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Abstract. There have been many papers published (in almost every
statistics related journal) suggesting that normal maximum likelihood is su-
perior or inferior to weighted least squares and other approaches. In this
note, we show that the three main estimation methods (normal maximum
likelihood, weighted least squares and ridge regression) all have the same
asymptotic covariance and that there is no gain in efficiency among them.
We also show how the bias of these estimators can be reduced and conduct
a simulation study to illustrate the magnitude of bias reduction.
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1. INTRODUCTION

Weighted least squares, normal maximum likelihood and ridge regression are
popular methods for fitting generalized linear models among others. See Jiang [8]
for a most excellent account.

There have been many studies in the literature comparing the above methods
and others. Many papers have claimed that maximum likelihood can be more effi-
cient or less efficient than least squares or weighted least squares. Here, we discuss
seven such papers. There are many other papers, appearing in almost every statis-
tics and related journal.

Hausman and Wise [7] claim in their Section 10.3 entitled Relative efficiencies
of weight least squares versus maximum likelihood estimates that the latter is more
efficient. They state that “the gain in efficiency from using maximum likelihood in-
stead of weighted least squares is small” in some cases and “the relative efficiency
of maximum likelihood becomes substantial” in other cases. The basic model used
by Hausman and Wise [7] is: Y = Xβ + ϵ, where Y is the dependent vector, X is
a design matrix, β is a parameter vector, and ϵ contains independent normal errors.
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Based on numerical results, Bonny et al. [4] state: “we introduced a fast maxi-
mum likelihood (ML) algorithm that is unbiased and more accurate than a weighted
least-squares fit on signal logarithm.” The basic model used by Bonny et al. [4] is:
I = M + b, where I is the “signal in a voxel of a magnitude image,” M is a pa-
rameter, and b is the noise assumed to follow the Rice–Nakagami distribution.

Mehrotra et al. [9] say: “The maximum likelihood equations are solved itera-
tively using an EM-like procedure. It is observed that these estimates have smaller
mean squared error than [. . .] iterative weighted least-squares estimates.” The basic
model considered by them is: Y = β + ϵ, where ϵ is assumed to have a multivari-
ate normal distribution.

Olsen et al. [10] state: “Simulated identification experiments show that
the maximum likelihood method performs better than a weighted least squares
method.” The basic model considered by them is: Y = Xβ + ϵ, where ϵ is as-
sumed to contain independent normal errors.

Abdi [1] says: “weighted least squares often performs better” than maximum
likelihood estimates. The basic model considered here is: y = a + bx + ϵ with ϵ
assumed to follow no particular distribution.

Emrich and Urfer [6] state again without any justification: “Normal mixtures
are applied in interval mapping to model the segregation of genotypes follow-
ing Mendel’s Law in successive generations of crossing. Standard methods use
least squares or maximum likelihood estimates. Theoretically, maximum likeli-
hood is known to result in more efficient estimates than least squares. In the interval
mapping literature, some authors state that both methods yield equivalent results,
whereas other authors emphasize the higher efficiency of maximum likelihood.”
The basic model used by Emrich and Urfer [6] is: y = ax+ dz + ϵ, where y is the
dependent variable, (x, z) are independent variables, (a, d) are parameters, and ϵ
is assumed to be normally distributed.

Candy et al. [5] say that the maximum likelihood estimate “was superior to
the other estimators considered, including that obtained using inverse probability
weighted least squares.” The basic model considered here is: y = g(θ) + ϵ, where
ϵ is assumed to be normally distributed and g(·) is a non-linear function of some
parameters but that can be approximated by a linear function.

We feel that such papers may lead to misunderstandings. The aim of this note
is to show:

(i) all three estimators (weighted least squares, normal maximum likelihood
and ridge regression) have the same asymptotic covariance matrix;

(ii) (asymptotically) iteration yields no first-order gain in efficiency for these
estimators; and

(iii) a correction can be used to reduce bias to O(n−2) without changing the
asymptotic covariance of the estimators, where n is the sample size.

One could apply Withers [12] to reduce the bias further, for example, to O(n−3).
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The last of the three aims is the major contribution of this note. The first two
are well known to some extent for a variety of models, including the ones consid-
ered in this note. However, as explained, there are several papers claiming discrep-
ancies among asymptotic performances of the three estimators. So, we feel that it
is important that the first two aims are established even if they are known for some
models.

We consider the following model: Yi = Xβ + ei, 1 ¬ i ¬ n on Rp, where
e1, . . . , en are independent and identically distributed with zero mean and finite
moments of all orders but whose distribution is otherwise unknown. The models
considered by each of the seven papers (Hausman and Wise [7], Bonny et al. [4],
Olsen et al. [10], Abdi [1], Emrich and Urfer [6]) are particular cases of this model.
Furthermore, many of the generalized linear models and all of the general linear
models can be expressed in the form Y = Xβ + e.

