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KIEFER’S LAW OF THE ITERATED LOGARITHM
FOR THE VECTOR OF UPPER ORDER STATISTICS

BY
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Abstract. Let {Xn} be a sequence of independent identically dis-
tributed random variables with a common continuous distribution function
and let Mj,n denote the jth upper order statistic among X1, X2, . . . , Xn,
n ­ j. For a large class of distributions, we obtain the law of the iterated
logarithm for

{
M1,n,M2,n

}
, properly normalized. As a consequence, we

establish a law of the iterated logarithm for the spacings
{
M1,n −M2,n

}
.
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1. INTRODUCTION

Let {Xn} be a sequence of independent identically distributed (i.i.d.) random
variables (r.v.s) defined over a common probability space (Ω,F, P ). Suppose that
the common distribution function (d.f.) F is continuous. Denote the right extrem-
ity of F by r(F ) and note that r(F ) =∞ if F (x) < 1 for all x real. On the same
space, define a sequence {Un} of uniform (0, 1) r.v.s. Let Mj,n stand for the jth
largest observation among (X1, X2, . . . , Xn) and M∗j,n for the jth largest obser-
vation among (U1, U2, . . . , Un), 1 ¬ j ¬ n, n ­ 1. Then Mj,n is called the jth
upper order statistic among X1, X2, . . . , Xn, and M∗j,n the jth upper order statis-
tic of U1, U2, . . . , Un.

Kiefer [8] has established a law of the iterated logarithm (l.i.l.) for the or-
der statistics, which gives a precise almost sure (a.s.) upper bound for {M∗j,n}.
Barndorff-Nielsen [1] has obtained an l.i.l. for {M∗1,n}, which in turn gives an a.s.
lower bound. From the results in [1] one can easily obtain a similar l.i.l. for {M∗j,n},
j > 1. Under certain conditions on the d.f. F , which are in spirit close to von Mises
type conditions, de Haan and Hordijk [6] have established l.i.l. for {M1,n}. For the
setup of [6], the set of a.s. limit points has been given in [5]. Hall [7] has extended
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Kiefer’s l.i.l. to a class of distributions, which includes exponential, normal, Gum-
bel and so on. To be precise, Hall [7] has considered the class of d.f.s F with
− logF (x) regularly varying, as x→∞, where F (x) = 1− F (x). Vasudeva and
Savitha [11] have given the l.i.l. for {M1,n}, assuming that F (x) is regularly vary-
ing, as x→∞. In this paper, we obtain the a.s. limit set of

{
M1,n,M2,n

}
properly

normalized, which extends the results in [7], [8] and [11]. Also, for a class of d.f.s
with r(F ) <∞, we give the l.i.l. for

{
M1,n,M2,n

}
. As a corollary, we obtain the

l.i.l. for the spacing {M1,n −M2,n}. One may note that Devroye [3] has estab-
lished an l.i.l. for the maximum of spacings between consecutive order statistics in
the uniform case.

In the next section, we present the l.i.l. results that are established in this paper
along with some remarks. Section 3 contains some lemmas and their proofs for{
M∗1,n,M

∗
2,n

}
. The proofs of all the theorems presented in Section 2 are given in

a separate section at the end.
Throughout the paper, for any positive x, [x] stands for the greatest integer

less than or equal to x. We assume also that c and k (integer), with or without a
suffix, denote positive constants. A point (θ1, θ2) of real components will be called
an a.s. limit point of a random sequence

{
Zn

}
=

{
Z1,n, Z2,n

}
, n ­ 1, if for any

given ϵ1 , ϵ2 > 0,

P
(
Zn ∈ (θ1 − ϵ1 , θ1 + ϵ1)× (θ2 − ϵ2 , θ2 + ϵ2) i.o.

)
= 1.

2. MAIN RESULTS

In this section, we present l.i.l. for
{
M1,n,M2,n

}
, properly normalized, for

d.f.s F which belong to three major classes in extreme value theory, denoted for
convenience by C1, C2 and C3. The class C1 is that of all F with− logF (x) reg-
ularly varying, as x→∞. This class contains the Gumbel d.f. and the exponential
and normal distributions which belong to the domain of attraction of Gumbel law.
Further, by [9], p. 1102, one may note that all d.f.s with − logF regularly varying
with index γ, 0 < γ < 1, belong to the domain of attraction of a Gumbel law. The
class C2 is that of d.f.s with F (x) regularly varying, as x→∞. It is well known
that C2 is the class of all d.f.s which belong to the domain of attraction of Fréchet
law (see, for example, [4]). C3 is the class of all d.f.s F (with finite right extremity)
belonging to the domain of attraction of a Weibull law.

