PROBABILITY
AND
MATHEMATICAL STATISTICS

Vol. 31, Fasc. 1 (2011), pp. 1-15
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Abstract. The Malliavin derivative for a Lévy process (X ) can be de-
fined on the space D12 using a chaos expansion or in the case of a pure jump
process also via an increment quotient operator. In this paper we define the
Malliavin derivative operator D on the class S of smooth random variables
f(Xt,,...,X¢,), where f is a smooth function with compact support. We
show that the closure of L2 (P) 2 S B, (m ® P) yields to the space D .
As an application we conclude that Lipschitz functions operate on D1 2.
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1. INTRODUCTION

In the recent years Malliavin calculus for Lévy processes has been developed
using various types of chaos expansions. For example, Lee and Shih [5] applied
a white noise approach, Leon et al. [6] worked with certain strongly orthogonal
martingales, Lgkka [7] and Di Nunno et al. [2] considered multiple integrals with
respect to the compensated Poisson random measure and Solé et al. [11] used the
chaos expansion proved by It6 [4].

This chaos representation from It6 applies to any square integrable functional
of a general Lévy process. It uses multiple integrals like in the well-known Brow-
nian motion case but with respect to an independent random measure associated
with the Lévy process. Solé et al. propose in [12] a canonical space for a general
Lévy process. They define for random variables on the canonical space the incre-
ment quotient operator

\I"t,xF(w) = F(Wt’x) — F(w)v x 7é 07

T
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in a pathwise sense, where, roughly speaking, w; , can be interpreted as the out-
come of adding at time ¢ a jump of the size x to the path w. They show that on the
canonical Lévy space the Malliavin derivative D; , I defined via the chaos expan-
sion due to Itd and ¥, , F coincide a.e. on R} x Ry x Q (where Ry := R\ {0})
whenever F' € Lo and EfR+XRO |U; . F|?dm(t, z) < oo (see Section 2 for the
definition of m). On the other hand, on the Wiener space, the Malliavin deriva-

tive is introduced as an operator D mapping smooth random variables of the form
F= f(W(hl), cee W(hn)) into Ly(2; H), i.e.

DF = ﬁ;aiif(W(hl),...,W(hn))hi

(see, for example, [8]). Here f is a smooth function mapping from R” into R such
that all its derivatives have at most polynomial growth, and {W(h),h € H} is an
isonormal Gaussian family associated with a Hilbert space H. The closure of the
domain of the operator D is the space D1 5.

In the present paper we proceed in a similar way for a Lévy process (X¢)>o.
We will define a Malliavin derivative on a class of smooth random variables and
determine its closure. The class of smooth random variables we consider consists
of elements of the form F = f(Xy,..., X, ), where f : R — R is a smooth
function with compact support.

Analogously to results of Solé et al. [12] about the canonical Lévy space the
Malliavin derivative DF' € Ly(m ® IP), defined via chaos expansion, can be ex-
pressed explicitly as a two-parameter operator D ;. For certain smooth random
variables of the form F' = f(Xy,,..., Xy, ) we have

LG
Dt,zf(th e 7th) = Z %(Xtm s th)]I[O,ti]X{O}(t>$)
=1 ?

+ \Ijt,xf(tha ceey th)]I{z;éO} (.1‘)
for m ® P-a.e. (¢, z,w). Here U, ,, for x # 0 is given by
Uiof(Xtyy o5 Xt,,)

f(Xt1 + J"]I[O,tl](t)a s 7th + x]I[O,tn} (t)) - f(Xt17 s 7th)
X

Our main result is that the smooth random variables f(Xy,..., Xy, ) are
dense in the space D1 o defined via the chaos expansion. This implies that defin-
ing D as an operator on the smooth random variables as in Definition 3.2 below
and taking the closure leads to the same result as defining D using Itd6’s chaos
expansion (see Definition 2.1).

The paper is organized as follows. In Section 2 we shortly recall Itd’s chaos
expansion, the definition of the Malliavin derivative and some related facts. The
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third and fourth sections focus on the introduction of the Malliavin derivative op-
erator on smooth random variables and the determination of its closure. Applying
the denseness result from the previous section we show in Section 5 that Lipschitz
functions map from D > into D ».

