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Abstract. We study average case approximation of Euler and Wiener
integrated processes of d variables which are almost surely rk-times contin-
uously differentiable with respect to the k-th variable and 0 ¬ rk ¬ rk+1.
Let n(ε, d) denote the minimal number of continuous linear functionals
which is needed to find an algorithm that uses n such functionals and whose
average case error improves the average case error of the zero algorithm by
a factor ε. Strong polynomial tractability means that there are nonnegative
numbers C and p such that

n(ε, d) ¬ Cε
−p for all d ∈ IN = {1, 2, . . . }, and ε ∈ (0, 1).

We prove that the Wiener process is much more difficult to approximate
than the Euler process. Namely, strong polynomial tractability holds for the
Euler case iff

lim inf
k→∞

rk

ln k
>

1

2 ln 3
,

whereas it holds for the Wiener case iff

lim inf
k→∞

rk

ks
> 0 for some s > 1

2 .

Other types of tractability are also studied.
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1. INTRODUCTION

Tractability of multivariate problems has been recently an active research area.
The reader may see the current progress on tractability in [10]–[12]. Tractability
has been studied in various settings and for various error criteria.

This field deals with problems defined on spaces of d-variate functions. For
many practical computational problems d is large. This holds for problems in math-
ematical finance, statistics and physics. We usually want to solve multivariate prob-
lems to within an error threshold ε by algorithms that use finitely many function
values or, more generally, finitely many continuous linear functionals. Let n(ε, d)
be the information complexity or, shortly, the complexity, denoting the minimal
number of function values or continuous linear functionals that are needed to find
an algorithm approximating the solution of a multivariate problem to within ε.

Many multivariate problems suffer from the curse of dimensionality. That is,
n(ε, d) is exponentially large in d. One of the goals of tractability is to determine
under which conditions the curse of dimensionality is not present. Even more, we
would like to have the complexity bounded by some non-exponential function of d
and ε−1. In particular, we have

• weak tractability if the complexity is not exponential in d or ε−1,
• quasi-polynomial tractability if the complexity is of order

exp
(
t (1 + ln d)(1 + ln ε−1)

)
,

• polynomial tractability if the complexity is of order d q ε−p,
• strong polynomial tractability if the complexity is of order ε−p.
All bounds above hold for all d and all ε ∈ (0, 1) with the parameters t, q, p

and the factors multiplying the corresponding complexity bounds independent of
d and ε−1.

Strong polynomial tractability is the most challenging property. If this holds,
then the complexity has a bound independent of d. One may think that this property
may hold only for trivial problems. Luckily, the opposite is true.

The curse of dimensionality often holds for multivariate problems for which
all variables and groups of variables play the same role. One way to vanquish
the curse is to shrink the class of functions by introducing weights that monitor
the influence of successive variables and groups of variables. For sufficiently fast
decaying weights we not only vanquish the curse but even obtain strong polynomial
tractability; a survey of such results may be found in [10]–[12].

Another way to vanquish the curse is by increasing the smoothness of func-
tions with respect to successive variables. This approach was taken recently in [13].
It was done for multivariate approximation defined over Korobov spaces in the
worst case setting. The current paper can be viewed as a continuation of [13]. We
consider multivariate approximation but now in the average case setting with the
normalized error criterion. This error criterion is defined as follows. We first take
the zero algorithm and find its average case error for multivariate approximation;
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this is called the initial error. The initial error tells us how the problem scales and
what can be achieved without sampling the functions. The normalized error cri-
terion means that we want to improve the initial error by a factor ε. We analyze
algorithms that use arbitrary continuous linear functionals. We stress that the same
results hold for algorithms that use only function values. This is due to general rela-
tions between these two classes of algorithms established in [5] and in Chapter 24
of [12].

In this paper we analyze two multivariate approximation problems defined
for the Euler and Wiener integrated processes, whereas in [7] we consider average
case approximation for general non-homogeneous tensor products. More precisely,
here we take the space of continuous real functions defined on the d-dimensional
unit cube [0, 1]d as a basic space but measure the approximation error in L2-norm.
We stress that d can be an arbitrary positive integer, however, our emphasis is on
large d. We equip this space with a zero-mean Gaussian measure whose covariance
kernel is denoted by Kd. We study two such kernels. The first one is Kd = KE

d for
the Euler integrated process, whereas the second one Kd = KW

d is for the Wiener
integrated process. These processes are precisely defined in the next section. Here
we only mention that for both of them we know that almost surely the functions
are rk times continuously differentiable with respect to the k-th variable for k =
1, 2, . . . , d.

The information complexity is then denoted by nE(ε, d) and nW(ε, d) for the
Euler and Wiener integrated processes, respectively. Obviously, it depends on the
smoothness parameters {rk}. Our main goal in this paper is to find necessary and
sufficient conditions in terms of {rk} such that the four notions of tractability are
satisfied.

We now briefly describe the results obtained in this paper. For both processes
we prove that weak tractability holds iff limk→∞ rk =∞.

Otherwise, if r = limk→∞ rk <∞, then we have the curse of dimensionality.
This means that if all rk ¬ r < ∞, then both nE(ε, d) and nW(ε, d) depend ex-
ponentially on d and this holds for all ε ∈ (0, 1). Hence, the function nx(·, d) is
discontinuous at one. Indeed, nx(1, d) = 0 although for ε pathologically close to
one nx(ε, d) depends exponentially on d; here x ∈ {E,W}.

We stress that weak tractability does not depend on the rate of convergence of
rk to infinity. However, if we want to obtain other types of tractability, we must
require a certain convergence rate for the rk, although the rate is different for the
Euler and the Wiener case. For simplicity, let us consider

rk = ⌈1 + a ln(1 + k ln k)⌉

for some positive number a. Then for the Euler case we have:
• a < 1/(2 ln 3), no quasi-polynomial tractability;
• a = 1/(2 ln 3), quasi-polynomial tractability but no polynomial tractability;
• a > 1/(2 ln 3), strong polynomial tractability.
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For the Wiener case we have to assume much more since for rk given above
only weak tractability holds. For

rk =
⌈
ks ln2(1 + k)

⌉
we have

• s < 1
2 , no quasi-polynomial tractability;

• s = 1
2 , quasi-polynomial tractability but no polynomial tractability;

• s > 1
2 , strong polynomial tractability.

For general {rk}, we prove that quasi-polynomial tractability holds iff
for the Euler case:

lim sup
d→∞

1

ln d

d∑
k=1

(1 + rk) 3
−2rk <∞;

for the Wiener case:

lim sup
d→∞

1

ln d

d∑
k=1

(1 + rk)
−2 max(1, ln rk) <∞.

Furthermore, for both processes polynomial tractability is equivalent to strong
polynomial tractability and holds iff

for the Euler case:

aE := lim inf
d→∞

rk
ln k

>
1

2 ln 3
;

for the Wiener case:

lim inf
d→∞

rk
ks

> 0 for some s > 1
2 .

We also study the exponent p str−avg−x of strong polynomial tractability which
is defined as the infimum of p for which the complexity is of order ε−p. For the
Euler case we have

p str−avg−E = max

(
2

2r1 + 1
,

2

2aE ln 3− 1

)
.

For the Wiener case and rk = ks for some s > 1
2 we have

max

(
2

2r1 + 1
,

2

2s− 1

)
¬ p str−avg−W ¬ max

(
2

2s− 1
, 3

)
.

Hence, for s ∈
(
1
2 ,

5
6

]
we know that

p str−avg−W =
2

2s− 1
;

otherwise, our bounds are too weak to provide the exact value of the exponent.
Our results solve a special case of Open Problem 11 in [10], where rd,k = rk,

k = 1, . . . , d, and, with slightly modified proofs, they also solve Open Problem 10
in [10].
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The Euler, Wiener and other univariate integrated processes can be character-
ized as follows. Consider

Xα(t) := (−1)α1+...+αr

t∫
αr

tr−1∫
αr−1

. . .
t1∫
α1

W (s) dsdt1 . . . dtr−1︸ ︷︷ ︸
r times

, 0 ¬ t ¬ 1,

where α = (α1, α2, . . . , αr) is a multi-index with components αi ∈ {0, 1} for
i = 1, 2, . . . , r, W (s) is the standard Wiener process for 0 ¬ s ¬ 1, and r ∈ IN.
Then X(0,...,0) is the integrated Wiener process and X(1,0,1,0,1,... ) is the integrated
Euler process. It is an open problem to consider the integrated processes resulting
from different values of the multi-index α and to compare the necessary and suf-
ficient conditions on {rk} for weak, quasi-polynomial and polynomial tractability,
respectively, with those obtained for the Euler and Wiener processes. In particular,
it seems to be of interest to verify whether the Euler process is the easiest and the
Wiener process is the most difficult among all of these 2r processes.