2.1. Law of the iterated logarithm when F ∈ C1. Let U(x) = − logF (x)
and suppose that it has a unique inverse V (x). Assuming that V (x) satisfies the
condition

(2.1) lim
x→∞

V
(
x
(
1 + a(x)

)
− V (x)

)
a(x)V (x)

=
1

γ
,

where γ > 0 is some constant and a(x) is a real-valued function with a(x)→ 0 as
x→∞, Hall [7] has extended the Kiefer’s l.i.l. (to this class). He also notes that



Kiefer’s law of the iterated logarithm 333

all d.f.s F with − logF (x) regularly varying (as x→∞) belong to this class. To
be precise, for d.f.s F satisfying (2.1) he has established the following

THEOREM A (Hall [7]). Let Mr,n denote the rth upper order statistic. Then

(2.2) lim sup
n→∞

γ log n

log log n

(
Mr,n

V (log n)
− 1

)
=

1

r
a.s.

Our theorem below generalizes Theorem A. Let

Wj,n =
γ logn

log logn

(
Mj,n

V (log n)
− 1

)
, j = 1, 2.

Then we have the following

THEOREM 2.1. The set of all a.s. limit points of {Wn} = {W1,n,W2,n} is
given by

L =
{
(x, y) : 0 ¬ x ¬ 1, 0 ¬ y ¬ 1/2, y ¬ x, x+ y ¬ 1

}
.

REMARK 2.1. In particular, for unit exponential and Gumbel d.f.s, one can
see that γ = 1 and V (log n) = logn. As such, Theorem 2.1 establishes that the set
of all a.s. limit points of {

M1,n − log n

log log n
,
M2,n − log n

log log n

}
is L.

When F is standard normal, γ is 2 and V (log n) =
√
2 log n, n ­ 1. Hence

the set of a.s. limit points of{√
2 log n(M1,n −

√
2 log n)

log log n
,

√
2 log n(M2,n −

√
2 log n)

log log n

}
is L.

As a corollary to Theorem 2.1, one can get the l.i.l. for {M1,n −M2,n}, as
given below.

COROLLARY 2.1. Let

ηn =
γ log n

log log n

M1,n −M2,n

V (log n)
, n ­ 3.

Then
lim inf
n→∞

ηn = 0 a.s., lim sup
n→∞

ηn = 1 a.s.

and all points in (0, 1) are a.s. limit points of
{
ηn

}
.



334 R. Vasudeva and A. Y. Moridani

2.2. Law of the iterated logarithm when F ∈ C2. Here, we assume that F (x)
is regularly varying with index (−α), α > 0. Let Bn be a solution of the equa-
tion n

(
1 − F (Bn)

)
= 1, n ­ 1. It is well known that (B−1n M1,n) converges to a

Fréchet law with parameter α. We have the following laws of the iterated loga-
rithm.

THEOREM 2.2. For any r ­ 1,

lim sup
n→∞

(
Mr,n

Bn

)1/log logn

= e1/(rα) a.s.,(2.3)

lim inf
n→∞

(
Mr,n

Bn

)1/log logn

= 1 a.s.(2.4)

REMARK 2.2. For {Xn} a sequence of i.i.d. symmetric stable r.v.s with index
α, Chover [2] has established an l.i.l. for the partial sum sequence

{
Sn

}
, by taking

(log log n)−1 in the power, as in the statement of Theorem 2.2. When F is symmet-
ric stable, it is well known that F (x) is regularly varying and, as a consequence,
F belongs to the domain of attraction of Fréchet law. As such, Theorem 2.2 holds
when F is symmetric stable. Hence the l.i.l. in Theorem 2.2 will be called Chover’s
form of the l.i.l. for extreme order statistics.

In order to obtain the l.i.l. for the sequence
{
M1,n,M2,n

}
, we define ξi,n =

(Mi,n/Bn)
1/log logn, i = 1, 2, and {ξn} =

{
ξ1,n, ξ2,n

}
, n ­ 3. Then we have the

following

THEOREM 2.3. The set of all a.s. limit points of {ξn} is

L1 = {(x, y) : 1 ¬ x ¬ e1/α, 1 ¬ y ¬ e1/(2α), y ¬ x, xy ¬ e1/α}.

REMARK 2.3. Let F be a Pareto d.f. with 1 − F (x) = 1/xα if x ­ 1 and
1− F (x) = 1 if x < 1, α > 0. Here Bn = n1/α. Hence

ξn =

((
M1,n

n1/α

)1/log logn

,

(
M2,n

n1/α

)1/log logn)
, n ­ 3,

has the a.s. limit set L1.

The following corollary gives the l.i.l. for the spacing {M1,n −M2,n}.

COROLLARY 2.2. Let

η̂n =

(
M1,n −M2,n

Bn

)1/log log n

, n ­ 3.