We have considered the model Yi = Xβ + ei because it is the simplest and
the most traditional one. A future work is to see how the three aims can be consid-
ered and/or extended for more general models.

We estimate the unknown β in Rr say, assuming

(1.1) X is a known p× r matrix of rank r ¬ p.

Let F denote the distribution of Y = Y1. Set

µ = µ(F ) = E (Y) = Xβ,

µi1,...,is = E[(Y − µ)i1 . . . (Y − µ)is ] = E[ei1 . . . eis ],
s ­ 2, 1 ¬ i1, . . . , is ¬ p,

V = V(F ) = covarY = covar e1 = (µab).

We assume that V > 0 (positive definite). Let F̂ denote the empirical distribution
function of Y1, . . . ,Yn. Set

Y = n−1
n∑

i=1

Yi, V̂ = V(F̂ ) = n−1
n∑

i=1

(Yi −Y)(Yi −Y)′.

If the covariance V were known, then the best linear unbiased estimate of β is
g(Y,V), where

(1.2)
g (µ,V) = D−1N = Lµ, D = X

′
V−1X,

N = X
′
V−1µ, L = D−1X

′
V−1.

We consider the class of estimates

(1.3) β̂ = g(Y, Ṽ + εnk̂),
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where Ṽ is any estimate of V of the form

(1.4) Ṽ = w(Y, V̂)

satisfying

(1.5)
w (µ, V) = V,

∂w (µ,V) /∂µj ≡ 0, ∂ {w (µ,V)−V} /∂Vij ≡ 0, εn → 0

as n→∞, and k̂ = k(F̂ ) ­ 0 is any smooth functional in Rp×p. This includes the
ordinary weighted least squares estimate (Ṽ = V̂, k̂ = 0), the ridge regression
estimate (Ṽ = V̂, k̂ proportional to Ip), and, we shall show, the normal maximum
likelihood estimate, that is, the maximum likelihood estimate computed as if F
were Np(Xβ,V). If k(F ) is invariant to a change in mean, and F is symmetric
about µ, then the distribution of β̂ is symmetric about β.

We prove the following:

THEOREM 1.1. Under (1.1)–(1.5),

(1.6) covar(β̂) = n−1D−1 +O(n−2)

and

(1.7) E(β̂ − β) = n−1C+O(n−2 + n−1εn) ≈ n−1C,

where

(1.8) Ci = −Lia Kbc µabc, K = Ip −YL.

Also β̂ − n−1C(F̂ ) has bias O(n−2), where C(F ) = C.

The O(·) term for matrix or vector equations like (1.6) and (1.7) should be
interpreted elementwise. The convention in (1.8) and below is that repeated indices
are implicitly summed over their range 1, . . . , p. Note that K has rank p− r. This
theorem suggests that there is no advantage in going to the trouble of iterating
the normal maximum likelihood estimation equations rather than simply using the
weighted least squares estimate or a ridge regression estimate if detV is near zero.
We prove the theorem in Section 2, together with an analogous result for the case
εn ≡ 1.

If e1, . . . , en are independent and normally distributed, then no iteration is
needed to find the maximum likelihood estimates. This is because they are the same
as the least squares estimates. Iterations may be needed for non-normal errors.

In Section 3, we show that the normal maximum likelihood estimate satisfies
(1.5). Section 4 gives a q-sample extension for the weighted least squares estimate,
and shows that the bias can increase with q. The proofs use the techniques of
Withers [11], [13] based on von Mises derivatives, although no direct use of these
derivatives is needed here. Section 5 performs a simulation study to assess the
performances β̂ and β̂ − n−1C(F̂ ) with respect to bias. A range of distributions
is considered for the error terms.
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2. MAIN RESULTS

Here, we first prove Theorem 1.1, and then give an analogous result for the
case εn = 1.

P r o o f o f T h e o r e m 1.1. First suppose k̂ ≡ 0. Let us apply the formu-
las for the asymptotic covariance n−1a21 and asymptotic bias n−1C given by Co-
rollary 3.1 of Withers [11] with s = p, k = p + p2, f(Y1) = {Y1, Y1Y

′
1} = Z,

say, H = Y
(
E(Z)

)
= Y(F ) = Y

(
W(F )

)
µ(F ), where L(V) = L of (1.2), and

W(F ) = w
(
µ(F ),V(F )

)
. Therefore, T (F̂ ) = β̂. Then, using the convention in

Withers [11],

a21 =
[
12
]
= laνablb

′
,(2.1)

2C = [11] = labνab,(2.2)

where

νab = E
[(
Z− E(Z)

)
a

(
Z− E(Z)

)
b

]
,

la = ∂H/∂
(
E(Z)

)
a
, lab = ∂2H/∂

(
E(Z)

)
a
∂
(
E(Z)

)
b
.