The paper is organized as follows. In Section 2 we present the precise defini-
tions of the average case approximation problem, the Euler and Wiener integrated
processes and tractability notions. In Section 3 we present results for the Euler and
in Section 4 for the Wiener integrated processes. The proofs of three theorems are
presented in Sections 5–7.

2. PRELIMINARIES

In this section we precisely define the Euler and Wiener processes, multivari-
ate approximation in the average case setting, and we cite known results that will
be needed for our analysis.

2.1. Euler and Wiener processes. Let Fd = C([0, 1]d) be the space of real
continuous functions defined on [0, 1]d with the max norm,

∥f∥Fd
= max

x∈[0,1]d
|f(x)| for all f ∈ Fd.

We equip the space Fd with a zero-mean Gaussian measure µd defined on Borel
sets of Fd. The covariance kernel Kd related to µd is defined by

Kd(x, t) =
∫
Fd

f(x) f(t)µd(df) for all x, t ∈ [0, 1]d.

We refer to [6] for extensive theory of Gaussian measures in linear spaces and their
covariance kernels.

By {rk} we mean a sequence of nonnegative non-decreasing integers

0 ¬ r1 ¬ r2 ¬ . . . ¬ rd ¬ . . .
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The Euler and Wiener integrated processes differ in the choice of the covariance
kernel Kd. Our presentation of the Euler integrated processes is based on [1]
and [3]. The Wiener integrated process is more standard and can be found in many
books and papers.

• Euler integrated process. We now have Kd = KE
d given by

KE
d(x, y) =

d∏
k=1

KE
1,rk

(xk, yk) for all x, y ∈ [0, 1]d,

where

KE
1,r(x, y) =

∫
[0,1]r

min(x, s1) min(s1, s2) . . . min(sr, y) ds1 ds2 . . . dsr

for all x, y ∈ [0, 1]. This kernel is equal to

KE
1,r(x, y) = (−1)r+1 22r

(2r + 1)!

(
E2r+1

(
1
2 |x− y|

)
− E2r+1

(
1
2(x+ y)

))
for all x, y ∈ [0, 1]. Here, En is the n-th degree Euler polynomial which can be
defined as the coefficient of the generating function

2 exp(x t)

exp(x) + 1
=
∞∑
n=0

En(x)
tn

n!
for all x, t ∈ R.

In particular, we have E0 = 1, E1(x) = x− 1
2 and E2(x) = x2 − x.

The process is called Euler due to the fact that the covariance kernel is ex-
pressed by Euler polynomials.

• Wiener integrated process. We now have Kd = KW
d given by

KW
d (x, y) =

d∏
k=1

KW
1,rk

(xk, yk) for all x, y ∈ [0, 1]d,

where

KW
1,r(x, y) =

min(x,y)∫
0

(x− u)r

r!

(y − u)r

r!
du =

1∫
0

(x− u)r+
r!

(y − u)r+
r!

du

for all x, y ∈ [0, 1] and with the standard notation t+ = max(t, 0).
Let us stress that the univariate Euler and Wiener processes are close relatives

since they emerge from very similar integration schemes. Indeed, let W (t), t ∈
[0, 1], be a standard Wiener process, i.e. a Gaussian random process with zero
mean and covariance

KE
1,0(s, t) = KW

1,0(s, t) = min(s, t).
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Consider two sequences of integrated processes Xr, Yr on [0, 1] defined by X0 =
Y0 =W , and for r = 0, 1, 2, . . .

Xr+1(t) =
t∫
0

Xr(s)ds,

Yr+1(t) =
1∫

1−t
Yr(s)ds.

Then the covariance kernel ofXr isKW
1,r while the covariance kernel of Yr isKE

1,r.
Clearly, Xr and Yr have the same smoothness properties. That is why different
tractability results are surprising.

On the other hand, there are some differences between the two processes. The
Gaussian measure µd on Fd corresponding to the covariance kernel KE

d or KW
d

is concentrated on functions that are almost surely rk-times continuously differ-
entiable with respect to the k-th variable for k = 1, 2, . . . , d, and satisfy certain
boundary conditions which are different for the Euler and Wiener cases.

For the Euler case, we have

(2.1)
∂k1+k2+...+kd

∂ xk11 ∂ xk22 . . . ∂ xkdd
f(x) = 0

if for some i we have xi = 0 and ki is even, or xi = 1 and ki is odd. Here, ki =
0, 1, . . . , ri.

For the Wiener case, we have

(2.2)
∂k1+k2+...+kd

∂ xk11 ∂ xk22 . . . ∂ xkdd
f(x) = 0

if one of the components of x is zero. As before, ki = 0, 1, . . . , ri.
To see the difference between (2.1) and (2.2) more explicitly, we take d = 1.

Then for the Euler case for all 0 ¬ k ¬ r1 we have

f (k)(0) = 0 if k is even and f (k)(1) = 0 if k is odd,

whereas for the Wiener case we have

f (k)(0) = 0 for all k ¬ r1.

Finally, note that Nazarov and Nikitin studied in [8] and [9] a slightly different
version WN

r of the Euler integrated process. The processes WN
r and W E

r coincide
for even r but WN

r (t) = W E
r (1 − t) for odd r. The covariance spectra of both

processes are the same but the boundary conditions are different. Since the spectra
are the same, the tractability results for the Nazarov and Nikitin process are the
same as for the Euler process.
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2.2. Multivariate approximation. Multivariate approximation is defined by
the embedding APPd : Fd → L2 given by

APPdf = f for all f ∈ Fd.

Here, L2 = L2([0, 1]
d) is the standard L2-space with the norm

∥f∥L2 =
( ∫
[0,1]d

f 2(t) dt
)1/2

.

We approximate functions f from Fd by algorithms An that use n function values
or arbitrary continuous linear functionals. We only consider the case of arbitrary
continuous functionals since it is known that the results are the same for function
values; see [5] and Chapter 24 of [12]. In the average case setting, without essential
loss of generality (see, e.g., [15] as well as [10]), we can restrict ourselves to linear
algorithms An of the form

An(f) =
n∑

j=1

Lj(f) gj with Lj ∈ F ∗d , gj ∈ L2.

The average case error of An is defined as

eavg(An) =
( ∫
Fd

∥f −An(f)∥2L2
µd(df)

)1/2
,

where µd is a zero-mean Gaussian measure with a covariance kernel Kd and

∥f −An(f)∥2L2
=

∫
[0,1]d

(
f(t)−An(f)(t)

)2
dt.

Then νd = µdAPP
−1
d is a zero-mean Gaussian measure defined on Borel sets

of L2. The covariance operator Cνd : L2 → L2 of νd is given by

Cνdf =
∫

[0,1]d
Kd(·, t) f(t) dt for all f ∈ L2.

The operator Cνd is a self-adjoint, nonnegative definite, and has finite trace. Let
(λd,j , ηd,j)j=1,2,... denote its eigenpairs

Cνdηd,j = λd,j ηd,j with λd,1 ­ λd,2 ­ . . . ,

and
∞∑
j=1

λd,j =
∫

[0,1]d
Kd(t, t) dt <∞.
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For a given n, it is well known that the algorithm An that minimizes the aver-
age case error is of the form

An(f) =
n∑

j=1

⟨f, ηd,j⟩L2
ηd,j ,

and its average case error is

(2.3) eavg(An) =
( ∞∑
j=n+1

λd,j
)1/2

.

For n = 0 we obtain the zero algorithm A0 = 0. Its average case error is called the
initial error, and is given by the square-root of the trace of the operator Cνd , i.e.,
by (2.3) with n = 0.

We now define the average case information complexity n(ε, d) as the mini-
mal n for which there is an algorithm whose average case error reduces the initial
error by a factor ε,

(2.4) n(ε, d) = min
{
n
∣∣ ∞∑

j=n+1

λd,j ¬ ε2
∞∑
j=1

λd,j
}
.

From (2.4) it is clear that all notions of tractability depend only on the eigen-
values λd,j . Therefore, the more we know about the eigenvalues λd,j the more we
can say about various notions of tractability.

2.3. Eigenvalues for the Euler and Wiener integrated processes. For both pro-
cesses the corresponding covariance kernel is of the product form. Therefore, the
eigenvalues for the d-variate case are products of the eigenvalues of the univariate
cases which depend on the smoothness parameters rk for k = 1, 2, . . . , d. That is,
if we denote by λxd,j’s the eigenvalues of the Euler integrated process, x = E, or
the eigenvalues of the Wiener integrated process, x = W, then

{λxd,j}j=1,2,... =
{
λxj1,r1λ

x
j2,r2 . . . λ

x
jd,rd

}
j1,j2,...,jd=1,2,...

,

the λxjk,rk ’s denoting the eigenvalues of the univariate case with smoothness rk.
For the Euler case, the λE

jk,rk
’s are the eigenvalues of the operator

(C E
1,rk

f)(x) =
1∫
0

KE
1,rk

(x, t) f(t) dt.