2. THE MALLIAVIN DERIVATIVE VIA ITO’S CHAOS EXPANSION

We assume a cadlag Lévy process X = (X;);>0 on a complete probability
space (Q, F,P) with Lévy triplet (y,02,v), where v € R, 0 > 0 and v is the
Lévy measure. Then X has the Lévy—It6 decomposition

Xi=~t+oW;+ [ xdN(t,z)+ i zdN(t,z),
(0,t]x{|z|>1} [0,t]x{0<|z|<1}
where W denotes a standard Brownian motion, /N is the Poisson random measure

associated with the process X and N the compensated Poisson random measure,
dN(t,z) = dN(t,x) — dtdv(x). Consider the measures 1 on B(R),

du(z) := o%ddo(z) + x2dv(x),
and m on B(R; x R), where Ry := [0, 00),
dm(t,z) := dtdu(zx).
For B € B(R; x R) such that m(B) < oo let

M(B)=o i dW; + lim [ zdN(t, ),
{teR,:(t,0)eB} 0 L (t,2)e Bl /n<|z|<n}

where the convergence is taken in the space L2(Q2, F,P). Now EM (B;)M (Bs)
= m(B1 N By) forall By, By withm(B;) <ooand m(Bg) <oo.Forn =1,2,...
let us write

b= Ly (Ry x R)", B(R4 x R)®", m®").

For f € L% It6 [4] defines a multiple integral I,,(f) ‘with respect to the random

measure M. It follows that I,,(f)=1I,,(f) a.s., where f is the symmetrization of f,

1
f(zla"'azn) = E Z f(zﬂ'(l)v"'azﬂ(n))

*TeESH

for all z; = (t;,z;) € Ry x R, and S,, denotes the set of all permutations on
{1,...,n}.

Let (FX);>0 be the augmented natural filtration of X. Then (F;¥);>0 is right
continuous ([9], Theorem I 4.31). Set FX := \/1520 ]—"tX . By Theorem 2 of 1t6 [4]
the chaos decomposition

Ly = Ly(Q, FX,P) = P I,(L})
n=0
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holds, where I(L9) := R and I,,(L3) := {L.(fn) : fn € LY} forn =1,2,...
For I' € Ly the representation

F=3 L(f)

n=0
with Iy(fo) = EF a.s. is unique if the functions f,, are symmetric. Furthermore,

o0

IE11Z, = 32 nlll fullZ;-

n=0

DEFINITION 2.1. Let D; o be the space of all F' = ZZO:O I,(fn) € Ly such
that

0 ~
IFI3, , = 3 (n+ D)!Ifully < oo
n=0

Set Ly(m ®@ P) := Ly (R} x R x Q,B(R; x R) ® F¥X, m ® P). The Malliavin
derivative D : Dy 5 — Lo(m ® P) is defined by

[e.e]

Q1)  DyFi=3Y nIn_l(fn((t,m), -)), (t,z,w) € Ry x R x Q.

n=1

We consider (as Solé et al. [12]) the operators D. o and D. ,,, x # 0, and their
domains D?,z and ID){Q. For o > 0 assume that D?,z consists of random variables

F =3%"  I.(fn) € Lo such that

o0
HF|]]%)92 = ”FH%Q +> n n!”fn]I(R+><{O})><(]R+><]R)"—1H%g < 0.

n=1

For v # 0, let ]D{2 be the set of F' € Lo such that

oo ~
IFIBs = IFIZ, + 3 n- nll fullie, xioyx (e, xmynt 7y < o0,
’ n=1
where Rp := R \ {0}. If both ¢ > 0 and v # 0, then
(2.2) D12 =D),NDY,.

In case v = 0, D. o coincides with the classical Malliavin derivative DWW (see, for
example, [8]) except for a multiplicative constant, D}V ' = oDioF.

In the next lemma we formulate a denseness result which will be used to de-
termine the closure of the Malliavin operator from Definition 3.2 below.

