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A SHARP CORRELATION INEQUALITY WITH APPLICATION
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Abstract. We prove a new sharp correlation inequality for sums of
i.i.d. square integrable lattice distributed random variables. We also apply it
to establish an almost sure version of the local limit theorem for i.i.d. square
integrable random variables taking values in an arbitrary lattice. This ex-
tends a recent similar result jointly obtained with Giuliano-Antonini under
a slightly stronger absolute moment assumption (of order 2+ u with u > 0).
The approach used to treat the case u > 0 breaks down when u = 0. Mac-
Donald’s concept of the Bernoulli part of a random variable is used in a
crucial way to remedy this.
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1. INTRODUCTION

Throughout this work, we are concerned with i.i.d. square integrable ran-
dom variables having lattice distribution. Let v0 and D > 0 be some reals and
let L(v0, D) be the lattice defined by the sequence vk = v0 + Dk, k ∈ Z. Con-
sider a random variable X such that P{X ∈ L(v0, D)} = 1. We assume that D
(the span of X) is maximal, i.e. there is no integer multiple D′ of D for which
P{X ∈ L(v0, D′)} = 1. We further assume

(1.1) EX and EX2 are finite.

Let µ = EX and σ2 = EX2 − (EX)2, which we assume to be positive (otherwise
X is degenerated). Under these assumptions, the local limit theorem holds. Let
{Xk, k ­ 1} be independent copies of X , and consider their partial sums Sn =

∗ The author thanks an anonymous referee for a very careful reading, and for having suggested
to use a finer local limit theorem for Rademacher sums. This allowed to slightly improve upon
Theorem 1.
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X1 + . . .+Xn, n ­ 1. To be precise, we have ([5], §43)

(1.2) lim
n→∞

sup
N=v0n+Dk

∣∣∣∣√nP{Sn = N} − D√
2πσ

exp

(
−(N − nµ)2

2nσ2

)∣∣∣∣ = 0.

Now, let κn ∈ L(nv0, D), n = 1, 2, . . ., be a sequence of reals satisfying

(1.3) lim
n→∞

κn − nµ√
n

= κ.

The central result of the paper is the following correlation inequality which we
believe to be hardly improvable.

THEOREM 1.1. Assume that

(1.4) P{X = k} ∧ P{X = k + 1} > 0 for some k ∈ Z.

Then there exists a constant C depending on the sequence {κn, n ­ 1} such that
for all 1 ¬ m < n

√
nm |P{Sn = κn, Sm = κm} − P{Sn = κn}P{Sm = κm}|

¬ C

{
1√

n/m− 1
+

n1/2

(n−m)3/2

}
.

COROLLARY 1.1. Let 0 < c < 1. Under the assumption (1.4), there exists a
constant Cc such that for all 1 ¬ m ¬ cn
√
nm |P{Sn = κn, Sm = κm} − P{Sn = κn}P{Sm = κm}| ¬ Cc

√
m/n.

REMARK 1.1. Condition (1.4) seems to be somehow artificial. It is, for in-
stance, clearly not satisfied if P{X ∈ N} = 1, where N = {νj , j ­ 1} is an in-
creasing sequence of integers such that νj+1− νj > 1 for all j. This already defines
a large class of examples. However, condition (1.4) is natural in our setting. By the
local limit theorem (1.2), under condition (1.3),

lim
n→∞

√
nP{Sn = ℓn} =

D√
2πσ

exp

(
− κ2

2σ2

)
(ℓn ≡ κn or ℓn ≡ κn + 1).

Then, for some nκ <∞, P{Sn = κn} ∧ P{Sn = κn + 1} > 0 if n ­ nκ. Chang-
ing X for X ′ = Snκ , we see that X ′ satisfies (1.4).

When X has a stronger integrability property, to be precise, if E|X|2+ε <∞
for some positive ε, we proved in [4] (Proposition 6) a similar result:

(1.5)
√
nm |P{Sn = κn, Sm = κm} − P{Sn = κn}P{Sm = κm}|

¬ C

(
1√

n/m− 1
+

√
n

n−m

1

(n−m)α

)
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with (here and below) α = ε/2. Condition (1.4) was not needed. The second in-
equality of Theorem 1.1 follows in that case directly from (1.5). The proof uses
crucially a local limit theorem with remainder term.

THEOREM 1.2 ([6], Theorem 4.5.3). Let F denote the distribution function
of X . In order that the property

(1.6) sup
N=an+dk

∣∣∣∣√nP{Sn = N} − d√
2πσ

exp

(
−(N − nµ)2

2nσ2

)∣∣∣∣
= O

(
n−α

)
, 0 < α < 1/2,

holds, it is necessary and sufficient that the following conditions be satisfied:
(i) d = D;

(ii) as u→∞,
∫
|x|­u x

2F (dx) = O(u−2α).

When ε = 0, this can obviously no longer be applied, and another approach
has to be implemented. Notice that even when ε > 0, our result is stronger than
inequality (1.5).

An application of Theorem 1.1 is given in Section 4. We obtain an almost sure
local limit theorem for i.i.d. square integrable lattice distributed random variables
taking values in arbitrary lattices. By proceeding as in [3] or [1], Theorem 1.1 can
be also used to prove much more, notably very general versions of the almost sure
local limit theorem where the partial sums are replaced by nonlinear functional,
typical examples are maxima of partial sums. This will be investigated elsewhere.