By successive differentiation of this equation with respect to x and using the prop-
erties of the kernelKE

1,rk
, it is easy to show that the eigenvalues of C E

1,rk
satisfy the

Sturm–Liouville problem

(2.5) λ f (2rk+2)(x) = (−1)rk+1f(x) for all x ∈ (0, 1),



140 M. A. Lifshi ts et al.

with the boundary conditions

f(t0) = f ′(t1) = f ′′(t2) = . . . = f (2rk+1)(t2rk+1) = 0,

where ti = 0 for even i and ti = 1 for odd i. For the Euler case, we know the
eigenvalues exactly (see [1] and [3]), and they are equal to

(2.6) λE
j,rk

=

(
1

π(j − 1/2)

)2rk+2

for j = 1, 2, . . .

Note that the eigenvalues are well separated. In particular,

λE
2,rk

λE
1,rk

=
1

32rk+2
.

For the Wiener case, λW
j,rk

’s are the eigenvalues of the operator

(C W
1,rk

f)(x) =
1∫
0

KW
1,rk

(x, t) f(t)dt.

The eigenvalues λW
j,rk

also satisfy the Sturm–Liouville problem (2.5) but with dif-
ferent boundary conditions:

f(0) = f ′(0) = . . . = f (rk)(0)

= f (rk+1)(1) = f (rk+2)(1) = . . . = f (2rk+1)(1) = 0.

The eigenvalues λW
j,rk

are not exactly known. It is known [3] that they have the
same asymptotic behavior as in (2.6),

(2.7) λW
j,rk

=

(
1

π(j − 1/2)

)2rk+2

+O(j−(2rk+3)) as j →∞.

For tractability studies the asymptotic behavior is not enough and the two largest
eigenvalues play an essential role. That is why we will prove that

λW
1,rk

=
1

(rk!)2

(
1

(2rk + 2)(2rk + 1)
+O(r−4k )

)
,

λW
2,rk

= Θ

(
1

(rk!)2 r
4
k

)
,

where the factors in the big O and Θ notations do not depend on rk.
Note that the largest eigenvalues for the Euler case go to zero exponentially

fast with rk, whereas for the Wiener case they go to zero super exponentially fast
due to the presence of factorials. However, the ratio of the two largest eigenvalues
for the Wiener case,

λW
2,rk

λW
1,rk

= Θ(r−2k ),

is much larger than that for the Euler case.
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2.4. Tractability. We present the precise definitions of four notions of tractabil-
ity. Let n(ε, d) denote the average case information complexity defined in (2.4),
and let APP = {APPd}d=1,2,... denote the sequence of multivariate approxima-
tion problems. We say that

• APP is weakly tractable iff

lim
ε−1+d→∞

lnn(ε, d)

ε−1 + d
= 0,

with the convention that ln 0 = 0;
• APP is quasi-polynomially tractable iff there are positive numbers C and t

such that

n(ε, d) ¬ C exp
(
t (1 + ln d) (1 + ln ε−1)

)
for all d = 1, 2, . . . , ε ∈ (0, 1);

• APP is polynomially tractable iff there are nonnegative numbers C, q and
p such that

n(ε, d) ¬ C d q ε−p for all d = 1, 2, . . . , ε ∈ (0, 1);

• APP is strongly polynomially tractable iff there are positive numbersC and
p such that

n(ε, d) ¬ C ε−p for all d = 1, 2, . . . , ε ∈ (0, 1).

The infimum of p satisfying the last bound is called the exponent of strong polyno-
mial tractability and denoted by p str−avg. For the Euler and Wiener case, we use
the notation p str−avg−x with x ∈ {E,W}.

Tractability can be fully characterized in terms of the eigenvalues λd,j . Neces-
sary and sufficient conditions on weak, quasi-polynomial, polynomial and strong
polynomial tractability can be found in Chapter 6 of [10] and Chapter 24 of [12]
as well as in [7] for non-homogeneous tensor products. For the Euler and Wiener
integrated processes we need such conditions that are based on the sums of some
power of the eigenvalues λd,j . We will cite these conditions when they are needed
for specific tractability results.

3. EULER INTEGRATED PROCESS

We now analyze the Euler integrated process for which the eigenvalues in the
univariate cases are given by (2.6). Our aim is to express tractability conditions in
terms of the smoothness parameters {rk}.

THEOREM 3.1. Consider the approximation problem APP for the Euler in-
tegrated process.
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• APP is weakly tractable iff

(3.1) lim
k→∞

rk =∞.

Furthermore, if (3.1) does not hold, then we have the curse of dimensionality since
nE(ε, d) depends exponentially on d for each ε < 1.

• APP is quasi-polynomially tractable iff

(3.2) sup
d∈IN

1

ln+ d

d∑
k=1

(1 + rk) 3
−2rk <∞,

where ln+ d = max(1, ln d).
• APP is polynomially tractable iff APP is strongly polynomially tracta-

ble iff
∞∑
k=1

3−2 τ rk <∞ for some τ ∈ (0, 1)

or, equivalently, iff

aE := lim inf
k→∞

rk
ln k

>
1

2 ln 3
.

If so, then the exponent1 of strong polynomial tractability is

pstr−avg−E = max

(
2

2r1 + 1
,

2

2aE ln 3− 1

)
.

We briefly comment on Theorem 3.1. First of all, we stress that polynomial
and strong tractability are equivalent. That is, these two notions coincide for the
Euler integrated process: in this case a “weaker” property of polynomial tractability
implies a “stronger” property of strong polynomial tractability. Weak tractability
requires that the smoothness parameters rk go to infinity, however, the speed of
convergence is irrelevant. To obtain at least quasi-polynomial tractability, we need
to assume that rk increases at least as aE ln k with aE > 1/(2 ln 3). Indeed, assume
for simplicity that

aE := lim
k→∞

rk
ln k

exists. If aE < 1/(2 ln 3), then for any positive β < 1− 2 aE ln 3 we have

(3.3) nE(ε, d) ­ c1(β) (1− ε2) exp
(
c2(β) d

β
)

1It may happen that aE =∞. Then the second term in the maximum defining p str−avg−E is
zero.
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for some positive functions c1 and c2 of β. Note that (3.3) contradicts quasi-
polynomial tractability. The proof of (3.3) goes as follows. We will show later
that

nE(ε, d) ­ (1− ε2)
d∏

k=1

(1 + 3−2(rk+1)).

Then each factor 1+3−2(rk+1) can be estimated from below by exp
(
− c(β)k−1+β

)
for large j. From this we easily obtain (3.3).

If aE = 1/(2 ln 3), then we can have quasi-polynomial tractability as illus-
trated by an example of {rk} in the Introduction. Furthermore, for this exam-
ple we do not have polynomial tractability. However, it may also happen that for
aE = 1/(2 ln 3) we do not have quasi-polynomial tractability. For example, this is
the case when

rk =

⌈
ln+ k

2 ln 3

⌉
,

which can be checked directly from (3.2).
On the other hand, if aE > 1/(2 ln 3), then we obtain strong polynomial tracta-

bility. This shows that there is a “thin” zone of {rk} that separates quasi-polynomial
and strong polynomial tractabilities.

We now comment on the exponent of strong polynomial tractability. Note that
for aE ­ (r1 + 1)/ ln 3 we have

p str−avg−E =
2

2r1 + 1
.

In this case, the result is especially pleasing, hence the complexity for any d is
roughly bounded by the complexity for the univariate case. Furthermore, this hap-
pens for all rk’s that tend to infinity faster than ln k. On the other hand, if aE ∈(
1/(2 ln 3), 2(r1 + 1)/(2 ln 3)

)
, then we have

p str−avg−E =
2

2aE ln 3− 1
,

and p str−avg−E can be arbitrarily large when aE is close to 1/(2 ln 3).

4. WIENER INTEGRATED PROCESS

We now turn to the Wiener integrated process for which the eigenvalues for
the univariate cases λW

j,rk
are only known asymptotically, see (2.7). To express

tractability conditions in terms of the smoothness parameters {rk} we will need to
prove the behavior of the two largest eigenvalues for large rk.

THEOREM 4.1. Consider the univariate Wiener process with the smoothness
parameter r, and let λW

j,r’s denote the eigenvalues of the covariance operator CW
1,r.
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Then

λW
1,r =

1

(r!)2

(
1

(2r + 2) (2r + 1)
+O(r−4)

)
,

λW
2,r = Θ

(
1

(r!)2 r4

)
,

sup
τ∈[τ0,1]

∞∑
j=3

[λW
j,r]

τ

[λW
2,r]

τ
= O(r−h) for some h > 0 and for all τ0 ∈

(
3
5 , 1

]
.

Observe that the two largest eigenvalues for the Wiener case are much smaller
than for the Euler case. On the other hand, their ratio for the Wiener case is much
larger than for the Euler case. Therefore, the sequences {λW

j,r} and {λE
j,r} are quite

different although they have the same asymptotic behavior.
The uniform convergence in the last assertion of Theorem 4.1 at the neighbor-

hood of τ = 1 is needed when we deal with quasi-polynomial tractability. The con-
vergence for a specific τ is needed for strong polynomial and polynomial tractabil-
ity. The lower bound 3

5 for τ0 is surely not sharp. A possible improvement of this
lower bound would improve the exponent of strong polynomial tractability.