LEMMA 2.1. Let L C Lo be the linear span of random variables of the form
M(Ty x Ay)...M(T, x A,), n=12...

where the A;’s are finite intervals of the form (a;, b;] and the T;’s are finite disjoint
intervals of the form T; = (s, t;]. Then L is dense in Ly, D1 2, D , and DY .
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Proof. 1° First we consider the class of all linear combinations of
M(Bl) ce. M(Bn) = In(]Ile...XBn)v

n=1,2,..., where the sets B; € B(Ry x R) are disjoint and fulfill the condition
m(B;) < oo. It follows from the completeness of the multiple integrals in Lo (see
[4], Theorem 2) that this class is dense in L. Especially, the class of all linear
combinations of Ip, x..xp, With disjoint sets By, ..., B;, of finite measure m is
dense in LY = Lo (R4 x R)™, B(R4 x R)®", m®"). Let H,, be the linear span
of W7y x A1) x (Ty x A )» Where A; = (a;, b;] and T; = (s;,;]. One can easily see
that H,, is dense in L5 as well. Indeed, because m is a Radon measure, there are
compact sets C; C B; such that m(B; \ C;) is sufficiently small to get

[UB,x..xB, — Lcyx..xcullLp <e

for some given £ > 0. Since the compact sets (C;) are disjoint, one can find dis-
joint bounded open sets U; 2 C; such that || 1o, x..xc,, — Tuyx..xu, ||y < €. For
any bounded open set U; C (0,00) x R one can find a sequence of ‘half-open
rectangles’ Q; = (sZ,tZ] X (ai;, bZ;] = T,i X Ai; such that U; = UZO:1 Qi 1 (tak-
ing half-open rectangles (), C U; with rational ‘end points’ containing the point
x € U; gives U; = UngUi Q.).

Hence for sufficiently large K;’s we have

K1 K,
H][U1><---><Un — ]IPHLEL <eg, where P = U QLk X ... X U Qn,k
k=1 k=1
and where the (); 1, . .., Q; k, can now be chosen such that they are disjoint. This

implies that the linear span of 1, »...x@,,,» Where the ();’s are of the form T; x A;,
is dense in Lj.

2° For the convenience of the reader we recall the idea of the proof of Lem-
ma 2 in [4] to show that the intervals T; can be chosen disjoint. Consider the situa-
tion (all other cases can be treated similarly) where for the set

(Th x A1) x ... x (T, x Ay)
we have T = T5. To shorten the notation we write

Q:= (T35 x A3) x ... x (T, x Ay).

Choosing an equidistant partition () ?:1 of 71 we have

k

H(TlXAl)X(TlXAQ)XQ = 27; H(EjXAl)X(ElXAQ)XQ + Z ]I(EjXAl)X(E]'XAQ)XQ'
G#l j=1

It can be easily checked that H Z;‘f:l ]I(ijAl)X(ijAz)XQHLg — 0as k — oc.
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3° The denseness of H,, in L5 implies that £ is dense in Lo and Dy 5. The
remaining cases follow from the fact that

[ fnL®, x {0 xR xRyl 2y < (| fnllop

and
||fn]I(R+><R0)><(R+><R)"—1)HLS < anHLS u

3. THE MALLIAVIN DERIVATIVE AS OPERATOR ON S
Let C2°(R™) denote the space of smooth functions f : R" — R with compact

support.

DEFINITION 3.1. A random variable of the form F'= f(Xy,,..., Xy, ), where
feC*¥R"),ne N and ty,...,t, > 0, is said to be a smooth random variable.
The set of all smooth random variables is denoted by S.

DEFINITION 3.2. For F' = f(Xy,,...,X:,) € S we define the Malliavin de-
rivative operator D as a map from § into Lo(m ® P) by

Dt,xf(Xt17 e 7th)

= o %(tha s 7th)]I[0,ti]><{0} (t’ x)
N f(th + xl{[07t1](t)7 oo, X, + eT]I[O,tn] (t)) — [(Xeyso oo, Xe,) T, (z)

x
for (t,x) € Ry x R.
The following lemma holds true:

LEMMA 3.1. We have DF = DF in La(mm ® P) forall F € S.
Since for f(Xy,,...,Xy,) € S we get

E [ |Dyof(Xu,-... Xe,)|?dt < oo
R4

and
E [ |Duof(Xe,-.., Xe,)|Pdm(t, z) < oo,
Ry xRo

Lemma 3.1 follows for the canonical Lévy space from Propositions 3.5 and 5.5
in [12].