2. PRELIMINARY RESULTS

Here we follow an important approach due to MacDonald ([8], see also [9]).
Let 0 < ϑ < 1 be fixed. Put

f(k) = P{X = vk}, k ∈ Z.

We assume that there exists a sequence τ = {τk, k ∈ Z} of non-negative reals such
that

τk−1 + τk ¬ 2f(k), ∀k ∈ Z,
∑
k∈Z

τk = ϑ.

If we choose ϑ = ϑX =
∑

k∈Z f(k) ∧ f(k + 1), then this is realized with τk =
f(k) ∧ f(k + 1). Notice that ϑX < 1. Indeed, let k0 be some integer such that
f(k0) > 0. Then

∞∑
k=k0

f(k) ∧ f(k + 1) ¬
∞∑

k=k0

f(k + 1) =
∞∑

k=k0+1

f(k)

and, consequently,

ϑX ¬
∑
k<k0

f(k) +
∞∑

k=k0+1

f(k) < 1.
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Notice also that ϑX > 0. This follows from assumption (1.4), and is further
necessary in order to make this approach efficient. MacDonald’s construction ap-
plies to the slightly more general case we consider, and is even easier to present.
We define a pair of random variables (V, ε) as follows. For k ∈ Z,

(2.1)
P{(V, ε) = (vk, 1)} = τk,

P{(V, ε) = (vk, 0)} = f(k)− τk−1 + τk
2

.

This is well defined by assumption. Observe that

∑
k∈Z

[P{(V, ε) = (vk, 1)}+ P{(V, ε) = (vk, 0)}]

=
∑
k∈Z

f(k) +
1

2

∑
k∈Z

[τk − τk−1] = 1.

LEMMA 2.1. We have for k ∈ Z

P{V = vk} = f(k) +
τk − τk−1

2
,

and P{ε = 1} = 1− P{ε = 0} = ϑ.

P r o o f. Plainly,

P{V = vk} = P{(V, ε) = (vk, 1)}+ P{(V, ε) = (vk, 0)}

= f(k) +
1

2
[τk − τk−1].

Further
P{ε = 1} =

∑
k∈Z

P{(V, ε) = (vk, 1)} =
∑
k∈Z

τk = ϑ. �

LEMMA 2.2. Assume that L is a Bernoulli random variable (P{L = 0} =
P{L = 1} = 1/2) which is independent of (V, ε), and put Z = V + εDL.

We have Z
D
= X .

P r o o f. Indeed,

P{Z = vk} = P{V + εDL = vk, ε = 1}+ P{V + εDL = vk, ε = 0}

=
P{V = vk−1, ε = 1}+ P{V = vk, ε = 1}

2
+ P{V = vk, ε = 0}

=
τk−1 + τk

2
+ f(k)− τk−1 + τk

2
= f(k). �
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Now let {Xj , j ­ 1} be independent copies of X . According to the previ-
ous construction, we may associate with them a sequence {(Vj , εj , Lj), j ­ 1} of
independent copies of (V, ε, L) such that

{Vj + εjDLj , j ­ 1} D= {Xj , j ­ 1}.

Further {(Vj , εj), j ­ 1} and {Lj , j ­ 1} are independent sequences. Moreover,
{Lj , j ­ 1} is a sequence of independent Bernoulli random variables. Set

(2.2) Sn =
n∑

j=1

Xj , Wn =
n∑

j=1

Vj , Mn =
n∑

j=1

εjLj , Bn =
n∑

j=1

εj .

We notice that Mn is a sum of exactly Bn Bernoulli random variables. The
following lemma is now immediate.

LEMMA 2.3. We have the representation

{Sn, n ­ 1} D= {Wn +DMn, n ­ 1}.

Moreover, Mn
D
=
∑Bn

j=1 Lj .

We need an extra lemma.

LEMMA 2.4. Let 0 < θ ¬ ϑ. For any positive integer n, we have

P{Bn ¬ θn} ¬
(
1− ϑ

1− θ

)n(1−θ)(ϑ

θ

)nθ

.

Let 1− ϑ < ρ < 1. There exists 0 < θ < ϑ, θ = θ(ρ, ϑ), such that for any positive
integer n

P{Bn ¬ θn} ¬ ρn.

The proof is a simple exercise in large deviation bounds of Cramér–Chernoff
type, so we omit it.

We choose
ρ = 1− (ϑ/2),

and let 0 < θ < ϑ be such that, by the preceding lemma, P{Bn ¬ θn} ¬ ρn and
P{Bn −Bm ¬ θ(n−m)} ¬ ρn−m for all integers n > m ­ 1.

3. PROOF OF THEOREM 1.1

Let us put

(3.1) Yn =
√
n(1{Sn=κn} − P{Sn = κn}).
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We have to establish that there exists a constant C such that for all 1 ¬ m < n

(3.2) |EYnYm| ¬ C

{
1√

n/m− 1
+

n1/2

(n−m)3/2

}
and, given 0 < c < 1, that there exists a constant Cc such that for all 1 ¬ m ¬ cn

(3.3) |EYnYm| ¬ Cc

√
m

n
.