Then
lim inf
n→∞

η̂n = 1, lim sup
n→∞

η̂n = e1/α

and all points in (1, e1/α) are a.s. limit points of
{
η̂n

}
.
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2.3. Law of the iterated logarithm when F ∈ C3. Here we consider d.f.s F
with r(F ) finite and further assume that F belongs to the domain of attraction of
a Weibull law. Let {Xn} be a sequence of i.i.d. r.v.s with d.f. F and with the jth
upper order statistics Mj,n, j = 1, 2. Define

Yn =
1

r(F )−Xn
, n ­ 1,

and let M̂j,n denote the jth upper order statistics of Y1, Y2, . . . , Yn, j = 1, 2, n ­ 2.
Then the relation

M̂j,n =
1

r(F )−Mj,n
, j = 1, 2,

is immediate. It is well known that if
{
Mj,n

}
, properly normalized, converges to

a Weibull law with parameter α, then
{
M̂j,n

}
, properly normalized, converges

to a Fréchet law with the same parameter α, α > 0. We now have the following
theorem:

THEOREM 2.4. Let F belong to the domain of attraction of a Weibull law with
parameter α. Then the set of all a.s. limit points of{(

Bn

(
r(F )−M1,n

))1/log log n
,
(
Bn

(
r(F )−M2,n

))1/log log n}
is L2 = {(x, y) : e−1/α ¬ x ¬ 1, e−1/(2α) ¬ y ¬ 1, x ¬ y, xy ­ e−1/α}, where
Bn is a solution of the equation n

(
1− F

(
r(F )− 1/Bn

))
= 1.

COROLLARY 2.3. Let ζn =
{(
Bn(M1,n −M2,n)

)1/log log n}
, n ­ 3. Then

lim inf
n→∞

ζn = e−1/(2α), lim sup
n→∞

ζn = 1

and all points in (e−1/(2α), 1) are a.s. limit points of
{
ζn
}

.

REMARK 2.4. Suppose that F is uniform (0, 1). Then r(F ) = 1. One can see
that Bn = n. Theorem 2.4 implies that the a.s. limit set of{(

n(1−M1,n)
)1/log log n

,
(
n(1−M2,n)

)1/log logn}
is {(x, y) : e−1 ¬ x ¬ 1, e−1/2 ¬ y ¬ 1, x ¬ y, xy ­ e−1}. Also, the above corol-
lary shows that

(
n(M1,n −M2,n)

)1/log log n has an a.s. limit set (e−1/2, 1).

3. LEMMAS WITH PROOFS

In this section, we confine ourselves to a sequence {Un} of i.i.d. uniform
(0, 1) r.v.s with M∗r,n denoting the rth upper order statistic and prove some lemmas
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needed in establishing the limit theorems presented in the previous section. How-
ever, the last lemma in this section is on slowly varying (s.v.) function, needed in
proving Theorem 2.3. Define

Tr,n = −
(
log(1−M∗r,n) + log n

log log n

)
, r ­ 1, n ­ 3.

LEMMA 3.1. For any r ­ 1,

lim sup
n→∞

Tr,n =
1

r
a.s. and lim inf

n→∞
Tr,n = 0 a.s.

P r o o f. Let m∗r,n denote the rth lower extreme among U1, U2, . . . , Un. Then,
by Theorem 6 of [8], we have

lim sup
n→∞

logm∗r,n + log n

log log n
= 0 a.s.,(3.1)

lim inf
n→∞

logm∗r,n + log n

log log n
= −1

r
a.s.(3.2)

Since Un is uniform (0, 1), so is 1−Un and one can see that M∗r,n of U1, U2, . . . , Un

and m∗r,n of 1 − U1, 1 − U2, . . . , 1 − Un are related by m∗r,n = 1 −M∗r,n, r ­ 1.
By (3.1) and (3.2), the proof is immediate. �

From the above lemma one can see that the a.s. limit set of {T1,n, T2,n} is
included in the rectangle [0, 1]× [0, 12 ]. Further, M∗1,n ­M∗2,n implies that T1,n ­
T2,n, n ­ 1. Consequently, the limit set of {T1,n, T2,n} is contained in the set S ={
(x, y) : 0 ¬ x ¬ 1, 0 ¬ y ¬ 1

2 , x ­ y
}

. The following lemmas show that the
limit set is a subset of S.

LEMMA 3.2. Given any point (x, y) ∈ S with x + y > 1, one can find an
ϵ > 0 with x+ y − 2ϵ > 1 such that

(3.3) P (T1,n > x− ϵ, T2,n > y − ϵ i.o.) = 0.

P r o o f. Define

An = (T1,n > x− ϵ, T2,n > y − ϵ)

=

(
M∗1,n > 1− 1

n(log n)x−ϵ
,M∗2,n > 1− 1

n(log n)y−ϵ

)
.

For nk = [ek], define

α1,k = 1− 1

nk(log nk)x−ϵ
, α2,k = 1− 1

nk(log nk)y−ϵ
,
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Bk = (M∗1,n > α1,k,M
∗
2,n > α2,k; for at least one n in nk < n ¬ nk+1)

and
Ck = (M∗1,nk+1

> α1,k,M
∗
2,nk+1

> α2,k).

