Xt1 , . . . , Xtk).

Similarly, one can write the last term on the right-hand side of (6.2) as∫
(0,T ]×R0

E
[ ∫
Rk

f̂(u)eη(u,T )YT (u)(e
xξ(u,s) − 1)du

∣∣Fs−]dÑ(s, x),

where∫
Rk

f̂(u)eη(u,T )YT (u)(e
xξ(u,s) − 1)du

=
∫
Rk

f̂(u)
(
exp

[
2πi

k∑
j=1

uj
(
Xtj + x1I[0,tj ](s)

)]
− exp

(
2πi

k∑
j=1

ujXtj

))
du

= f
(
Xt1 + x1I[0,t1](s), . . . , Xtk + x1I[0,tk](s)

)
− f(Xt1 , . . . , Xtk) .

Consequently, for F = f(Xt1 , . . . , Xtk) ∈ S the Clark–Ocone–Haussman type
formula holds true:

(6.3) F = EF +
∫

R+×R
E [Dt,xF |Ft− ] dM(t, x).

Since Dt,xf(Xt1 , . . . , Xtk) ∈ S for any (t, x) ∈ R+ × R, iterating equation (6.3)
we obtain

f(Xt1 , . . . , Xtk) = Ef(Xt1 , . . . , Xtk) +
∞∑
n=1

Jn
(
EDnf(Xt1 , . . . , Xtk)

)
,

where Dn := D . . .D.
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Notice that EDnf(Xt1 , . . . , Xtk) is a symmetric function on (R+ ×R)n. The
relation (6.1) between the multiple and the iterated integral and equation (2.1) to-
gether with Dt,xf(Xt1 , . . . , Xtk) ∈ L2(m⊗P) imply that

Dt,xf(Xt1 , . . . , Xtk) =
∞∑
n=1

Jn−1
(
EDn−1Dt,xf(Xt1 , . . . , Xtk)

)
= Dt,xf(Xt1 , . . . , Xtk) m⊗P-a.e. �
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