We denote by E(V,ε), P(V,ε) (resp. EL, PL) the expectation and probability sym-
bols relatively to the σ-algebra generated by the sequence {(Vj , εj), j = 1, . . . , n}
(resp. {Lj , j = 1, . . . , n}). We know that these algebras are independent. Let n >
m ­ 1. Then

(3.4) EYnYm =
√
mP{Sm = κm}

√
n(P{Sn−m = κn − κm} − P{Sn = κn}).

Further, when n = m, by (1.2) we have

(3.5) EY 2
n = nP{Sn = κn}(1− P{Sn = κn}) = O(

√
n).

Let

A :=
√
n(P{Sn − Sm = κn − κm} − P{Sn = κn})

=
√
nE(1{Bn¬nθ} + 1{Bn>nθ})(1{Sn−Sm=κn−κm} − 1{Sn=κn}).

By Lemma 2.4 we obtain
√
nE1{Bn¬nθ}|1{Sn−Sm=κn−κm} − 1{Sn=κn}| ¬

√
nρn.

Thus

(3.6) |A−
√
nE1{Bn>nθ}(1{Sn−Sm=κn−κm} − 1{Sn=κn})| ¬

√
nρn.

In view of Lemma 2.3 we can write

(3.7)
√
nE1{Bn>nθ}(1{Sn−Sm=κn−κm} − 1{Sn=κn})

=
√
nE(V,ε)1{Bn>nθ}

(
PL

{
D

n∑
j=m+1

εjLj = κn − κm − (Wn −Wm)
}

− PL
{
D

n∑
j=1

εjLj = κn −Wn

})
.

Observe that if Bn = Bm, then
∑n

j=1 εjLj =
∑m

j=1 εjLj . Thus

{
D

n∑
j=m+1

εjLj = κn − κm − (Wn −Wm)
}
=

{
Wn −Wm = κn − κm

}
.
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Consequently, (3.7) may be written as

(3.8)
√
n
{
E(V,ε)1{Bn>nθ,Bn=Bm}

(
1{Wn−Wm=κn−κm}

− PL
{
D

n∑
j=1

εjLj = κn −Wn

})}
+
√
n
{
E(V,ε)1{Bn>nθ,Bn>Bm}

[
PL

{
D

n∑
j=m+1

εjLj = κn − κm−

(Wn −Wm)
}
− PL

{
D

n∑
j=1

εjLj = κn −Wn

}]}
:= A′ +A′′.

We bound A′ as follows:

(3.9) |A′| ¬
√
nP

{
Bn = Bm} =

√
n 2−(n−m).

As to A′′, we have
∑n

j=1 εjLj
D
=
∑Bn

j=1 Lj ,
∑n

j=m+1 εjLj
D
=
∑Bn

j=Bm+1 Lj . We
now need a local limit theorem for Bernoulli sums. By applying Theorem 13 in
Chapter 7 of [10], we obtain

(3.10) sup
z

∣∣∣∣√N P
{ N∑

j=1

Lj = z
}
− 2√

2π
exp

(
−
(
z − (N/2)

)2
N/2

)∣∣∣∣ = o

(
1

N

)
.

Therefore∣∣∣∣PL{D Bn∑
j=1

Lj = κn −Wn

}
−

2 exp
{[
−

(
κn −Wn − (Bn/2)

)2]
/D2(Bn/2)

}
√
2πBn

∣∣∣∣ = o

(
1

B
3/2
n

)
.

Moreover, on the set {Bn > Bm} we have

∣∣∣∣PL{D Bn−Bm∑
j=1

Lj = κn − κm − (Wn −Wm)
}
−

2 exp
{[
−

(
κn − κm − (Wn −Wm)− (Bn −Bm)/2

)2]
/[D2(Bn −Bm)/2]

}√
2π(Bn −Bm)

∣∣∣∣
= o

(
1

(Bn −Bm)3/2

)
.
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It follows that
(3.11) |A′′| ¬

¬
√
n

∣∣∣∣E(V,ε)1{Bn>nθ,Bn>Bm}

{
2 exp

(
−
(
κn −Wn − (Bn/2)

)2
D2(Bn/2)

)
/
√

2πBn

− 2 exp

(
−
(
κn−κm−(Wn−Wm)−(Bn−Bm)/2

)2
D2(Bn −Bm)/2

)
/
√

2π(Bn −Bm)

}∣∣∣∣
+ C0

√
nE(V,ε)1{Bn>nθ,Bn>Bm}

{
1

B
3/2
n

+

(
1

(Bn −Bm)3/2

)}
:= A′′1 + C0A

′′
2.

Moreover, the constant C0 comes from the Landau symbol o in (3.10). The second
term is easily estimated. Indeed,

A′′2 =
√
nE(V,ε)1{Bn>nθ,Bn>Bm}

(
1

B
3/2
n

+
1

(Bn −Bm)3/2

)
¬ 2
√
nP{Bn −Bm ¬ (n−m)θ}

+
√
nE(V,ε)1{Bn−Bm>(n−m)θ}

(
1

(nθ)3/2
+

1

(Bn −Bm)3/2

)
¬ C
√
n

{
ρn−m +

1

(nθ)3/2
+

1(
(n−m)θ

)3/2}.