A proof of Lemma 3.1 for the situation where the Lévy process (X;) is a
square integrable pure jump process which has an absolutely continuous distribu-
tion can be found in [7].
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An outline of the proof in the general case is given in the Appendix. Like in
[7], Proposition 8, one can derive from the proof an explicit form for the functions
(fn) of the chaos expansion f(Xy,,..., X, ) = ZZO:O I, (fn),

fn((sl’xl)a ) (STM:B’N,))
(—1)n—|[| f(th +Zie[$iﬂ[0,t1}(si)a oo Xy +Zie[$iﬂ[0,tk](3i>)

:E I s
c{injup ™ T1-.-Tn

with the convention that to get fn((sl,xl), ey (86,0)y o0y (Spy xn)) one has to

take the limit lim,,,,| o fn((sl, x1), .., (Sn, xn))

Especially, since any /' € Ly D S has a unique chaos expansion, we conclude
that also D F' does not depend on the representation F' = f(Xy,,..., Xy, ). Using
the equality of D and D on S and the fact that S is closed with respect to multi-
plication we are now able to reformulate Proposition 5.1 of [12] for our situation:

COROLLARY 3.1. For F and G in S we have
Dt’x(FG) = GDtny + F.Dt’mG + ‘TDtnyDt’xG

form @ P-ace. (t,z,w) € Ry x R x Q.

4. THE CLOSURE OF THE MALLIAVIN DERIVATIVE OPERATOR

The operator D : S — Lo(m ® IP) is closable if for any sequence (F,,) C S
which converges to 0 in Ly such that D(F},) converges in Lo(m ® P) it follows
that (DF,,) converges to 0 in La(m ® P). As we know from the previous section
that D and D coincide on S C Dy o, it is clear that D is closable and the closure
of the domain of definition of D with respect to the norm

IF||p = [EIF]® + E| DF|[7, )2

is contained in D1 . What remains to show is that the closure is equal to D ».
THEOREM 4.1. The closure of S with respect to the norm || - |[p = || - [|p, ,
is the space D1 ».
Theorem 4.1 implies that the Malliavin derivative D defined via 1t6’s chaos

. D .
expansion and the closure of the operator Ly O S = Lo(m & P) coincide. Before
we start with the proof we formulate a lemma for later use.
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LEMMA 4.1. For ¢ € CX(R) and partitions m, := {s =t <t} <...<
t = u} of the interval [s, u] it follows for ¥(x) := xp(x) that

n

Dy — lim ( i P(Xpp = Xep ) —E Y (Xpr — X )
j=1

|mn|—0 j=1 i

where |y, | == maxi<icn [t — 1 4].

Proof. To keep the notation simple, we drop the n of the partition points ¢7.
Notice that

f ()0(33) dM(t7x) = II(]I(s,u] ® (P)

(s,u] xR
We set
n n
G" = Z ¢(th - th_1) —-E Z w(th - th—l)
j=1 j=1
and

G:= [ o(x)dM(t,x).
(s,u] xR

In general, (X, — Xy,_,) ¢ S but we can conclude from Lemma 3.1 that
D op(Xt; — Xty y) = Drap(Xy; — Xt )

m ® P-a.e. using a suitable approximation of ¥(X;, — Xy;_,) by a sequence of
smooth random variables from S. So we can write D; , G™ explicitly as

Dt,:EGn = Z w/(th - th_1)]I(tj,1,tj]><{0}(t7x)

¢(th - th—l + I) - ¢(th - th—l)

T

I[(tjfl,tj]XRo (t7 .’E)

Moreover, we have Dy, I1 (1, ® ¢) = T4, (t)p(z) m-a.e. Using the general
fact that for any I € D » with expectation zero the inequality

1713, ,< 21 DF |7, (mewp)
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holds true, we obtain
IG — G"[1%,, < 2IDG = DG™[17,(mep)