Observe that (An i.o.) ⊆ (Bk i.o.) = (Ck i.o.). Hence the lemma is established,
once we show that P (Ck i.o.) = 0. We have

P (Ck) = nk+1(nk+1 − 1)
1∫

α1,k

z1∫
α2,k

z
nk+1−2
2 dz2dz1

= 1− α
nk+1

1,k −
nk+1

nk(log nk)x−ϵ
α
nk+1−1
2,k .

Expanding both α
nk+1

1,k and α
nk+1−1
2,k up to second order, one can find a k1 > 0 such

that for all k ­ k1

P (Ck) ¬
2e

(log nk)x+y−2ϵ .

Recalling that x + y − 2ϵ > 1, one can see that
∑

k P (Ck) < ∞. The Borel–
Cantelli lemma implies that P (Ck i.o.) = 0, which completes the proof. �

LEMMA 3.3. For any point (x, y) ∈ S with x+ y < 1 and for any constants
ϵ, ϵ′ with 0 < ϵ < ϵ′ < 1,

P (T1,mk
> x− ϵ, T2,mk

> y − ϵ i.o.) = 1,(3.4)

P (T1,mk
> x− ϵ, T2,mk

> y + ϵ′ i.o.) = 0,(3.5)

P (T1,mk
> x+ ϵ′, T2,mk

> y − ϵ i.o.) = 0,(3.6)

where mk = [exp(k1/(x+y))], k ­ 1.

P r o o f. In order to establish (3.4), define

M ′1,mk
= max(Xmk−1+1, Xmk−1+2, . . . , Xmk

),

M ′2,mk
= second max(Xmk−1+1, Xmk−1+2, . . . , Xmk

)

and

T ′j,mk
= −

(
log (1−M ′j,mk

) + logmk

log logmk

)
, j = 1, 2.

Note that Mj,mk
­ M ′j,mk

, which in turn implies that Tj,mk
­ T ′j,mk

, j = 1, 2.
Consequently,

(T1,mk
> x− ϵ, T2,mk

> y − ϵ) ⊇ (T ′1,mk
> x− ϵ, T ′2,mk

> y − ϵ).
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In order to prove (3.4), it is enough to show that

P (T ′1,mk
> x− ϵ, T ′2,mk

> y − ϵ i.o.) = 1.

The condition x+y<1 implies mk/mk−1→∞, and hence (mk−mk−1)/mk→1
as k →∞. Define

β1,k = 1− 1

mk(logmk)x−ϵ
and β2,k = 1− 1

mk(logmk)y−ϵ
, k ­ 2.

Then

P (T ′1,mk
> x− ϵ, T ′2,mk

> y − ϵ) = P (M ′1,mk
> β1,k,M

′
2,mk

> β2,k)

=
1∫

β1,k

z1∫
β2,k

(mk −mk−1)(mk −mk−1 − 1)z
mk−mk−1−2
2 dz2dz1

= 1− β
mk−mk−1

1,k − mk −mk−1
mk(logmk)x−ϵ

β
mk−mk−1−1
2,k .

Again, by expanding β
mk−mk−1

1,k and β
mk−mk−1−1
2,k up to second order, one can find

a k2 > 0 and c1 > 0 such that for all k ­ k2,

P (T ′1,mk
> x− ϵ, T ′2,mk

> y − ϵ) ­ 1

2(logmk)x+y−2ϵ

=
c1

k(1−δ)
, where δ =

2ϵ

x+ y
.

Consequently,
∑

k P (T ′1,mk
> x − ϵ, T ′2,mk

> y − ϵ) = ∞. From the fact that
{M ′1,mk

,M ′2,mk
} is a mutually independent sequence of r.v.s one can immediately

see that {T ′1,mk
, T ′2,mk

} is a mutually independent sequence. By the Borel–Cantelli
lemma, (3.4) follows.

In order to establish (3.5), recall that

β1,k = 1− 1

mk(logmk)x−ϵ

and define
γ2,k = 1− 1

mk(logmk)y+ϵ′
, k ­ 1.

Then

P (T1,mk
> x− ϵ, T2,mk

> y + ϵ′) = P
(
M1,mk

> β1,k,M2,mk
> γ2,k

)
=

1∫
β1,k

z1∫
γ2,k

mk(mk − 1)zmk−2
2 dz2dz1.
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Proceeding on the lines of arguments used in getting a bound for P (Ck) in Lem-
ma 3.2, one can find a c2 > 0 and a k3 > 0 such that for all k ­ k3,

P (T1,mk
> x− ϵ, T2,mk

> y + ϵ′) ¬ c2

k(1+δ1)
, where δ1 =

ϵ′ − ϵ

x+ y
.