(3.12)

We now estimate A′′1 , which we bound as follows:

A′′1 ¬ C E(V,ε)1{Bn>nθ,Bn>Bm}

{(
n

Bn

)1/2[√ Bn

Bn −Bm
− 1

]
× exp

(
−
(
κn − κm − (Wn −Wm)− (Bn −Bm)/2

)2
D2(Bn −Bm)/2

)}
+ C E(V,ε)1{Bn>nθ,Bn>Bm}

{(
n

Bn

)1/2∣∣∣∣ exp(−
(
κn −Wn − (Bn/2)

)2
D2(Bn/2)

)
− exp

(
−
(
κn − κm − (Wn −Wm)− (Bn −Bm)/2

)2
D2(Bn −Bm)/2

)∣∣∣∣}
¬ Cθ

{
E(V,ε)1{Bn>nθ,Bn>Bm}

[√
Bn

Bn −Bm
− 1

]
+ E(V,ε)1{Bn>nθ,Bn>Bm}

∣∣∣∣ exp(−
(
κn −Wn − (Bn/2)

)2
D2(Bn/2)

)
− exp

(
−
(
κn − κm − (Wn −Wm)− (Bn −Bm)/2

)2
D2(Bn −Bm)/2

)∣∣∣∣}
:= Cθ

{
A′′11 +A′′12

}
.

(3.13)
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On the one hand, on the set {Bn > Bm} we have√
Bn

Bn −Bm
− 1 =

√
Bn −

√
Bn −Bm√

Bn −Bm
¬

√
Bm√

Bn −Bm
.

Thus

(3.14) A′′11 =

= E(V,ε)1{Bn>nθ,Bn>Bm}

[√
Bn

Bn −Bm
− 1

]
¬ E(V,ε)1{Bn>Bm}

√
Bm√

Bn −Bm

= E(V,ε)(1{Bn−Bm¬(n−m)θ} + 1{Bn−Bm>(n−m)θ})1{Bn>Bm}

√
Bm√

Bn −Bm

¬ Cθ

{
ρn−m +

1√
n/m− 1

}
¬ Cθ

{
ρn−m +

1√
n/m− 1

}
,

since
√
x−√y ¬

√
x− y if x ­ y ­ 0.

Now we turn to A′′12. Put κ′n = κn −Wn − (Bn/2). Then

A′′12 = E(V,ε)1{Bn>nθ,Bn>Bm}

∣∣∣∣ exp(−
(
κn −Wn − (Bn/2)

)2
D2(Bn/2)

)

− exp

(
−
(
κn − κm − (Wn −Wm)− (Bn −Bm)/2

)2
D2(Bn −Bm)/2

)∣∣∣∣
= E(V,ε)1{Bn>nθ,Bn>Bm}

∣∣∣∣ exp(− κ′n
2

D2(Bn/2)

)
−exp

(
− (κ′n−κ′m)2

D2(Bn−Bm)/2

)∣∣∣∣.
We have

(3.15) E(V,ε)

{
1{Bn>nθ,0<Bn−Bm¬θ(n−m)}

×
∣∣∣∣ exp(− κ′n

2

D2(Bn/2)

)
−exp

(
− (κ′n−κ′m)2

D2(Bn−Bm)/2

)∣∣∣∣}
¬ 2P{Bn −Bm ¬ θ(n−m)} ¬ 2ρn−m.

It remains to bound

E(V,ε)1{Bn>nθ,Bn−Bm>θ(n−m)}

∣∣∣∣ exp(− κ′n
2

D2(Bn/2)

)
− exp

(
− (κ′n−κ′m)2

D2(Bn−Bm)/2

)∣∣∣∣.
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Let bn = κ′n/
√
Bn. Using the inequality |e−u − e−v| ¬ |u− v| valid for all reals

u ­ 0, v ­ 0, we have

(3.16)
D2

2

∣∣∣∣ exp(− κ′n
2

D2(Bn/2)

)
− exp

(
− (κ′n − κ′m)2

D2(Bn −Bm)/2

)∣∣∣∣
¬

∣∣∣∣− (κ′n − κ′m)2

Bn −Bm
+

κ′n
2

Bn

∣∣∣∣ = ∣∣∣∣− (
√
Bnbn −

√
Bmbm)2

Bn −Bm
+ b2n

∣∣∣∣
=

∣∣∣∣−Bnb
2
n −Bmb2m + 2

√
BnBmbnbm +Bnb

2
n −Bmb2n

Bn −Bm

∣∣∣∣
=

∣∣∣∣−(bn − bm)2 + 2bmbn(
√

Bn/Bm − 1)

Bn/Bm − 1

∣∣∣∣
¬

2(b2n + b2m) + 2|bm||bn|(
√

Bn/Bm − 1)

Bn/Bm − 1
.

Hence

(3.17) E(V,ε)1{Bn>nθ,Bn−Bm>θ(n−m)}

×
∣∣∣∣ exp(− κ′n

2

D2(Bn/2)

)
− exp

(
− (κ′n − κ′m)2

D2(Bn −Bm)/2

)∣∣∣∣
¬ CE(V,ε)1{Bn>nθ,Bn−Bm>θ(n−m)}

{
b2n + b2m

Bn/Bm − 1
+

|bm||bn|√
Bn/Bm − 1

}
.