= 20’2]]“: f Z ]I(tjil,tj}(t)[so(o) - W(th - thfl)]2dt
Ry j=1

+2E [ 3 T, (O () — (X, — Xey, + )
Ry xRg j=1

+ (X, — Xy, )|Pdtdy(z)

— 0

as n — oo because of dominated convergence and the a.s. cadlag property of the
paths of (X;). m

Proof of Theorem 4.1. Accordingto Lemma 2.1 it is sufficient to show
that an expression like M (T} x A;)... M(T, x A,,), where the A;’s are bounded
Borel sets and the 7;’s finite disjoint intervals, can be approximated in D1 o by a
sequence (Fj); C S.

1° In this step we want to show that it is enough to approximate

4.1) LTy @¢1)... L1171, ® pn)

by (Fj)r C S, where ¢; € C2°(R). Since the intervals 7; are disjoint, the defini-
tion of the multiple integral implies that

M(Tl X Al) c M(Tn X An) = In(][Tlel ®...® ]ITnXAn) a.s.
By the same reason,
Il(]ITl ® (Pl) R II(HTn X (pn) = In((I[Tl &® 901) XR...R (]ITn ® (,On)) a.s.
We have
2
HIn(]I(Tl><A1)><...><(Tn><An)) - In((]IT1 ® ‘Pl) ®...® (I[Tn ® 9071)) H]D)LQ

< (A DN Tery say) s (@xan) = Iy @ 1) @ .. @ (g, @ ¢4) |1
< (AT Tl Tayxxa, = 91 - @ 0nl T (uemy-

The last expression can be made arbitrarily small by choosing ¢; such that the
expression ||T4, — ;| L3(w) 18 small. Indeed, for each i there are compact sets

CiCCiC...C A;andopensets Ui D UL D ... D A; such that

Ui\ Cp) = 0
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as k — oo. By the C'*° Urysohn lemma ([3], p. 237) there is for each k a function
@i € C=°(R) such that 0 < ¢} < 1, p% =1 on C} and supp(p%) C U;. Then

14, — @F 2y < (UE\ CE) — 0

as k — oo.

2° Now we use Lemma 4.1 to approximate the expression (4.1) by a sequence
(Fy)r C€S.Fori=1,...,nsety;(z) := zp;(x) and

k k
Gf = Z ]I{tj,tjfleffi}wi(th - thfl) —E Z I[{tj7tj71€Ti}1/}i(th - thfl)‘
=1 =1

The partition 7 = {0 < t§ < ... < ¥} can be chosen such that all end points of
the closed intervals T; belong to 7. Put

fk(Xtm e ,th) = H Gf
i=1

and notice that f, € C°°(R*¥+1). Let us choose functions 3, € C>°(R) such that
0 < B < 1and By, (x) =1 for |x| < m, the support of (3, is contained in {x;
|z] < m+ 2} and ||3),]|co < 1. Setting z_1 := 0 and

k
am(3307 [ 7xk) = H /Bm(xz - .'Ei_l),
=0

we have f(z)ay, (z) € C2°(R*¥+1). By dominated convergence one can show that
Dl,Q — n%g»noo fk(Xt()7 ceey th)am(Xtm ceey th) = fk(Xtoa . ,th).

Because the intervals (7;) are disjoint, it follows that the product rule holds in our
case:

n n
42 DI[GF=>GY...GF (DGHGE,...GF m®Pae.
=1 i=1
Indeed, because of Dt,fo = (Dme)]ITZ. (t) we have
2(Dy oGy )11, (1) (D o G5) 17, (1) =0 m @ P-ace.
for any ¢ # j. Equation (4.2) follows then by induction. Let
G; = Il(]ITi X (Pz)

We observe that G%,...,G% as well as GY,...,G¥_ |, DGF,GF, |, ... Gk are
mutually independent by construction. Hence to show Ly-convergence of these
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products it is enough to prove Lo-convergence for each factor. From Lemma 4.1
we obtain Gf — G;inDy g foralli =1,...,n, so that

Lo(m®P)— lim GY...GF (DGH)GE,,...GE

|7 |—0
=G1...Gi—1(DG;)Git1 ... Gy
Consequently, we have found a sequence (Fj) C S given by

Fk: = fk‘(Xtoa"')th)amk(Xtoa"' >th)7

where the my’s are chosen in a suitable way, that converges to expression (4.1) in
]D)l 2. N

COROLLARY 4.1. The set S of smooth random variables is dense in Lo, IDD(I)’2
and ID)‘II’Q.