From the choice of ϵ′ > ϵ > 0 we get δ1 > 0. By the Borel–Cantelli lemma,
(3.5) follows. The assertion (3.6) can be established similarly and the details are
omitted. �

The next lemma is a property of slowly varying (s.v.) functions, which is
needed in obtaining l.i.l. for F ∈ C2.

LEMMA 3.4. Let L(x) be a function s.v. at ∞ and let (xn) and (yn) be se-
quences of positive constants tending to∞ as n→∞. Then for any σ > 0,

lim
n→∞

y−σn

L(xnyn)

L(xn)
= 0 and lim

n→∞
yσn

L(xnyn)

L(xn)
=∞.

For the proof see [10].

4. PROOFS OF THEOREMS

In this section, we give the proofs of all the theorems and corollaries stated in
Section 2.

P r o o f o f T h e o r e m 2.1. Recall that

Wj,n =
γ logn

log logn

(
Mj,n

V (log n)
− 1

)
, j = 1, 2.

Since M1,n ­ M2,n, we have W1,n ­ W2,n. Given that X1, X2, . . . , Xn are i.i.d.
with a common d.f. F ∈ C1, observe that F (X1), F (X2), . . . , F (Xn) are i.i.d.
with a common d.f., uniform over (0, 1). By putting Uj = F (Xj), j = 1, 2, . . . , n,
one can see that M∗j,n = F (Mj,n), j = 1, 2. First we show that the limit set of
{Wn} is contained in S = {(x, y) : 0 ¬ x ¬ 1, 0 ¬ y ¬ 1

2 , y ¬ x}. Using Lem-
ma 3.1, we have for any ϵ > 0

(4.1) P

(
Tr,n >

1 + ϵ

r
i.o.

)
= 0,

and

(4.2) P (Tr,n < −ϵ i.o.) = 0.
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Observe that(
Tr,n >

1 + ϵ

r

)
=

(
− log(1−M∗r,n) > log n+

1 + ϵ

r
log logn

)
=

(
− log

(
1− F (Mr,n)

)
> log n+

1 + ϵ

r
log log n

)
=

(
U(Mr,n) > log n

(
1 +

1 + ϵ

r

log log n

log n

))
=

(
Mr,n > V

(
log n

(
1 +

1 + ϵ

r

log log n

logn

)))
=

(
Mr,n − V (log n) > V

(
log n

(
1 +

1 + ϵ

r

log log n

log n

))
− V (log n)

)
.

Consequently, from (2.1) (by putting an = [(1 + ϵ) log log n]/[r log n]) we have

P

(
Tr,n >

1 + ϵ

r
i.o.

)
= P

(
Mr,n − V (log n) >

V (log n)

γ

(1 + ϵ) log log n

r(log n)
i.o.

)
= P

(
γ log n

log log n

(
Mr,n

V (log n)
− 1

)
>

1 + ϵ

r
i.o.

)
= P

(
Wr,n >

1 + ϵ

r
i.o.

)
.

From (4.1) we get

(4.3) P

(
Wr,n >

1 + ϵ

r
i.o.

)
= 0.

Similarly, for any given ϵ > 0,

(Tr,n < −ϵ) =
(
− log

(
1− F (Mr,n)

)
< log n− ϵ log log n

)
=

(
U(Mr,n) < log n

(
1 +
−ϵ log log n

log n

))
=

(
Mr,n < V

(
log n

(
1 +
−ϵ log log n

log n

)))
.

In (2.1), taking an = (−ϵ log logn)/log n and proceeding on lines similar to those
used in obtaining (4.3), one can show that

P (Tr,n < −ϵ i.o.) = P

(
γ log n

log log n

(
Mr,n

V (log n)
− 1

)
< −ϵ i.o.

)
.

Consequently, from (4.2) we have

(4.4) P (Wr,n < −ϵ i.o.) = 0.
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Note that M1,n ­M2,n implies W1,n ­W2,n. From (4.3), (4.4) and the inequality
W1,n ­ W2,n we infer that the set of a.s. limit points of {Wn} is contained in the
set S = {(x, y) : 0 ¬ x ¬ 1, 0 ¬ y ¬ 1

2 , y ¬ x}.
The remaining proof consists of two parts. In part 1, we show that points

(x, y) ∈ S − L fail to be a.s. limit points of {Wn} and in part 2 we establish that
each (x, y) ∈ L is an a.s. limit point, and hence complete the proof.

P a r t 1. (x, y) ∈ S − L. For any point (x, y) ∈ S − L note that x ­ y with
x + y > 1. Choose ϵ > 0 such that x + y − 2ϵ > 1. For such a point (x, y), by
Lemma 3.2 we get

(4.5) P (T1,n ­ x− ϵ, T2,n ­ y − ϵ i.o.) = 0.

Proceeding on the lines of arguments used in establishing (4.3) from (4.1), one can
show that

P (T1,n ­ x− ϵ, T2,n ­ y − ϵ i.o.) = P (W1,n ­ x− ϵ,W2,n ­ y − ϵ i.o.).