We notice that on the set {Bn > nθ,Bn −Bm > θ(n−m)} we have

1√
Bn/Bm − 1

=

√
Bm√

Bn −
√
Bm
¬
√
Bm(
√
Bn +

√
Bm)

θ(n−m)
.

We also observe that

ESm = E(V,ε)EL
(
Wm +D

m∑
j=1

εjLj

)
= E(V,ε)

(
Wm +

DBm

2

)
= mµ.

Thus Wm + (DBm/2)−mµ = Wm + (DBm/2)− E(V,ε)(Wm +DBm/2).
Besides,

|bj | =
∣∣κj − jµ−

(
Wj + (Bj/2)− jµ

)∣∣√
Bj

¬ C√
Bj

[
√

j + |S′j − E(V,ε)S
′
j |],
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where we have put S′n = Wm + (Bm/2). We have

|bn||bm|√
Bn/Bm − 1

¬ C√
BnBm

√
Bm(
√
Bn +

√
Bm)

θ(n−m)

× [
√
n+ |S′n − E(V,ε)S

′
n|][
√
m+ |S′m − E(V,ε)S

′
m|]

¬ C
√
m(
√
n+
√
m)

θ(n−m)

×
[
1 +
|S′n − E(V,ε)S

′
n|√

n

][
1 +
|S′m − E(V,ε)S

′
m|√

m

]
=

C

θ(
√

n/m− 1)

[
1+
|S′n − E(V,ε)S

′
n|√

n

][
1+
|S′m − E(V,ε)S

′
m|√

m

]
.

By the Cauchy–Schwarz inequality, we get

E(V,ε)

|S′n − E(V,ε)S
′
n|√

n

|S′m − E(V,ε)S
′
m|√

m

¬
[
E(V,ε)

|S′n − E(V,ε)S
′
n|2

n

]1/2[
E(V,ε)

|S′m − E(V,ε)S
′
m|2

m

]1/2
¬ C.

Moreover, we also have

E(V,ε)

|S′j − E(V,ε)S
′
j |√

j
¬

[
E(V,ε)

|S′j − E(V,ε)S
′
j |2

j

]1/2
¬ C.

Since

E(V,ε)
|bn||bm|√
Bn/Bm − 1

¬ Cθ√
n/m− 1

E(V,ε)

[
1 +
|S′n − E(V,ε)S

′
n|√

n

][
1 +
|S′m − E(V,ε)S

′
m|√

m

]
,

we deduce

(3.18) E(V,ε)
|bn||bm|√
Bn/Bm − 1

¬ Cθ√
n/m− 1

.

Now

|bn|2

Bn/Bm − 1
¬ C

Bn
[
√
n+ |S′n − E(V,ε)S

′
n|]2

Bm

Bn −Bm

¬ C
nBm

Bn(Bn −Bm)

[
1 +
|S′n − E(V,ε)S

′
n|√

n

]2
¬ C

θ2(n/m− 1)

[
1 +
|S′n − E(V,ε)S

′
n|√

n

]2
¬ Cθ√

n/m− 1

[
1 +
|S′n − E(V,ε)S

′
n|√

n

]2
.
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Therefore

(3.19) E(V,ε)1{Bn>nθ,Bn−Bm>θ(n−m)}
|bn|2

Bn/Bm − 1

¬ Cθ√
n/m− 1

E(V,ε)

[
1 +
|S′n − E(V,ε)S

′
n|√

n

]2
¬ Cθ√

n/m− 1

[
1 +

1

n
E(V,ε)|S′n − E(V,ε)S

′
n|2

]
¬ Cθ√

n/m− 1
.

Next |bm| ¬ (C/
√
Bm)[
√
m+ |S′m − E(V,ε)S

′
m|]. Thus

|bm|2

Bn/Bm − 1
¬ C

Bm
[
√
m+ |S′m − E(V,ε)S

′
m|]2

Bm

Bn −Bm

¬ C
m

θ(n−m)

[
1+
|S′m − E(V,ε)S

′
m|√

m

]2
¬ Cθ√

n/m− 1

[
1+
|S′m − E(V,ε)S

′
m|√

m

]2
.

Therefore

(3.20) E(V,ε)1{Bn>nθ,Bn−Bm>θ(n−m)}
|bm|2

Bn/Bm − 1

¬ Cθ√
n/m− 1

[
1 +

1

m
E(V,ε)|S′m − E(V,ε)S

′
m|2

]
¬ Cθ√

n/m− 1
.

Inserting the estimates (3.18), (3.19), (3.20) into (3.17), we get

(3.21) E(V,ε)1{Bn>nθ,Bn−Bm>θ(n−m)}

×
∣∣∣∣ exp(− κ′n

2

D2(Bn/2)

)
− exp

(
− (κ′n − κ′m)2

D2(Bn −Bm)/2

)∣∣∣∣ ¬ Cθ√
n/m− 1

.

This estimate along with (3.15) yields, in view of (3.13),

(3.22) A′′1 ¬ 2ρn−m +
Cθ√

n/m− 1
.