Based on the estimates presented in Theorem 4.1 we will be able to express
tractability conditions for the Wiener case in terms of {rk}.

THEOREM 4.2. Consider the approximation problem APP for the Wiener in-
tegrated process.

• APP is weakly tractable iff

(4.1) lim
k→∞

rk =∞.

Furthermore, if (4.1) does not hold, then we have the curse of dimensionality since
nW(ε, d) depends exponentially on d for each ε < 1.

• APP is quasi-polynomially tractable iff

(4.2) sup
d∈IN

1

ln+ d

d∑
k=1

(1 + rk)
−2 ln+ rk <∞,

where we use ln+ x = max(1, lnx) for x > 0, and ln+ 0 = 1.
• APP is polynomially tractable iff APP is strongly polynomially tracta-

ble iff
lim inf
k→∞

rk
ks

> 0 for some s > 1
2 .

We briefly comment on Theorem 4.2. As for the Euler case, strong polynomial
and polynomial tractability are equivalent, and weak tractability holds under the
same condition limk rk = ∞. That ends the similarity between the Wiener and
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Euler cases since the conditions on quasi-polynomial and polynomial tractability
are quite different. For the Wiener case, we must assume that rk’s go to infinity at
least as fast as ks for some s > 1

2 . However, the zone between quasi-polynomial
and polynomial tractabilities is again thin, as for the Euler case.

It is worth to add that quasi-polynomial tractability plays a much more im-
portant role in the worst case setting. The difference with the average case setting
is due to the fact that even for the constant sequence rk = const > 0 we have
quasi-polynomial tractability in the worst case setting as shown in [4].

We now discuss the exponent of strong tractability which is not addressed in
Theorem 4.2. For simplicity, let us assume that for some s > 1

2 we have

rk = ks for all k ∈ IN.

Then we have strong polynomial tractability and the exponent pstr−avg−W is given
in (5.3) below as the infimum of 2τ/(1 − τ) for τ from (0, 1) which satisfies
condition (5.2) with q = 0. From the proof of Theorem 4.2 we know that τ >
1/(2r1 + 2). Furthermore, (7.3) below implies that τ > 1/(2s). These two esti-
mates yield lower bounds on the exponent. On the other hand, our proof of strong
polynomial tractability is valid only for τ > 3

5 , and this effects an upper bound on
the exponent. Hence,

max

(
2

2r1 + 1
,

2

2s− 1

)
¬ pstr−avg−W ¬ max

(
2

2s− 1
, 3

)
.

We stress that only for
(
1
2 ,

5
6

]
we know the exponent exactly, pstr−avg−W =

2/(2s− 1). Note that pstr−avg−W can be arbitrarily large if s is close to 1
2 .

For s > 5
6 , our bounds on the eigenvalues λW

j,rk
are too weak to get the exact

value of the exponent but sufficient to deduce strong polynomial tractability.

5. PROOF OF THEOREM 3.1

It is convenient to deal first with polynomial tractability. Let PT stand for
polynomial tractability and SPT for strong polynomial tractability. To prove this
point of Theorem 3.1 it is enough to show that

(5.1) aE >
1

2 ln 3
⇒

∞∑
k=1

3−2τ rk <∞ ⇒ SPT ⇒ PT⇒ aE >
1

2 ln 3
.

The first claim, aE > 1/(2 ln 3) ⇒ Sτ :=
∑∞

k=1 3
−2τ rk <∞ for some τ ∈ (0, 1),

is an easy calculus exercise. Indeed, let aE > 1/(2 ln 3). Then for some δ > 0 and
all k large enough we have rk/ln k > (1 + δ)/(2 ln 3), hence 3−2τrk < k−(1+δ)τ

and Sτ <∞ whenever 1/(1 + δ) < τ < 1.
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Let us recall now the polynomial tractability criteria. We know from Chapter
6 of [10] that APP is polynomially tractable iff there exist q ­ 0 and τ ∈ (0, 1)
such that

(5.2) C := sup
d∈IN

(
∞∑
j=1

λτd,j)
1/τ

∞∑
j=1

λd,j

d−q <∞.

If so, then

n(ε, d) ¬
((

τ C

1− τ

)τ/(1−τ)
+ 1

)
d q τ/(1−τ) ε−2τ/(1−τ)

for all d ∈ IN and ε ∈ (0, 1).
Furthermore, APP is strongly polynomially tractable iff the condition (5.2)

holds with q = 0. The exponent of strong polynomial tractability is

(5.3) p str−avg = inf

{
2τ

1− τ

∣∣∣ τ satisfies (5.2) with q = 0

}
.

Motivated by condition (5.2) and based on the explicit knowledge of the uni-
variate eigenvalues for the Euler integrated process (2.6), we take τ ∈ (0, 1) and
obtain

(
∞∑
j=1

λτd,j)
1/τ

∞∑
j=1

λd,j

=
d∏

k=1

( ∞∑
j=1

(λE
j,rk

)τ
)1/τ

∞∑
j=1

λE
j,rk

=
d∏

k=1

( ∞∑
j=1

(2j − 1)−(2rk+2)τ
)1/τ

∞∑
j=1

(2j − 1)−(2rk+2)

=
d∏

k=1

(
1 +

∞∑
j=2

(2j − 1)−2τ(rk+1)
)1/τ

1 +
∞∑
j=2

(2j − 1)−2(rk+1)
.

Since rk ­ r1, note that the expression above is finite for all τ ∈
(
1/(2r1 + 2), 1

)
.

Furthermore, for such τ we have

3−2τ(rk+1) ¬
∞∑
j=2

(2j − 1)−2τ(rk+1) ¬ 3−2τ(rk+1) +
∞∑
j=5

j−2τ(rk+1),
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and
∞∑
j=5

j−2τ(rk+1) ¬
∞∫
4

x−2τ(rk+1) dx

=
41−2τ(rk+1)

2τ(rk + 1)− 1
¬ 3

2τ(r1 + 1)− 1
3−2τ(rk+1).

Therefore,

(5.4)
(
∞∑
j=1

λτd,j)
1/τ

∞∑
j=1

λd,j

=
d∏

k=1

(1 + ak3
−2τ(rk+1))1/τ

1 + bk3−2(rk+1)
,

where ak ­ bk and they are uniformly bounded,

(5.5) 1 ¬ ak ¬
2τ(r1 + 1) + 2

2τ(r1 + 1)− 1
and 1 ¬ bk ¬

2r1 + 4

2r1 + 1
.

Assume now that Sτ <∞ for some τ < 1. By using (5.4) and (5.5) we obtain

sup
d

(
∞∑
j=1

λτd,j)
1/τ

∞∑
j=1

λd,j

¬
∞∏
k=1

(1 + ak3
−2τ(rk+1))1/τ

¬ exp
(
τ−1 sup

k
ak
∞∑
k=1

3−2τ(rk+1)
)
¬ exp(τ−1 sup

k
ak Sτ ) <∞.

Hence, the criterion (5.2) is verified with q = 0, and we infer that Sτ <∞⇒ SPT.
The implication SPT⇒ PT is trivial.
Assume now that PT holds. By (5.2) and (5.4) this implies that

d∏
k=1

(1 + ak3
−2τ(rk+1))1/τ

1 + bk3−2(rk+1)
< C d q

for some C, q ­ 0 and τ ∈ (0, 1). Moreover, it is easy to check that

(1 + ak3
−2τ(rk+1))1/τ

1 + bk3−2(rk+1)
­ 1 + ck3

−2τ(rk+1)

for ck ­ ak(1 − 3−2(rk+1)(1−τ))/(1 + bk3
−2(rk+1)) = Ω(1). Taking logarithms

we conclude that

M := sup
d

1

ln+ d

d∑
k=1

3−2τ(rk+1) <∞.

The sum with respect to k can be lower bounded by d · 3−2τ(rd+1), as done at the
beginning of the proof, and we obtain d · 3−2τ(rd+1) ¬M ln+ d, which is equiva-
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lent to
rd + 1

ln d
­ 1− (ln ln+ d− lnM)/ln d

τ · 2 ln 3
,

and implies that aE ­ 1/(2τ ln 3) > 1/(2 ln 3), as claimed. The equivalence of all
statements in (5.1) is therefore verified.

We now consider the exponent pstr−avg−E. Assume that aE > 1/(2 ln 3). Then,
as already shown,

∑∞
k=1 3

−2τ(rk+1) <∞ for all τ > 1/(2aE ln 3) and (5.2) holds
with q = 0 if τ > 1/(2r1 + 2). Hence, we obtain strong polynomial tractability.
Furthermore, τ can be taken in the limit as

τ∗ := max

(
1

2r1 + 2
,

1

2aE ln 3

)
,

and (5.3) yields that the exponent of strong polynomial tractability is at most

p∗ :=
2τ∗

1− τ∗
= max

(
2

2r1 + 1
,

2

2aE ln 3− 1

)
.