Consequently, (4.5) implies that points (x, y) ∈ S −L fail to be a.s. limit points of
{Wn}.

P a r t 2. We now show that all points (x, y) ∈ L with x+ y < 1 are a.s. limit
points of {W1,n,W2,n}. Define mk = [exp k1/(x+y)], k ­ 1. For any constants,
ϵ and ϵ′ > 0 with ϵ′ > ϵ, we show that

(4.6) P
(
{W1,mk

,W2,mk
} ∈ (x− ϵ, x+ ϵ′)× (y − ϵ, y + ϵ′) i.o.

)
= 1

and complete the proof. Note that (4.6) follows, once we show that

P (W1,mk
> x− ϵ,W2,mk

> y − ϵ i.o.) = 1,(4.7)

P (W1,mk
> x− ϵ,W2,mk

> y + ϵ′ i.o.) = 0,(4.8)

P (W1,mk
> x+ ϵ′,W2,mk

> y − ϵ i.o.) = 0.(4.9)

Proceeding as in part 1, one can show that

P (W1,mk
> x− ϵ,W2,mk

> y − ϵ i.o.) = P (T1,mk
> x− ϵ, T2,mk

> y − ϵ i.o.),

P (W1,mk
> x− ϵ,W2,mk

> y + ϵ′ i.o.) = P (T1,mk
> x− ϵ, T2,mk

> y + ϵ′ i.o.),

P (W1,mk
> x+ ϵ′,W2,mk

> y − ϵ i.o.) = P (T1,mk
> x+ ϵ′, T2,mk

> y − ϵ i.o.).

Therefore, (4.7), (4.8) and (4.9) follow from Lemma 3.3, which in turn establishes
(4.6). Points (x, y) ∈ L with x + y = 1, being the boundary points, will be a.s.
limit points of {W1,n,W2,n}. �

We now obtain an l.i.l. for {M1,n −M2,n} for F ∈ C1.
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P r o o f o f C o r o l l a r y 2.1. Recall that

ηn =
γ logn

log log n

M1,n −M2,n

V (log n)
, n ­ 3.

From (4.6) observe that for any (x, y) ∈ L with x+ y < 1 and for ϵ′ > ϵ > 0,

(4.10) P
(
{W1,n,W2,n} ∈ (x− ϵ, x+ ϵ′)× (y − ϵ, y + ϵ′) i.o.

)
= 1.

Assume that (x, y) ∈ L with x > y and for such a point suppose that ϵ′, ϵ > 0
satisfy the further condition x− ϵ > y + ϵ′. Then from (4.10) one can see that

P

(
γ log n

log log n

M1,n −M2,n

V (log n)
∈ (x− y − ϵ− ϵ′, x− y + ϵ+ ϵ′) i.o.

)
= 1,

which in turn implies that for each (x, y) ∈ L with x > y the point (x − y) is an
a.s. limit point of {ηn}. For x and y close to each other, one may see that (x− y)
will be close to zero. Also, for x close to one and y close to zero, one can note
that (x − y) is close to one. Similarly, by choice of (x, y) one can get any point
θ = (x− y) ∈ (0, 1). Thus the proof is complete. �

The next two theorems are for F ∈ C2. We assume that there exists an α > 0
such that F (x) is regularly varying with exponent (−α), as x → ∞. One may
recall that F belongs to the domain of attraction of a Fréchet law if and only if
F (x) is regularly varying, as x→∞.

P r o o f o f T h e o r e m 2.2. Given that {Xn} is an i.i.d. sequence with a
d.f. F , we know that {Un = F (Xn)} is a sequence of i.i.d. uniform (0, 1) r.v.s and
that M∗r,n = F (Mr,n), r ­ 1. By Lemma 3.1, for any given ϵ ∈ (0, 1) we have

P

(
Tr,n >

1 + ϵ

r
i.o.

)
= 0,(4.11)

P

(
Tr,n >

1− ϵ

r
i.o.

)
= 1,(4.12)

where

Tr,n = −
log(1−M∗r,n) + log n

log logn
, r ­ 1.

For any c > 0, observe that(
Tr,n >

c

r

)
=

(
log(1−M∗r,n) < − log n− c log log n

r

)
=

(
1− F (Mr,n) <

1

n(log n)c/r

)
.
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Let U1(x) = 1− F (X) and V1(·) be its inverse. Then(
Tr,n >

c

r

)
=

(
U1(Mr,n) >

1

n(log n)c/r

)
=

(
Mr,n > V1

(
1

n(log n)c/r

))
.

Let U1(x)=x−αL(x) with L an s.v. function, as x→∞. Then V1=x−1/αl(x−1),
where l is an s.v. function (for details, see [10]). Hence

(4.13) P

(
Tr,n >

c

r
i.o.