Moreover, using (3.11)–(3.14), we obtain

(3.23) |A′′| ¬ Cθ

{
ρn−m +

1√
n/m− 1

+
√
n

(
1

n3/2
+ ρn−m +

1

(n−m)3/2

)}
.
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Consequently, by (3.9) we have

(3.24) |A′|+ |A′′| ¬ Cθ

{
ρn−m +

1√
n/m− 1

+
√
n

(
1

n3/2
+ ρn−m + 2−(n−m) +

1

(n−m)3/2

)}
.

Finally, by (3.6),

(3.25) |A| ¬ Cθ

{
ρn−m +

1√
n/m− 1

+
√
n

(
1

n3/2
+ ρn−m + 2−(n−m) +

1

(n−m)3/2

)}
.

Moreover, using (3.4), we obtain

(3.26) |EYnYm|

¬ Cθ

{
ρn−m +

1√
n/m− 1

+
√
n

(
1

n3/2
+ ρn−m+ 2−(n−m) +

1

(n−m)3/2

)}

¬ Cθ

{
1√

n/m− 1
+

n1/2

(n−m)3/2

}
.

This proves (3.2).
Now, let 0 < c < 1. Let m ¬ cn. Then

1√
n/m− 1

¬ 1

1−
√
c

√
m

n
.

Further

√
n

(n−m)3/2
=

√
n

n−m

1

n−m
=

1

(1−m/n)3/2
1

n
¬ 1

(1− c)3/2
1

n
.

Incorporating these estimates into (3.20), we get

(3.27) |EYnYm| ¬ Cθ

√
m

n
.

This establishes (3.3). The proof is now complete. �
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4. APPLICATION

In this section, we deduce from Theorem 1.1 an almost sure local limit theo-
rem for i.i.d. square integrable random variables taking values in an arbitrary lattice
L(v0, D). In [2] (Sections 1 and 2), the notion of almost sure local limit theorem
is introduced by analogy with the usual almost sure central limit theorem:

“A stationary sequence of random variables {Xn, n ­ 1} taking values in R
or Z with partial sums Sn = X1 + . . . + Xn satisfies an almost sure local limit
theorem if there exist sequences {an, n ­ 1} in R and {bn, n ­ 1} in R+ satisfying
bn →∞, such that

(4.1) lim
N→∞

1

logN

N∑
n=1

bn
n
χ{Sn ∈ kn + I} a.s.

= g(κ)|I| as
kn − an

bn
→ κ,

where g denotes some density and I ⊂ R is some bounded interval. Further |I|
denotes the length of the interval I in the case where X1 is real valued and the
counting measure of I otherwise.”

In what follows, we restrict our consideration to the i.i.d. case. We assume that
P{X1 ∈ L(v0, D)} = 1, L(v0, D) ⊂ Z. We also assume that σ2 = EX2

1 <∞ and
let µ = EX1.

Let us first observe that even in this restricted case the above definition is
incomplete, since the span of X1 is missing. Indeed, let v0 = 0 for simplicity. As
g is a density, there are reals κ such that g(κ) ̸= 0. Clearly, if {kn, n ­ 1} is such
that

kn − an
bn

→ κ,

then any sequence {κn, n ­ 1}, κn = kn + un, where un are uniformly bounded,
also has this property. But we can arrange the un so that κn /∈ L(0, D) for all n.
Therefore P{Sn = κn} ≡ 0. If I = [−δ, δ] with δ < 1/2, then |I| = 1 and we
see that, no matter the sequences {an, n ­ 1} and {bn, n ­ 1} are, property (4.1)
cannot hold for the sequence {κn, n ­ 1}, since

lim
N→∞

1

logN

N∑
n=1

bn
n
χ{Sn ∈ kn + I} a.s.

= 0 ̸= g(κ)|I|.

It thus appears necessary (also when v0 is arbitrary) to complete the above defini-
tion by introducing the additional requirement:

(4.2) κn ∈ L(nv0, D), n = 1, 2, . . .

Then kn+ I ⊂ L(nv0, D) if and only if I ⊂ L(0, D). It is also necessary to change
|I| for #{I ∩ L(0, D)}. Then (4.1) is modified as follows:

(4.3)

lim
N→∞

1

logN

N∑
n=1

bn
n
χ{Sn ∈ kn + I} a.s.

= g(κ)#{I ∩ L(0, D)} as
kn − an

bn
→ κ,
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where I is a bounded interval. This is coherent with the local limit theorem which
relies upon the three parameters: µ, σ and the (maximal) span of X1. It is obvious,
by invoking a simple additivity argument, that (4.3) holds for any bounded interval
I if and only if

(4.4) lim
N→∞

1

logN

N∑
n=1

bn
n
χ{Sn = kn}

a.s.
= g(κ) as

kn − an
bn

→ κ.

As mentioned by the authors in [2], p. 146, the existence of almost sure local
limit theorems is of fundamental interest. A recent application to a problem of
representation of integers is given in [12]. It seems reasonable to expect many
other applications. By (1.2), the local limit theorem holds, and if κn ∈ L(nv0, D)
is a sequence which satisfies condition (1.3), namely

lim
n→∞

κn − nµ√
n

= κ,

then

(4.5) lim
n→∞

√
nP{Sn = κn} =

D√
2πσ

exp

(
− κ2

2σ2

)
.