Conversely, assume that strong polynomial tractability holds. Then

∞∏
k=1

(1 + ak3
−2τ(rk+1))1/τ

1 + bk3−2(rk+1)
<∞

for some τ ∈ (0, 1). Clearly, we must take τ > 1/(2r1 + 2) and τ > 1/(2aE ln 3).
This implies that the exponent is at least p∗. This completes the part of the proof
related to polynomial and strong polynomial tractability.

We now turn to weak tractability. We know from [7] that APP is weakly
tractable if there exists τ ∈ (0, 1) such that

(5.6) lim
d→∞

1

d

d∑
k=1

∞∑
j=2

(
λE
j,rk

λE
1,rk

)τ

= 0.

In our case, we have
λE
j,rk

λE
1,rk

= (2j − 1)−2(rk+1).

As before, for τ ∈
(
1
2 , 1

)
we have

∞∑
j=2

(2j − 1)−2τ(rk+1) ¬ 2τ(rk + 1) + 2

2τ(rk + 1)− 1
3−2τ(rk+1) ¬ 2(1 + τ)

2τ − 1
3−2τ(rk+1).

Assume that limk→∞ rk =∞. Then for an arbitrarily large M there is an integer
kM such that rk ­M for all k ­ kM . Hence, for d ­ kM we have

1

d

d∑
k=1

∞∑
j=2

(
λE
j,rk

λE
1,rk

)τ

¬ 2(1 + τ)

2τ − 1

(
kM
d

+ 3−2τ(M+1)

)
,

and we obtain (5.6) by letting first d, and then M go to infinity.
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On the other hand, if r = limk→∞ rk < ∞, then there is an integer k0 such
that rk = r for all k ­ k0, and the limit in (5.6) is not zero. In this case, we prove
that n = nE(ε, d) is an exponential function of d, and therefore weak tractability
does not hold. Indeed, we have

∞∑
j=1

λd,j − nλd,1 ¬
∞∑

j=n+1

λd,j ¬ ε2
∞∑
j=1

λd,j ,

and therefore

n ­ (1− ε2)
∞∑
j=1

λd,j
λd,1

= (1− ε2)
(

k0−1∏
k=1

∞∑
j=1

λE
j,rk

λE
1,rk

)(
1 +

∞∑
j=2

λE
j,r

λE
1,r

)d−k0+1

­ (1− ε2)
(
1 +

∞∑
j=2

λE
j,r

λE
1,r

)d−k0+1

.

This bound is an exponential function of d. It contradicts weak tractability and
completes the part of the proof related to this notion.

We finally consider quasi-polynomial tractability. We know from [7] that APP
is quasi-polynomially tractable iff there exists a positive δ such that

(5.7) sup
d∈IN

∞∑
j=1

λ
1−δ/ ln+ d
d,j( ∞∑

j=1
λd,j

)1−δ/ ln+ d
<∞,

where ln+ d = max(1, ln d).

S u f f i c i e n c y. We first prove that (3.2) implies (5.7) with δ = 1
2 . Let

λ(j, k) = (2j − 1)−2(rk+1).

We have

sup
d∈IN

∞∑
j=1

λ
1−1/(2 ln+ d)
d,j( ∞∑

j=1
λd,j

)1−1/(2 ln+ d)
= sup

d∈IN

d∏
k=1

∞∑
j=1

λ(j, k)1−1/(2 ln+ d)

( ∞∑
j=1

λ(j, k)
)1−1/(2 ln+ d)

.

We split the last product into two products

Π1(d) :=
d∏

k=1

( ∞∑
j=1

λ(j, k)
)1/(2 ln+ d)

and

Π2(d) :=
d∏

k=1

∞∑
j=1

λ(j, k)1−1/(2 ln+ d)

∞∑
j=1

λ(j, k)
.
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In what follows we use C to denote a positive number which is independent of d
and {rk}, and whose value may change for successive estimates. For Π1(d) we
simply have

Π1(d) =
d∏

k=1

(
1 +

∞∑
j=2

λ(j, k)
)1/(2 ln+ d) ¬ exp

(
1

2 ln+ d

d∑
k=1

∞∑
j=2

λ(j, k)

)

¬ exp

(
C

ln+ d

d∑
k=1

λ(2, k)

)
= exp

(
C

ln+ d

d∑
k=1

3−2(rk+1)

)
.

Clearly, (3.2) implies that supd∈INΠ1(d) <∞.
We now turn to the product Π2(d). We estimate each of its factors by

∞∑
j=1

λ(j, k)1−1/(2 ln+ d)

∞∑
k=1

λ(j, k)
¬
1+λ(2, k)1−1/(2 ln+ d)+

∞∑
j=3

λ(j, k)1−1/(2 ln+ d)

1 + λ(2, k)
(5.8)

¬ 1 + λ(2, k)1−1/(2 ln+ d)

1 + λ(2, k)
+
∞∑
j=3

λ(j, k)1−1/(2 ln+ d).

Note that if |lnλ(2, k)| ¬ 3 ln+ d, then

1 + λ(2, k)1−1/(2 ln+ d)

1 + λ(2, k)
=

1 + λ(2, k) exp
((
− lnλ(2, k)

)
/(2 ln+ d)

)
1 + λ(2, k)

¬
1 + λ(2, k)

(
1 +

(
C| lnλ(2, k)|

)
/ln+ d

)
1 + λ(2, k)

¬ 1 +
Cλ(2, k)| lnλ(2, k)|

ln+ d
,

while if |lnλ(2, k)| ­ 3 ln+ d, then

1 + λ(2, k)1−1/(2 ln+ d)

1 + λ(2, k)
¬ 1 + λ(2, k)1−1/(2 ln+ d) ¬ 1 + λ(2, k)1/2 ¬ 1 + d−3/2.

Thus, in any case

(5.9)
1 + λ(2, k)1−1/(2 ln+ d)

1 + λ(2, k)
¬ 1 + d−3/2 +

Cλ(2, k)| lnλ(2, k)|
ln+ d

.

Next, we have
(5.10)
∞∑
j=3

λ(j, k)1−1/(2 ln+ d) ¬ Cλ(3, k)1−1/(2 ln+ d) = Cλ(2, k)(ln 5/ln 3)(1−1/(2 ln+ d)).
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We now show that (3.2) implies λ(2, k) = 3−2(rk+1) ¬ C/k. First of all note
that (3.2) implies limk rk =∞, so that only finitely many initial rk may be zero.
Assume that d is so large that rd ­ 1 and d ­ 3. Since (1 + rk)3

−2rk is non-
increasing, we have

rd · 3−2rd ¬
1

d

d∑
k=1

(1 + rk)3
−2rk ¬ C ln d

d
,

so that 32rd ­ 32rd/rd ­ d/(C ln d) and

rd ­
ln d− ln(C ln d)

2 ln 3
­ C1 ln d.

Hence,

λ(2, d) = 3−2(rd+1) ¬ rd · 3−2rd
rd

¬ C ln d

rd d
¬ C

C1 d
,

as claimed. By enlarging the constant, we obtain the same inequality for all d. For
k ¬ d, we then have by (5.10)

(5.11)
∞∑
j=3

λ(j, k)1−1/(2 ln+ d) ¬ C k−(ln 5/ln 3)(1−1/(2 ln+ d)) ¬ C k−ln 5/ln 3.

Using 1 + x ¬ exp(x), from (5.8), (5.9), and (5.11) we obtain

∞∑
j=1

λ(j, k)1−1/(2 ln+ d)

∞∑
j=1

λ(j, k)
¬ exp

(
d−3/2 +

Cλ(2, k)| lnλ(2, k)|
ln+ d

+ Ck−ln 5/ln 3

)
.

Then it follows that

Π2(d) ¬ exp

( d∑
k=1

(
d−3/2 +

Cλ(2, k)| lnλ(2, k)|
ln+ d

+ Ck−ln 5/ln 3

))
¬ exp

( d∑
k=1

(
d−3/2 +

C3−2rk(rk + 1)

ln+ d
+ Ck−ln 5/ln 3

))
,

and (3.2) implies that supd∈INΠ2(d) <∞. Therefore,

sup
d∈IN

Π1(d)Π2(d) ¬ sup
d∈IN

Π1(d) sup
d∈IN

Π2(d) <∞,

and the required property (5.7) is verified, so that the quasi-polynomial tractability
is proved.
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N e c e s s i t y. Assume now that quasi-polynomial tractability holds. We prove
in [7] that quasi-polynomial tractability implies

(5.12) sup
d∈IN

1

ln+ d

d∑
k=1

∞∑
j=1

λ(j, k)

Λ(k)
ln

(
Λ(k)

λ(j, k)

)
<∞,

where Λ(k) =
∑∞

j=1 λ(j, k). Clearly, Λ(k)/λ(j, k) > 1 so that all terms in the
sums over j are positive. We simplify the last condition by omitting all terms for
j ̸= 2, and obtain

(5.13) sup
d­IN

1

ln+ d

d∑
k=1

λ(2, k)

Λ(k)
ln

(
Λ(k)

λ(2, k)

)
<∞.