Set M = E(YY′) = µµ′ +V, so H = H(µ,M). Put H·a = ∂H/∂µa, H·bc =
∂H/∂Mbc, and similarly define the partial derivatives H·a,b, H·a,bc, H·ab,cd. Simi-
larly, viewing functions of µ and V = M−µµ

′
as functions of µ and M, we can

define L·a, D·a, and so on as partial derivatives with respect to the components of
µ and M.

Then, by (2.1) and (2.2), we get

(2.3) a21 = H·a µab H
′
·b +O+H·ab µab,cd H

′
·cd = a121 + a221 + a321,

say, where

O = H·a µa,bc H
′
·bc, µa,bc = covar(Y1a, Y1bY1c),

µab,cd = covar(Y1aY1b, Y1cY1d),

and, for any p× pO, O = O+O
′
. Also

(2.4) 2C = H·a,b µab + 2H·a,bc µabc +H·ab,cd µabcd = C1 + 2C2 +C3,

say. Now

(2.5) (Ip −YL)µ = 0, so Kµ = 0,
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L·a = −LW·a K and H·a = L·a µ+ Lµ·a = Lµ·a. Consequently, the first term
in (2.3) is a121 = Lµ·a µab µ

′
·b L

′
. Moreover,

(µ·a)i = δia,

where

δia =

{
1 if i = a,
0 if i ̸= a.

Thus, (µ·a µab µ·b)
′
ij = Vij and a121 = LVL

′
= D−1. Similarly, H·ab = L·abµ+

Lµ·ab = 0 since L·ab = −LW·abK and µ·ab = 0. So, a21 = a121 = D−1, which
proves (1.6).

Also
K·a = −K′

W·aK,

L·a,b = −LW·a,bK+
∑
a,b

LW·aK
′
W·bK,

where ∑
a,b

f(a, b) = f(a, b) + f(b, a),

and
H·a,b = L·a,bµ+ L·a µ·b + L·bµ·a =

∑
a,b

L·aµ·b.

Consequently, we have

C1 = 2L·a µ·bVab = −2LV·a Kµ·b Vab = 2Lµ µ
′
·aKµ·b Vab

since W·a = V·a = −µ·aµ
′ − µµ

′
·a, and Kµ = 0. Also µ

′
·aKµ·bVab = Kab Vab

= trKV = 0, so C1 = 0.
Now

L·ab,cd = −LW·ab,cd K+
∑
ab,cd

LW·abK
′W·cd K,

where ∑
ab,cd

f(a, b, c, d) = f(a, b, c, d) + f(c, d, a, b).

Thus, since µ·ab = 0, we have H·ab,cd = L·ab,cd µ = 0, and so C3 = 0. Moreover,
L·bc = −LW·bcK and

L·a,bc = −LW·a,bcK+
∑
a,bc

LW·aK
′
W·bc K,

where ∑
a,bc

f(a, b, c) = f(a, b, c) + f(c, a, b) + f(b, c, a),
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and
H·a,bc = L·a,bcµ+ L·a µ·bc + L·bcµ·a = −LW·bc Kµ·a.

Moreover, (W·bc)jk = (V·bc)jk = δbj δck, and we get

(H·a,bc)i = −Lij δbj δck Kkc δla = −Lib Kca.

Hence, by (2.4), Theorem 1.1 is proved when k̂ = 0.
For general k̂ = k(F̂ ), we can expand the functional

β̃ = T(n)(F̂ ) = g
(
µ(F̂ ),V(F̂ ) + εn k(F̂ )

)
as

T (F̂ ) +
∞∑
i=1

εin Ti(F̂ ),

where Ti(F ) = 0 since T(n)(F ) = β. Also E
(
Ti(F̂ )

)
= O(n−1), so (1.7) holds.

This completes the proof of Theorem 1.1. �

We now cover the case (1.3) with εn ≡ 1 and k̂ of the form k̂ = k(Y, V̂).
This is equivalent to assuming (1.3) and (1.4) with εn = 0.

THEOREM 2.1. Suppose that θ̂W = g(Y,Ŵ), where Ŵ = w(Y, V̂). Set

(2.6)
W = w (µ,V) , DW = X

′
W−1X,

LW = D−1WX
′
W−1, KW = W−1 (Ip −XLW) .