We deduce from Theorem 1.1 an almost sure local limit theorem for i.i.d.
square integrable random variables taking values in an arbitrary lattice L(v0, D).

THEOREM 4.1. Let X be a square integrable lattice distributed random vari-
able with maximal span D. Let µ = EX, σ2 = EX2 − (EX)2. Let also {Xk,
k ­ 1} be independent copies of X, and put Sn = X1 + . . .+Xn, n ­ 1. Then

lim
N→∞

1

logN

∑
n¬N

1√
n
1{Sn=κn}

a.s.
=

D√
2πσ

exp

(
− κ2

2σ2

)

for any sequence of integers {κn, n ­ 1} such that (1.3) holds.

REMARK 4.1. In [2], Corollary 2 (see also pp. 148–149), the authors show that
“the almost sure local limit theorem holds for i.i.d. sequences of square integrable
Z-valued random variables, that is:

lim
N→∞

1

logN

∑
n¬N

1√
n
1{Sn=κn}

a.s.
=

1√
2πσ

exp

(
− κ2

2σ2

)
if
kn − nµ√

n
→ κ.”

By the remarks made before (4.1), this statement needs a correction. The proof
is sketched as follows. Let ϕ denote the characteristic function of X . By the Fourier
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inversion formula, P{Sn = k} =
∫ 1

0
e−2iπktϕn(t)dt. Thus

√
nmP{Sn = kn, Sm = km} =

√
nmP{Sm = km}P{Sn − Sm = kn − km}

=
√
nm

1∫
0

exp(−2iπkmt)ϕm(t)dt
1∫
0

exp
(
−2iπ(kn − km)t

)
ϕn−m(t)dt

=

√
n

n−m

√
m∫
0

exp

(
−2iπ km√

m
u

)
ϕm

(
u√
m

)
du

×
√
n−m∫
0

exp

(
−2iπ

(
kn − km√
n−m

)
u

)
ϕn−m

(
v√

n−m

)
dv.

By the central limit theorem,

lim
m→∞

ϕm

(
u√
m

)
=

exp(−κ2/2)√
2π

, lim
n−m→∞

ϕn−m
(

v√
n−m

)
=

exp(−κ2/2)√
2π

.

Next, it is claimed that it implies that

√
nmP{Sn = kn, Sm = km} →

√
n/(n−m)

1

2π
exp(−κ2).

We presume that this should rather be

√
nmP{Sn = kn, Sm = km} →

1

2π
exp(−κ2).

However, we have not been able to check this. From our main result, we only get

lim
n,m→∞
n/m→∞

√
nm |P{Sn = κn, Sm = κm} − P{Sn = κn}P{Sm = κm}| = 0.

The authors argue that the proof could be continued as in the Bernoulli case where a
theorem of Mori is invoked. This requires to have at disposal a correlation bound.
For having tried to apply Mori’s result with our correlation inequality in Theo-
rem 1.1, we could only treat subsequences n = nk with nk=1/nk ­

√
2. We

believe that the proof needs some complementary explanations.

The notion of quasi-orthogonal system is used in the proof of Theorem 4.1.
We recall it briefly. A sequence f = {fn, n ­ 1} in a Hilbert space H is called
(see [7] or [11], p. 22) a quasi-orthogonal system if the quadratic form on ℓ2 defined
by {xh, h ­ 1} 7→ ∥

∑
h xhfh∥

2 is bounded. A necessary and sufficient condition
for f to be quasi-orthogonal is that the series

∑
cnfn converges in H for any

sequence {cn, n ­ 1} such that
∑

c2n < ∞. This follows from the fact that f is
quasi-orthogonal if and only if there exists a constant L depending on f only, such
that ∥∥ ∑

i¬n
xifi

∥∥ ¬ L
( ∑
i¬n
|xi|2

)1/2
.



A sharp correlation inequality 95

Further, as observed in [7]: “Every theorem on orthogonal systems whose
proof depends only on Bessel’s inequality holds for quasi-orthogonal systems.”
In particular, for H = L2(X,A, µ), (X,A, µ) a probability space, Rademacher–
Menchov’s theorem applies. We recall it (see [11], p. 363, for instance).

LEMMA 4.1. Let {fn, n ­ 1} ⊂ H be an orthogonal sequence. The series∑
cnfn converges almost everywhere provided that

∑
c2n log

2 n <∞.

P r o o f. We first give the proof under the additional assumption (1.4). Next
we establish the result without this one. Assume thus, at first, that assumption (1.4)
is fulfilled; the proof is then identical to the one of Theorem 1 in [4]. Put for any
positive integer j

Zj =
∑

2j¬n<2j+1

Yn
n
.

By (1.2), we have

EY 2
n = nP{Sn = κn}(1− P{Sn = κn}) = O(

√
n).

This and the second inequality of Theorem 1.1 imply that {Zj , j ­ 1} is a quasi-
orthogonal system. As the Rademacher–Menchov theorem applies to quasi-ortho-
gonal systems, the series ∑

j

Zj

j1/2(log j)b

thus converges almost surely if b > 3/2. By Kronecker’s lemma we have

1

N1/2(logN)b

N∑
j=1

Zj =
1

N1/2(logN)b
∑

1¬n<2N+1

Yn
n
→ 0

as N tends to infinity, almost surely. It is then a routine calculation to derive from
this that

lim
t→∞

1

log t

∑
n¬t

1√
n
1{Sn=κn}

a.s.
= g(κ).