)
= P

(
Mr,n > n1/α(log n)c/(rα)l

(
n(log n)c/r

)
i.o.

)
.

By Lemma 3.4, taking xn = n, yn = (log n)c/r with c = 1 + ϵ, one can show that
for n large, l

(
n(log n)(1+ϵ)/r

)
< (log n)ϵ/(rα)l(n) by choosing δ = ϵ/

(
(1 + ϵ)α

)
.

Consequently, from (4.13) one can infer that

(4.14) P

(
Tr,n >

1 + ϵ

r
i.o.

)
­ P

(
Mr,n > n1/αl(n)(logn)(1+2ϵ)/(rα) i.o.

)
.

Since F belongs to the domain of attraction of a Fréchet law, {M1,n/Bn} con-
verges to a Fréchet r.v., where Bn is a solution of the equation n

(
1− F (Bn)

)
= 1.

Also, it is well known that Bn = n1/αl(n). From (4.14) we get

P

(
Tr,n >

1 + ϵ

r
i.o.

)
­ P

(
Mr,n > Bn(log n)

(1+2ϵ)/(rα) i.o.
)
.

Now (4.11) implies that

(4.15) P

((
Mr,n

Bn

)1/log logn

> e(1+2ϵ)/(rα) i.o.
)

= 0.

Similarly, by Lemma 3.4, taking xn = n, yn = (log n)c/r with c = 1 − ϵ, one
can show that for n large, l

(
n(log n)(1−ϵ)/r

)
> (log n)−ϵ/(µα)l(x). Consequently,

from (4.13) we get

P

(
Tr,n >

1− ϵ

r
i.o.

)
= P

(
Mr,n > Bn(log n)

(1−2ϵ)/(rα) i.o.
)
.

Now (4.12) implies that

(4.16) P
(
Mr,n > Bn(log n)

(1−2ϵ)/(rα) i.o.
)
= 1 or

P

((
Mr,n

Bn

)1/log logn

> e(1−2ϵ)/(rα) i.o.
)

= 1.

In view of (4.15) and (4.16) the proof of (2.3) is complete. In order to prove (2.4),
one can proceed on similar lines and show that lim infn→∞ Tr,n = 0 a.s. Then
Lemma 3.1 implies the required result. �
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P r o o f o f T h e o r e m 2.3. From Theorem 2.2 we can readily see that the
a.s. limit set of {ξn} is included in

[
1, e1/α

]
×

[
1, e1/(2α)

]
. Further, since M1,n ­

M2,n, one can see that ξ1,n ­ ξ2,n. Hence the limit set is included in

S1 = {(x, y) : 1 ¬ x ¬ e1/α, 1 ¬ y ¬ e1/(2α), y ¬ x}.

We now proceed to show that the a.s. limit set is

L1 = {(x, y) : 1 ¬ x ¬ e1/α, 1 ¬ y ¬ e1/(2α), y ¬ x, xy ¬ e1/α}.

First we show that (x, y) ∈ S1 − L1 fail to be a.s. limit points. Put x = ea/α, y =
eb/α, 0 < a < 1, 0 < b < 1

2 . The condition xy ¬ e1/α is equivalent to a+ b ¬ 1.
Hence for (x, y) ∈ S1 − L1 one will have a + b > 1. Choose ϵ > 0 such that
a+ b− 2ϵ > 1. In order to show that (x, y) ∈ S1 − L1 is not a limit point of {ξn}
one need establish that

P
(
ξ1,n > e(a−ϵ)/α, ξ2,n > e(b−ϵ)/α i.o.

)
= 0

or, equivalently, that when 0 < a < 1, 0 < b < 1
2 with a+ b > 1,

(4.17) P
(
M1,n > Bn(log n)

(a−ϵ)/α,M2,n > Bn(log n)
(b−ϵ)/α i.o.

)
= 0.

Arguing as in (4.13), one can show that

P
(
M1,n > Bn(log n)

(a−ϵ)/α,M2,n > Bn(log n)
(b−ϵ)/α i.o.

)
¬ P (T1,n > x− δ, T2,n > y − δ i.o.),

where x = ea/α, y = eb/α and δ > 0 is such that x+ y − 2δ > 1. By Lemma 3.2,
(4.17) is immediate.

A point (x = ea/α, y = eb/α) ∈ L1 will be an a.s. limit point of {ξn} if for
any ϵ, ϵ′ > 0 with ϵ′ > ϵ,

(4.18) P
(
ξ1,n ∈ (e(a−ϵ)/α, e(a+ϵ′)/α), ξ2,n ∈ (e(b−ϵ)/α, e(b+ϵ′)/α) i.o.

)
= 1.

We now establish that any point (x, y) ∈ L1 with a + b < 1 will be an a.s. limit
point of {ξn}. Note that (4.18) holds whenever

P
(
ξ1,n > e(a−ϵ)/α, ξ2,n > e(b−ϵ)/α i.o.