Next, since Λ(k) > 1, we can also omit lnΛ(k) and obtain

sup
d∈IN

1

ln+ d

d∑
k=1

λ(2, k)

Λ(k)
ln

(
1

λ(2, k)

)
<∞.

Furthermore, since {Λ(k)} is non-increasing, we have

sup
d∈IN

1

ln+ d

d∑
k=1

λ(2, k) ln

(
1

λ(2, k)

)
<∞.

This is equivalent to (3.2), and completes the proof. �

6. PROOF OF THEOREM 4.1

We represent the r-times integrated Wiener process Wr through a white-noise
integral representation

(6.1) Wr(t) :=
1∫
0

(t− u)r+
r!

dW (u),

where the integration is carried over a standard Wiener process W defined over
[0, 1]. Clearly,

E∥Wr∥22 =
∞∑
j=1

λW
j,r =

1∫
0

KW
1,r(t, t) dt =

1∫
0

( t∫
0

(t− u)2r

(r!)2
du

)
dt(6.2)

=
1∫
0

t2r+1

(2r + 1)(r!)2
dt =

1

(2r + 2)(2r + 1)(r!)2
.

We now supply a lower bound on the sum
∑∞

j=2 λ
W
j,r. To do this, we approxi-

mate Wr by

Vr,1(t) := trWr(1) =
1

r!

1∫
0

tr(1− u)r dW (u) for all t ∈ [0, 1].
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The process Vr,1 is of rank one since

Vr,1(t) := ξ1(ω)ψ1(t),

where

ψ1(t) = tr/r! and ξ1(ω) =
1∫
0

(1− u)rdW (u).

We now prove the following lemma.

LEMMA 6.1. For any r > 1 we have

E|Wr(t)− Vr,1(t)|2 ¬
1

r!

3r2

(2r − 2)3
t2r−2(1− t)2 for all t ∈ [0, 1],

and

(6.3) E∥Wr − Vr,1∥22 ¬
1

(r!)2
6r2

(2r − 2)6
.

Before we prove the lemma, we stress that the order of the right-hand side in
(6.3) is smaller than that of E∥Wr∥22. This means that Vr,1 incorporates the essential
part of Wr for large r.

P r o o f o f L e m m a 6.1. Let 1{0¬u¬t} be the characteristic function of the
interval [0, t], i.e., 1{0¬u¬t} = 1 for u ∈ [0, t] and 1{0¬u¬t} = 0 for u /∈ [0, t]. We
have

E|Wr(t)− Vr,1(t)|2

=
1

(r!)2

1∫
0

[tr(1− u)r − (t− u)r1{0¬u¬t}]2 du

=
t2r

(r!)2

t∫
0

(1− u)2r
[
1−

(
t− u
t(1− u)

)r]2
du+

t2r

(r!)2

1∫
t

(1− u)2r du

=
t2r

(r!)2

t∫
0

(1− u)2r
[
1−

(
1− (1− t)u

t(1− u)

)r]2
du+

t2r

(r!)2

1∫
t

(1− u)2r du

:=
t2r

(r!)2
[I1 + I2].

For I1, we use an elementary bound

0 ¬ 1− (1− h)r ¬ rh
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and get

I1 ¬
t∫
0

(1− u)2rr2 (1− t)
2u2

t2(1− u)2
du

= r2(1− t)2t−2
t∫
0

(1− u)2r−2u2 du

¬ r2(1− t)2t−2
∞∫
0

exp
(
− (2r − 2)u

)
u2 du

=
2r2

(2r − 2)3
(1− t)2t−2.

On the other hand,

I2 =
1−t∫
0

v2r dv =
(1− t)2r+1

2r + 1

¬ r2

(2r − 2)3
(1− t)2t−2.

By summing up we obtain

E|Wr(t)− Vr,1(t)|2 ¬
1

(r!)2
3r2

(2r − 2)3
t2r−2(1− t)2,

as claimed in the first estimate of the lemma. The second claim is obtained by a
simple integration:

E∥Wr − Vr,1∥22 =
1∫
0

E|Wr(t)− Vr,1(t)|2 dt

¬ 1

(r!)2
3r2

(2r − 2)3

1∫
0

t2r−2(1− t)2 dt

=
1

(r!)2
3r2

(2r − 2)3

1∫
0

(1− t)2r−2t2 dt

¬ 1

(r!)2
3r2

(2r − 2)3

∞∫
0

exp
(
− (2r − 2)t

)
t2 dt

=
1

(r!)2
6r2

(2r − 2)6
,

as claimed. �

From Lemma 6.1 we conclude that
∞∑
j=2

λW
j,r = inf

V is of rank one
E∥Wr − V ∥22 ¬ E∥Wr − Vr∥22 ¬

C

(r!)2 r4
.
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This fact and (6.2) yield

λW
1,r =

1

(r!)2

(
1

(2r + 2)(2r + 1)
+O(r−4)

)
,

as claimed in Theorem 4.1.

We now proceed to estimates on the second largest eigenvalue λW
2,r for

large r. Obviously,

(6.4) λW
2,r ¬

∞∑
j=2

λW
j,r = O

(
1

(r!)2 r4

)
.

We now show that the last bound is essentially sharp. To do this we approximate
Wr by

Vr,2(t) :=
1

r!

1∫
0

[tr(1− u)r − rtr−1(1− t)u(1−u)r−1] dW (u) for all t ∈ [0, 1].

The process Vr,2 is of rank two since

Vr,2(t) = ξ1(ω)ψ1(t)− rξ2(ω)ψ2(t),

where

ξ1(ω) =
1∫
0

(1− u)rdW (u) and ψ1(t) =
tr

r!
,

ξ2(ω) =
1∫
0

u (1− u)r−1dW (u) and ψ2(t) =
tr−1(1− t)

r!
.

Note that the term ξ1ψ1 coming from the rank one approximation is dominating in
the rank two approximation, since

E ξ21∥ψ1∥22 =
1∫
0

(1− u)2r du · 1

(r!)2
·
1∫
0

t2rdt =
1

(r!)2
1

(2r + 1)2
≈ 1

(r!)2
r−2,

while for the correction term rξ2ψ2 we have

r2E ξ22∥ψ2∥22 = r2
1∫
0

u2(1− u)2r−2 du · 1

(r!)2
·
1∫
0

t2r−2(1− t)2dt ≈ 1

(r!)2
r−4.

A careful analysis shows that the second eigenvalue of the covariance operator of
V2,r is also of order (r!)−2r−4. In other words, there exists a positive C indepen-
dent of r such that

(6.5) inf
V is of rank one

E∥Vr,2 − V ∥22 ­
C

(r!)2 r4
.

We now estimate how well Vr,2 approximates Wr.
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LEMMA 6.2. For any r > 2 we have

(6.6) E|Wr(t)− Vr,2(t)|2¬
1

(r!)2
14r2(r − 1)2

(2r − 4)5
t2r−4(1− t)4 for all t ∈ [0, 1],

and

(6.7) E∥Wr − Vr,2∥22 ¬
1

(r!)2
24 · 14 · r2(r − 1)2

(2r − 4)10
= O

(
1

(r!)2 r6

)
.

The proofs of (6.6) and (6.7) repeat (mostly, but not entirely) line by line those
of Lemma 6.1 but we provide them for the sake of completeness. These proofs also
clearly indicate how higher order approximations can be handled. As in Lemma 6.1
we again stress that the order of the right-hand side in (6.7) is smaller than the rank
one approximation error computed in (6.3). Therefore, the rank two approximation
Vr,2 performs much better than the rank one approximation Vr,1 for approximation
of Wr when r is large.

P r o o f o f L e m m a 6.2. Let a := E|Wr(t)− Vr,2(t)|2. We have

a =
1

(r!)2

1∫
0

[tr(1− u)r − rtr−1(1− t)u(1− u)r−1 − (t− u)r1{0¬u¬t}]2 du

=
t2r

(r!)2

t∫
0

(1− u)2r
[
1− r(1− t)u

t(1− u)
−

(
t− u
t(1− u)

)r]2
du

+
t2r

(r!)2

1∫
t

(
(1− u)r − r(1− t)u

t
(1− u)r−1

)2

du

=
t2r

(r!)2

t∫
0

(1− u)2r
[
1− r(1− t)u

t(1− u)
−

(
1− (1− t)u

t(1− u)

)r]2
du

+
t2r

(r!)2

1∫
t

(
(1− u)r − r(1− t)u

t
(1− u)r−1

)2

du =:
t2r

(r!)2
[I1 + I2].