Now we pass to the general case. By Remark 1.1, we may “change” X for
X ′ = Snκ . But this is not so simple as it looks, some extra work is necessary in or-
der to make this step precise. Let X ′1, X

′
2, . . . be independent copies of X ′, which

we assume to be also independent of the sequence X1, X2, . . . , and put similarly
S′m = X ′1 + . . . + X ′m, m ­ 1. Let us observe first that, given 0 ¬ a < nκ, the
sequence {Sa+mnκ ,m ­ 1} has the same law as the sequence {Sa + S′m,m ­ 1}.
It is indeed immediate if we write that Sa+mnκ = Sa + (Sa+nκ − Sa) + . . . +
(Sa+mnκ − Sa+(m−1)nκ

) (and not Sa+mnκ = Snκ + . . .+ (Smnκ − S(m−1)nκ
) +
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(Sa+mnκ − Smnκ)!). Like this, we are thus preliminarily led to consider the se-
quence {Sa + S′m,m ­ 1}. But this one is a bit outside from our framework and
we have to understand more the role played by the additional independent term Sa.
Let κn ∈ L(nv0, D), n = 1, 2, . . ., be a sequence of integers such that

lim
n→∞

κn − nµ√
n

= κ.

Then, for any 0 ¬ a < nκ,

lim
m→∞

κa+mnκ − (a+mnκ)µ√
m

= κ
√
nκ.

Further, not only

lim
m→∞

κa+mnκ −mnκµ√
m

= κ
√
nκ,

but also, for any 0 ¬ a < nκ,

lim
m→∞

κa+mnκ − Sa −mnκµ√
m

a.s.
= κ
√
nκ.

Noticing that {S′m,m ­ 1} has the same law as {Smnκ ,m ­ 1}, next applying
(1.2) to X and specifying it for the subsequence {mnκ,m ­ 1}, we get
(4.6)

lim
m→∞

sup
N=v0mnκ+Dk

∣∣∣∣√mP{S′m = N}− D

σ
√
2πnκ

exp

(
−(N −mnκµ)

2

2mnκσ2

)∣∣∣∣ = 0.

Let κ̃m = κa+mnκ − Sa, 0 ¬ a < nκ being fixed. Since

κa+mnκ ∈ L
(
(a+mnκ)v0, D

)
, Sa ∈ L(av0, D),

we have κ̃m ∈ L(mnκv0, D). Thus,

lim
m→∞

√
mnκ P{S′m = κ̃m}

a.s.
= lim

m→∞

D

σ
√
2π

exp

(
−(κ̃m −mnκµ)

2

2mσ2

)
a.s.
=

D

σ
√
2π

exp

(
− κ2

2σ2

)
.

Instead of considering Ym =
√
m(1{S′m=κm} − P{S′m = κm}), we rather work

with
Y ′m =

√
mnκ(1{S′m=κm} − P{S′m = κm}).

This amounts to the same, apart from the constant factor
√
nκ. By the first step,

(4.7) lim
N→∞

1

logN

N∑
m=1

Y ′m
m

a.s.
= 0.
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Thus

lim
N→∞

1

logN

N∑
m=1

(√
mnκ

m
1{S′m=κm−Sa} −

√
mnκ P{S′m = κm − Sa}

m

)
a.s.
= 0.

But

lim
N→∞

1

logN

N∑
m=1

√
mnκ P{S′m = κm − Sa}

m

a.s.
=

D

σ
√
2π

exp

(
− κ2

2σ2

)
.

Therefore,

lim
N→∞

1

logN

N∑
m=1

√
mnκ

m
1{Sa+S′m=κm}

a.s.
=

D

σ
√
2π

exp

(
− κ2

2σ2

)
.

We deduce that

lim
N→∞

1

logN

∑
m¬N

√
mnκ

m
1{Sa+mnκ=κa+mnκ}

a.s.
=

D

σ
√
2π

exp

(
− κ2

2σ2

)
.

Now divide both sides by nκ. We get

lim
N→∞

1

logN

∑
m¬N

1
√
mnκ

1{Sa+mnκ=κa+mnκ}
a.s.
=

D

nκσ
√
2π

exp

(
− κ2

2σ2

)
.

But this in turn also implies

lim
N→∞

1

logN

∑
m¬N

1√
a+mnκ

1{Sa+mnκ=κa+mnκ}
a.s.
=

D

nκσ
√
2π

exp

(
− κ2

2σ2

)
.

Now logN ∼ log(N + 1)nκ, and by summing the latter over 0 ¬ a < nκ, we get

lim
N→∞

1

log(N + 1)nκ

∑
0¬a<nκ

∑
m¬N

1√
a+mnκ

1{Sa+mnκ=κm}

= lim
N→∞

1

log(N + 1)nκ

∑
n¬(N+1)nκ

1√
n
1{Sn=κn}

a.s.
=

D

σ
√
2π

exp

(
− κ2

2σ2

)
.

Hence Theorem 4.1 is proved. �
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