Proof. The denseness in L is clear. To show that S is dense in ]D(i2 assume
F € DY, has the representation F' = %~ | I,(fn). Fora given e > 0 fix N such
that H YN In(fn)H]D)O < e.From F' € Ly we conclude
€ 1,2

Ne
FNe .= 3" L(fn) € Do
n=0

By Theorem 4.1 we can find a sequence (F) C S converging to FV= in D1 2, and
therefore also in IDD%Q. In the same way one can see that S is dense in ]D){Q. "

5. LIPSCHITZ FUNCTIONS OPERATE ON D 2
LEMMA 5.1. Assume that g : R — R is Lipschitz continuous with Lipschitz
constant L.
(a) Ifo > 0,then g(F) € DY, forall F € DY, and
(5.1) D;og(F) = GDioF  dt @ P-a.e.,

where G is a random variable which is a.s. bounded by L.
(b) Ifv # 0, then g(F) € DY , forall F € ]D){Q, where

9(F + Dy F) — g(F)
x

(5.2) Dyag(F) =

form ® P-a.e. (t,z,w) € Ry x Ry x Q.
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Proof. (a) We will adapt the proof of Proposition 1.2.4 in [8] to our sit-
uation. Corollary 4.1 implies that there exists a sequence (F},) C S of the form
Fy = fu(Xt,, ..., Xy,) which converges to F' in DY ,. Like in [8], we choose a
non-negative ¢ € C°(R) such that supp(¢) C [—1,1] and fR Y(x)dr =1 and
define the approximation of unity v, (x) := mi(mz). Then g,, := g * Py, is
smooth and converges uniformly to g as m — co. Moreover, || g/, ||co < Lq. Hence
9m(Fn) — gm(0) € S and (g,,(F,)) converges to g(F) in Ly. Moreover,

E f ‘Dt,Ogn(Fn)|2dt < Lg2] HFnH]%)(l) .
R4 :

Since (g, (Fy)) converges to g(F) in L and

sup llgn (Fn)3, < oo,
n s

Lemma 1.2.3 in [8] states that g(F) € D?’Q and that (D.,o gn(Fn)) converges to
D. o g(F) in the weak topology of L2 (€2; La(R4 x {0})). The obvious inequality
Elg, (F,)|? < Lg implies the existence of a subsequence (g, (Fy,)) ,, Which con-
verges to some G € Lo in the weak topology of Lo. One can show that |G| < Ly
a.s. Hence for any element o € Log (€2; La(R x {0})) we have

klim E [ g, (Fn.)(Deo By )e(t)dt = E(G [ (Dyo F)a(t)dt).
-0 R/, Ry

Consequently, D; o g(F') = GDioF dt @ P-a.e.

(b) Let (F,)n, € S be a sequence such that ]D){2 — lim F,, = F. Since the

expression

F+axD; . F)— g(F
Z(t,z) = 9( t; ) 9l )]IR+XRO(t,x)

isin Lo(m ® P), it is enough to show that the sequence (Dgn(Fn)]IR +XR0) con-
verges in Lo(m ® P) to Z, where (g,,) is the sequence constructed in (a). Choose
T > 0 and L > 0 large enough and § > 0 sufficiently small such that

lim sup E / |Z(t,2)* + | Dt agn(Fn)*dm(t, z) < e.
" (10,T)x{6<|x|<L})e

Then, for n > ng,

Z — Dgn(Fn)]IRJ,.XROH%Q(]m@P)

g(Fn + th,an) - g(Fn) 2

<e+2E i Z(t,x) —
x

[0,T]x{6<|z|<L}
+ 86 *Tu({s < |z < L})|lg — gnll%-

Hence we obtain (5.2) from the Lipschitz continuity of g and the uniform conver-
genceof g, t0g. m

dm(t, x)
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PROPOSITION 5.1. Let g : R — R be Lipschitz continuous. Then F' € D1 o
implies g(F') € D1 2, where Dg(F) is given by (5.1) and (5.2).