For I1, we use an elementary bound

0 ­ 1− rh− (1− h)r ­ −r(r − 1)

2
h2

and get

I1 ¬
t∫
0

(1− u)2r
(
r(r − 1)

2
· (1− t)

2u2

t2(1− u)2

)2

du

=
r2(r − 1)2

4
(1− t)4t−4

t∫
0

(1− u)2r−4u4 du

¬ r2(r − 1)2

4
(1− t)4t−4

∞∫
0

exp
(
− (2r−4)u

)
u4 du=

6r2(r−1)2

(2r−4)5
(1− t)4t−4.
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On the other hand, we can give the following, rather crude, estimate for I2. Note
that for u > t and r > 1 we have

r(1− t)u
t

(1− u)r−1 = r · (1− t)u
t(1− u)

· (1− u)r ­ (1− u)r.

Therefore,

I2 ¬
1∫
t

(
r(1− t)u

t
(1− u)r−1

)2

du

¬ r2(1− t)4

t4

1∫
t

u2(1− u)2r−4 du

¬ r2(1− t)4

t4

∞∫
0

u2 exp
(
− (2r − 4)u

)
du

=
2r2(1− t)4

(2r − 4)3t4

¬ 8r2(r − 1)2

(2r − 4)5
(1− t)4t−4.

By summing up, we obtain

E|Wr(t)− Vr,2(t)|2 ¬
1

(r!)2
14r2(r − 1)2

(2r − 4)5
(1− t)4t2r−4,

as claimed in the first estimate of the lemma. The second claim is obtained by a
simple integration:

E ∥Wr − Vr,2∥22 =
1∫
0

E|Wr(t)− Vr,2(t)|2 dt

¬ 1

(r!)2
14r2(r − 1)2

(2r − 4)5

1∫
0

(1− t)4t2r−4 dt

=
1

(r!)2
14r2(r − 1)2

(2r − 4)5

1∫
0

(1− t)2r−4t4 dt

¬ 1

(r!)2
14r2(r − 1)2

(2r − 4)5

∞∫
0

exp
(
− (2r − 4)t

)
t4 dt

=
1

(r!)2
24 · 14r2(r − 1)2

(2r − 4)10
,

as claimed. �
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From Lemma 6.2 we easily estimate λW
2,r. Let ζη1 := ζ(ω)η1(t) be the first

term of the Karhunen–Loève expansion for Wr. Then

C

(r!)2 r4

by (6.5)

¬ E ∥Vr,2 − ζη1∥22

= E ∥(Vr,2 −Wr) + (Wr − ζη1)∥22
¬ 2E ∥Vr,2 −Wr∥22 + 2E ∥Wr − ζη1)∥22

= 2E ∥Vr,2 −Wr∥22 + 2λW
2,r + 2

∞∑
j=3

λW
j,r.

Since Vr,2 is a process of rank two, we also have

(6.8)
∞∑
j=3

λW
j,r = inf

V of rank two
E ∥Wr − V ∥22 ¬ E ∥Wr − Vr,2∥22.

For future use, we combine this with (6.7) and get

(6.9)
∞∑
i=3

λW
i,r ¬

C1

(r!)2 r6
.

Furthermore, (6.8) immediately yields

C

(r!)2 r4
¬ 4E∥Vr,2 −Wr∥22 + 2λ2,r

by (6.7)

¬ C1

(r!)2 r6
+ 2λW

2,r.

This provides a lower bound for λW
2,r and together with (6.4) proves that

(6.10) λW
2,r = Θ

(
1

(r!)2 r4

)
,

as claimed.

We are ready to prove the last assertion of Theorem 4.1. To simplify notation,
let λj,r = λW

j,r. We split the series
∑∞

j=3 λj,r into two pieces – a long but finite
initial part and a tail. Let M > 2 and τ ∈ [τ0, 1] with τ0 ∈

(
3
5 , 1

]
. Consider the

initial part including j = 3, 4, . . . , ⌈rM⌉. Using Hölder’s inequality we obtain

⌈rM ⌉∑
j=3

λτj,r ¬
( ⌈rM ⌉∑

j=3

λj,r
)τ( ⌈rM ⌉∑

j=3

1
)1−τ

by (6.9)

¬
(

C1

(r!)2 r6

)τ

rM(1−τ) = r−2τ
(

C1

(r!)2 r4

)τ

rM(1−τ)

by (6.10)

¬ Cλτ2,rr
−2τ+M(1−τ) ¬ Cλτ2,rr−2τ0+M(1−τ0).
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Since C can be taken independent of τ , for some h > 0 we have

sup
τ∈[τ0,1]

⌈rM ⌉∑
j=3

λτj,r

λτ2,r
= O(r−h) as r →∞,

as long as

(6.11) M <
2τ0

1− τ0
.

For the tail estimation of the eigenvalue series
∑∞

j=⌈rM ⌉+1 λj,r we use ap-
proximation numbers (or linear widths, in other terminology).

We need to recall the definition and few basic properties which we will use
in the sequel. Let A : B1 → B2 be a bounded linear operator acting between two
Banach spaces. The approximation number an(A) for n ­ 1 is defined as

an(A) := inf{∥A−An∥ | An : B1 → B2 with rank(An) < n}.

The following properties of an(A) are well known (see [14]):
• the sequence {an(A)}n∈IN is non-increasing;
• for the adjoint operator A∗ we have

(6.12) an(A) = an(A
∗);

• multiplicative property: for A1 : B1 → B2 and A2 : B2 → B3 we have

(6.13) an+m−1(A2A1) ¬ an(A2) am(A1) for all n,m ∈ IN;

• if A : H → H is a self-adjoint compact operator acting for a Hilbert space
H with the non-increasing eigenvalues {λn}, then

(6.14) an(A) = λn.

We will study approximation numbers for integration operators.
Let I : L2[0, 1]→ L2[0, 1] be the conventional integration operator

(Ix)(t) :=
t∫
0

x(s) ds for all t ∈ [0, 1].

Let Ir denote the r-th iteration of I for r ­ 1. It is easy to check by induction that

(Irx)(t) =
t∫
0

(t− s)r−1

(r − 1)!
x(s) ds for all t ∈ [0, 1],

([Ir]∗x)(t) =
1∫
t

(s− t)r−1

(r − 1)!
x(s) ds for all t ∈ [0, 1],

(Ir [Ir]∗x)(t) =
1∫
0

( min(s,t)∫
0

(s− u)r−1+

(r − 1)!

(t− u)r−1+

(r − 1)!
du

)
x(s) ds, t ∈ [0, 1].
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This shows that
CW
1,r = Ir+1 (Ir+1)∗.

We are interested in the approximation numbers of Ir. For r = 0, it is well known
that for some positive C we have

(6.15) an(I) ¬ C n−1 for all n ∈ IN,

see [2], pp. 118–119. We will extend this estimate for Ir with an arbitrary r. Al-
though the constant we get is certainly not optimal, it suffices for our needs.

LEMMA 6.3. We have

(6.16) an(I
r) ¬ C r (2r)2r n−r for all n, r ∈ IN,

where C is the constant from (6.15).

P r o o f o f L e m m a 6.3. Let

Bp := 2 p 2p for all p = 0, 1, 2, . . .

We will first prove by induction on p that for any integer p ­ 0 we have

(6.17) an(I
r) ¬ C r Bp n

−r for all n ­ 1 and r ∈ [2p−1, 2p].

For p = 0 this fact is equivalent to (6.15). Assume that (6.17) holds for some in-
teger p. Take any integer r ∈ [2p, 2p+1] and write it as r = r′ + r′′ with 2p−1 ¬
r1, r2 ¬ 2p. By using Ir = Ir1Ir2 and the multiplicative property (6.13), we get
for an odd index 2n− 1

a2n−1(I
r) = a2n−1(I

r1Ir2) ¬ an(Ir1) an(Ir2)
¬ Cr1Bpn

−r1 · Cr2Bpn
−r2 = Cr B2

p n
−r

= Cr B2
p · 2r (2n)−r ¬ Cr [B2

p · 22
p+1

] (2n)−r

= Cr · 2 2p·2p+2p+1
(2n)−r = Cr 2(p+1)2p+1

(2n)−r

= Cr Bp+1 (2n)
−r ¬ CrBp+1 (2n− 1)−r.

For an even index 2n we simply have

a2n(I
r) ¬ a2n−1(Ir) ¬ CrBp+1 (2n)

−r.

Therefore, (6.17) is proved by induction.
For r and p as in (6.17), we haveBp = (2p)2

p ¬ (2r)2r. Hence, (6.16) follows
from (6.17). �
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We now relate approximation numbers an(Ir) to the eigenvalues λj,r of the
operator CW

1,r = Ir+1(Ir+1)∗. We have

λ2j,r ¬ λ2j−1,r
by (6.14)

= a2j−1
(
Ir+1(Ir+1)∗

)
by (6.13)

¬ aj(I
r+1)aj

(
(Ir+1)∗

) by (6.12)
= aj(I

r+1)2

by (6.16)

¬ C2(r+1)
(
2(r + 1)

)4(r+1)
j−2(r+1).