)
= 1,

P
(
ξ1,n > e(a−ϵ)/α, ξ2,n > e(b+ϵ′)/α i.o.

)
= 0,

P
(
ξ1,n > e(a+ϵ′)/α, ξ2,n > e(b−ϵ)/α i.o.

)
= 0

or, equivalently, if

P
(
M1,n > Bn(log n)

(a−ϵ)/α,M2,n > Bn(log n)
(b−ϵ)/α i.o.

)
= 1,(4.19)

P
(
M1,n > Bn(log n)

(a−ϵ)/α,M2,n > Bn(log n)
(b+ϵ′)/α i.o.

)
= 0,(4.20)

P
(
M1,n > Bn(log n)

(a+ϵ′)/α,M2,n > Bn(log n)
(b−ϵ)/α i.o.

)
= 0.(4.21)
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The equalities (4.19)–(4.21) can be established by proceeding on the lines of the
proof of Theorem 2.1 and the details are omitted. Points (x, y) ∈ L1 with xy =
e1/α (or a+ b = 1) are limit points of {ξn}, being boundary points of L1. �

P r o o f o f C o r o l l a r y 2.3. Using Theorem 2.3 and proceeding as in the
proof of Corollary 2.1 one can establish the corollary. �

The following results are for F ∈ C3. Note that such distribution functions
belong to the domain of attraction of a Weibull law.

P r o o f o f T h e o r e m 2.4. For F ∈ C3, note that r(F ) <∞. Let M̂j,n =(
r(F )−Mj,n

)−1, j = 1, 2, and let Bn be a solution of the equation

n

(
1− F

(
r(F )− 1

Bn

))
= 1.

Then it is known that {M̂1,n/Bn} converges in distribution to a Fréchet law (see
Galambos [4]). Hence by Theorem 2.3 the sequence{(

M̂1,n

Bn

)1/log logn

,

(
M̂2,n

Bn

)1/log log n}
has L1 as the set of its a.s. limit points. In other words, the sequence{(

Bn

(
r(F )−M1,n

))−1/log log n
,
(
Bn

(
r(F )−M2,n

))−1/log log n}
has L1 as the set of its a.s. limit points. Consequently, the a.s. limit set of

τn =
{(

Bn

(
r(F )−M1,n

))1/log logn
,
(
Bn

(
r(F )−M2,n

))1/log logn}
is L2 = {(x, y) : e−1/α ¬ x ¬ 1, e−1/(2α) ¬ y ¬ 1, x ¬ y, xy ­ e−1/α}. �

P r o o f o f C o r o l l a r y 2.3. Assume that (x = e−a/α, y = e−b/(2α)) is a
point with x ¬ y and xy ­ e−1/α. Then from Theorem 2.4 we know that (x, y) is
an a.s. limit point of {τn}. Consequently, for any ϵ > 0,

P

(
1

(log n)(a+ϵ)/α
¬ Bn

(
r(F )−M1,n

)
¬ 1

(log n)(a−ϵ)/α
,

1

(log n)(b+ϵ)/(2α)
¬ Bn

(
r(F )−M2,n

)
¬ 1

(log n)(b−ϵ)/(2α)
i.o.

)
= 1,
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which in turn implies that

(4.22) P

(
1

(log n)(b+ϵ)/(2α)
− 1

(log n)(a−ϵ)/α
¬ Bn

(
M1,n −M2,n

)
¬ 1

(log n)(b−ϵ)/(2α)
− 1

(log n)(a+ϵ)/α
i.o.

)
= 1.

Consider an arbitrary point (x, y) ∈ L2 with x < y or a > b/2 and choose ϵ > 0
such that a− ϵ > (b+ ϵ)/2. Then one can see that as n→∞,

1

(log n)(b+ϵ)/(2α)
− 1

(log n)(a−ϵ)/α
v 1

(log n)(b+ϵ)/(2α)

and
1

(log n)(b−ϵ)/(2α)
− 1

(log n)(a+ϵ)/α
v 1

(log n)(b−ϵ)/(2α)
.

Now from (4.22) it follows that

P

(
1

(log n)(b+ϵ)/(2α)
¬ Bn(M1,n −M2,n) ¬

1

(log n)(b−ϵ)/(2α)
i.o.

)
= 1

or

P
(
e−(b+ϵ)/(2α) ¬

(
Bn(M1,n −M2,n)

)1/log logn ¬ e−(b−ϵ)/(2α) i.o.
)
= 1.

Hence, we have shown that any point e−b/(2α) with 0 < b < 1 is an a.s. limit point
of {ζn}. Consequently, lim infn→∞ ζn = e−1/(2α) a.s. and lim supn→∞ ζn = 1
a.s. and that all points in (e−1/(2α), 1) are a.s. limit points of {ζn}. �
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