Proof. The assertion is an immediate consequence of Lemma 5.1 and the
equality (2.2). =

6. APPENDIX

Proof of Lemma 3.1. We denote by J,,(f,,) the multiple integral

f f fn((tl,xl),...,(tn,xn)) dM(tl,.%'l)...dM(tn,xn),
R4 xR [0,tn) xR [0,t2) xR

where for the definition of a stochastic integral with respect to M we refer to [1].
We have

6.1) Lu(fn) = 0V o (fn)-

Let us first prove on S a Clark—Ocone—Haussman type formula for the operator D.
By the Fourier inversion formula (see, for example, [1]) we infer for f € C2° (Rk)
that

f( Xy, Xy,) = ff( exp(2mZuJXt )du—ff e”“T)YT( )du,
R Jj=1

where (") = Eexp (27i Z?Zl(qutj/\t)) and

k
Yi(u) = exp (2mi Y uiXpae — n(u,t))  for 0 <t < T :=max{ty,..., 0}
j=1
We rewrite Y7 (u) by Itd’s formula using &(u, s) := 27i Z Tj,,)(s) and get

6.2) f(X4y,...,Xt,)

_ [ FwpereT
Rk
T
+ f f )e' “T)(‘Ostf(u)f(u, s) UdWS)du
+ f f(u)en “T)( i Y, (u) (%) — l)dN(s,w))du.

(O,T] XRo

It follows by Fubini’s theorem that

k
ff en(w) du—Eff Jexp (2mi 3° i Xy;) du = Ef(Xi, ..., Xy,).
j=1
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Now we deal with the second term on the right-hand side of (6.2). Using the fact
that the process (Y);c(o,r) is a square integrable martingale, we infer by the con-
ditional theorem of Fubini (see, e.g., [1]) and Fubini’s theorem for stochastic inte-
grals (see, e.g., [10]) that it can be written as

T
[E[ [ Yr(u)f(w)e™™De(u, s) du| Fy-]odW,.
0 Rk

Applying Theorem 8.22 (e) of [3] and the Fourier inversion formula we rewrite the
inner integral as follows:

fYT ) f ()¢ (u, s) du

k k
= 2 Tos(s f 2miu; f (u) exp (2mi Y u; Xy, )du
j=1 =1
Z [Otj] 8 ‘(th,...,th).
j=1 Ly

Similarly, one can write the last term on the right-hand side of (6.2) as
[ E[ [ fw)e™™Dyp(u)(e™ ™) — 1)du| F,-]dN (s, z),
(0,T]xRg Rk

where

[ Fw)e"™™ DY (u) (e ) — 1)du

o k k
= fkf(U)(exp [2mi 2 (X1, + 2T ,(5))] — exp (2 Zl“thj))d“

= f(th + a:]I[mtﬂ(s sy Xy x]I[O,tk}(S)) — f(th, e, th) .

Consequently, for F' = f(Xy,,..., X, ) € S the Clark—Ocone—Haussman type
formula holds true:

(6.3) F=EF+ [ E[D,F|F-]dM(t z).

R+ xR
Since Dy , f(Xy,, ..., Xy,) € Sforany (t,2) € Ry x R, iterating equation (6.3)
we obtain

f(thv"'ath) :Ef(thv"'vxtk)+ § JH(Ean(thv"'ath))v

n=1

where D™ := D ... D.
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Notice that ED" f(Xy,, ..., Xy, ) is a symmetric function on (R4 x R)™. The

relation (6.1) between the multiple and the iterated integral and equation (2.1) to-
gether with Dy, f(Xy,, ..., Xy,) € Lo(mm ® P) imply that

(1]
(2]
(3]
(4]
(5]
(6]
(7]

(8]
(9]

[10]

o
Diaf(Xeyy o, Xep) = Y. Joot (ED" 'Dypf (X4, ..., X))
n=1

= Dt,l“f(thv R 7th) m® P-ae =
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