This can be written as

λj,r ¬ C r
1 r

4(r+1) j−2(r+1) for all r, j ∈ IN.

Take a (small) positive α. Consider an integer r so large that r ­ C1/α
1 and

2(r + 1)τ > 1. Then again for τ ∈ [τ0, 1] we can sum up

∞∑
j=⌈rM ⌉+1

λτj,r ¬ C rτ
1 r4(r+1)τ

∞∑
j=⌈rM ⌉+1

j−2(r+1)τ

¬ r(4+α)rτ+4τ
∞∫
rM
x−2(r+1)τ dx

=
rrτ(4+α−2M) r4τ+M(1−2τ)

2(r + 1)τ − 1
.

We relate the last estimate to λ2,r = Θ
(
1/

(
(r!)2r4

))
. Since by Stirling’s formula

r! = rr+1/2 e−r
√
2π

(
1 + o(1)

)
, we have

λ2,r =
e2r

2π r2r+5

(
1 + o(1)

)
as r →∞.

Therefore,

∞∑
j=⌈rM ⌉+1

λτj,r = O
(
λτ2,r

r−rτ(2M−6−α) r9τ+M(1−2τ)

2(r + 1)τ − 1
e−2rτ

)
= O(λτ2,r r−rτ(2M−6−α)),

where the factors in the big O notation are independent of r, τ and α.
Assume thatM > 3. Then we can take a positive α such that 2M − 6−α > 0

and get

sup
τ∈[τ0,1]

∞∑
j=⌈rM ⌉+1

λτj,r

λτ2,r
= O(r−h) as r →∞.
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Hence,

sup
τ∈[τ0,1]

∞∑
j=1

λτj,r

λτ2,r
= O(r−h) as r →∞,

assuming (6.11) holds for some M > 3. It is easy to see that such a number M
exists since τ > 3

5 . This completes the proof. �

7. PROOF OF THEOREM 4.2

As in the Euler case, we begin with polynomial tractability. We now need to
show that

PT ⇒ lim inf
k

rk
ks

> 0 ⇒ SPT ⇒ PT.

Observe that, for λd,j = λW
d,j and τ ∈ (0, 1), the expression in (5.2) is now

(7.1) ad :=

( ∞∑
j=1

λτd,j
)1/τ

∞∑
j=1

λd,j

=
d∏

k=1

(
1 + (λ2,rk/λ1,rk)

τ +
∞∑
j=3

(λj,rk/λ1,rk)
τ
)1/τ

1 + λ2,rk/λ1,rk +
∞∑
j=3

λj,rk/λ1,rk

.

Since λj,rk = Θ(j−2(rk+1)) as j →∞, with the factors in the Θ notation depend-
ing on rk, then ad is finite iff 2(rk + 1)τ > 1 for all rk. Then rk ­ r1 implies that
we need to consider τ ∈

(
1/(2r1 + 2), 1

)
.

Assume that we have polynomial tractability. Then ad ¬ C d q. Each ratio in
the product (7.1) is strictly larger than one. This implies that limk→∞ rk =∞.

Note that we can estimate ad from below by dropping the sums over j. Then

d∏
k=1

(
1 + (λ2,rk/λ1,rk)

τ
)1/τ

1 + 2λ2,rk/λ1,rk
< C d q.

Taking logarithms and using the asymptotic formulas for λ1,rk and λ2,rk from The-
orem 4.1 yield

sup
d

1

ln+ d

d∑
k=1

r−2τk <∞.

Since d r−2τd ¬
∑d

k=1 r
−2τ
k , we get r−2τd = O(d−1 ln+ d) and there exists δ > 0

such that

rd ­ δ
(

d

ln+ d

)1/(2τ)

for all d ∈ IN.

Letting s ∈
(
1/2, 1/(2τ)

)
we obtain

(7.2) lim inf
k→∞

rk
ks

> 0,

as claimed.
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Assume now that (7.2) holds for some s > 1
2 . For τ ∈

(
max

(
3/5, 1/(2s)

)
, 1
]

we can use the last assertion of Theorem 4.1 to conclude that

sup
d
ad =

∞∏
k=1

(
1 +O(r−2τk )

)1/τ
1 +O(r−2k )

¬ exp
{
O
( ∞∑
k=1

r−2τk

)}
(7.3)

= exp
{
O
( ∞∑
k=1

k−2sτ
)}
<∞.

By criterion (5.2) this implies strong polynomial and, obviously, polynomial tracta-
bility.

We turn to weak tractability. Assume that limk→∞ rk = ∞. We verify the
analogue of (5.6) for τ ∈

(
3
5 , 1

)
. From Theorem 4.1 we have

bd :=
1

d

d∑
k=1

∞∑
j=2

(
λW
j,rk

λW
1,rk

)τ

=
1

d

d∑
k=1

O(r−2τk ) = O
(
1

d

d∑
k=1

r−2τk

)
.

Clearly, limk r
−2τ
k = 0 implies limd bd = 0, which yields weak tractability.

Let r = limk→∞ rk <∞. Then proceeding exactly as for the Euler case, we
can show that nW(ε, d) is an exponential function of d, which contradicts weak
tractability and completes this part of the proof.

We finally consider quasi-polynomial tractability. The proof is similar to the
proof for the Euler case and we only sketch it. We need to study (5.7) and (5.12) for
the Wiener eigenvalues. For (5.7) we take δ = 1

2 and τ0 ∈
(
3
5 , 1

)
. Let us choose

d0 such that 1 − 1/(2 ln d0) ∈ [τ0, 1]. Then for all such d ­ d0 we have τd :=
1 − 1/(2 ln d) ∈ [τ0, 1] and we can use the result on the uniform convergence
presented in the last assertion of Theorem 4.1 with respect now to d. Let us put
Qk := λ2,rk/λ1,rk . We obtain

∞∑
j=1

λ
1−δ/ ln+ d
d,j( ∞∑

j=1
λd,j

)1−δ/ ln+ d
=

d∏
k=1

1 +Q
1−1/(2 ln d)
k +

∞∑
j=3

(λj,rk/λ1,rk)
1−1/(2 ln d)

(
1 +Qk +

∞∑
j=3

λj,rk/λ1,rk
)1−1/(2 ln d)

¬ O(1)
d∏

k=d0

1 +Q
1−1/(2 ln d)
k

(
1 + o(r−hk )

)
(1 +Qk)

1−1/(2 ln d)
,

with absolute constants as pre-factors in the O(·) notation.
Suppose that (4.2) holds. Then limk rk =∞ and

d∏
k=d0

(1 +Qk)
1/(2 ln d) ¬ exp

(
2

ln d

d∑
k=d0

Qk

)
¬ exp

(
C

ln d

d∑
k=d0

r−2k

)
is uniformly bounded in d. The factor

d∏
k=d0

1 +Q
1−1/(2 ln d)
k

(
1 + o(r−hk )

)
1 +Qk
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can be analyzed exactly as for the Euler case. By using Qk = Θ(r−2k ), we have

1 +Q
1−1/(2 ln d)
k

(
1 + o(r−hk )

)
1 +Qk

¬ 1+ d−3/2+C (1+ rk)
−2

(
ln+ rk
ln d

+ o(r−hk )

)
.

Recall that the assumption (4.2) yields r−2k = O(ln k/k), hence

d∏
k=d0

1 +Q
1−1/(2 ln d)
k

(
1 + o(r−hk )

)
1 +Qk

¬ exp

( d∑
k=d0

(
d−3/2 + C (1 + rk)

−2
[
ln+ rk
ln d

+ r−hk

]))
is also uniformly bounded in d. This means that (4.2) implies quasi-polynomial
tractability.

Suppose now that quasi-polynomial tractability holds. Then we use (5.12) and
its consequence (5.13), which is equivalent to (4.2). This completes the proof. �

Acknowledgments. The work of the first and the third authors was done while
they participated in the Trimester Program “Analysis and Numerics for High Di-
mensional Problems”, May-August 2011, in Bonn, Germany, and enjoyed warm
hospitality of the Hausdorff Research Institute for Mathematics.

REFERENCES

[1] C.-H. Chang and C.-W. Ha, The Green’s functions of some boundary value problems via
Bernoulli and Euler polynomials, Arch. Math. (Basel) 76 (2001) pp. 360–365.

[2] D. E. Edmunds and H. Triebel, Function Spaces, Entropy Numbers and Differential Op-
erators, Cambridge University Press, Cambridge 1996.

[3] F. Gao, J . Hanning and F. Torcaso, Integrated Brownian motions and exact L2-small
balls, Ann. Probab. 31 (2003), pp. 1320–1337.
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