Then β̂W has covariance n−1LW VL
′
W +O(n−2) and bias n−1CW +O(n−2),

where

CW = −LWW·aKW µ·b µab − LW W·bc KW µ·a µabc,

(µ·b)i = δib,

W·b = ∂w(µ,M− µµ
′
)/∂µb at M = E(YY

′
),

W·ab = ∂w(µ,V)/ ∂Vab.

P r o o f. This is similar to that of Theorem 1.1. �

3. THE NORMAL MAXIMUM LIKELIHOOD ESTIMATION

The normal maximum likelihood estimates for β, V are β̂ = g(Y, Ṽ), Ṽ =

V̂ + (Y − µ̂)(Y − µ̂)
′
, where µ̂ = Xβ̂. Starting with Ṽ = V̂, one iterates these

equations until satisfactory convergence is obtained. So, Ṽ = W(F̂ ), where W(F )
is defined in terms of µ, V by the implicit equation

W = V + (Ip −XL)µµ
′
(Ip −XL)
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at L = LW of (2.6). Differentiating, we have

W·a = V·a −Pa +Qa, where Pa = XL·a µµ
′
(Ip −XL)

′
= 0

by (2.5) and
Qa = (Ip −XL)µ·a µ

′
(Ip −XL)

′
= 0

by (2.5). Similarly, W·bc=V·bc−Pbc, where Pbc=XL·bc µµ
′
(Ip−XL)

′
=0.

So, W = V, W·a = V·a and W·bc = V·bc. This proves that the maximum likeli-
hood estimate for V satisfies (1.5).

4. THE WEIGHTED LEAST SQUARES ESTIMATE FOR SEVERAL SAMPLES

Suppose we observe q random samples, the jth sample being from a distribu-
tion Fj on Rpj with mean µj = Xjβ, where Xj is a known pj × r matrix and β

an unknown r vector. Let µj
i1,...,is

denote µi1,...,is for Fj . Set

Vj = (µj
ab), Dj = X

′
j V
−1
j Xj , Nj = X

′
j V
−1
j µj , Lj = D

′
j X

′
j V
−1
j .

If {Vj} were known, the best linear unbiased estimate of β (and the maximum
likelihood estimate for F = {Fj} normal) is g(Y,V), where Y = {Yj}, V =
V(F ) = {Vj}, µ = µ(F ) = {µj}, g(µ,V) = D−1N, D =

∑q
j=1 λjDj , N =∑q

j=1 λjNj , λj = n0/nj and n0 is the minimum sample size. We assume that
each Vj > 0 and D > 0, that is, D has rank r, Vj has rank pj , j = 1, . . . , q. Put
F̃ = {F̂j}, the set of sample distributions. The weighted least squares estimate is

(4.1) β̂ = T (F̂ ) = g(Y, V̂),

where V̂ = {V̂j}, V̂j = V(F̂j), the jth sample covariance, and

T (F ) = g
(
µ(F ),V(F )

)
= D(F )−1N(F ) for D(F ) = D, N(F ) = N.

THEOREM 4.1. We have

(4.2) covar(β̂) = n−10 D−1 +O(n−20 )

and

(4.3) E(β̂ − β) = n−10 C+O(n−20 ),

where

Ci = −
q∑

j=1

λj L
j
iaK

j
bc µ

j
abc

with Kj
bc = λj V

bc
j − λ2

j J
j
bc, (V

bc
j ) = V−1j and Jj = V−1j YjL

j .
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P r o o f. By equations (2.10), (3.4) and Example 2.1 of Withers [13], (4.2)
and (4.3) hold with D−1 replaced by

a21 =
[
12
]
=

q∑
j=1

λj [1
2]j , 2C = [11] =

q∑
j=1

λj [11]j ,

where [
12
]
j
= ∂H/∂

(
E(Zj)

)
a
νab
j ∂H

′
/∂

(
E(Zj)

)
b
,

[11]j = ∂2H/∂
(
E(Zj)

)
a
∂
(
E(Zj)

)
b
νab
j ,

Zj = {Yj ,YjY
′
j} for Yj ∼ Fj ,

νab
j = E

[(
Zj − E(Zj)

)
a

(
Zj − E(Zj)

)
b

]
,

H = H
(
E(Z1), . . . ,E(Zq)

)
= T (F ) of (4.1).

The rest of the proof is similar to that of Theorem 2.1. For example,

[11]j = Hj
·a,b µ

j
ab + 2Hj

·a,bc µ
j
abc +Hj

·ab,cd µ
j
abcd,

where Hj
·a = ∂H/∂(µj)a, Hj

·bc = ∂H/∂(Mj)bc, and so on, µj = E(Yj), Mj =

E(YjY
′
j). �

Of special interest is the case when all q distributions are univariate: pj ≡ 1.
In this case, aj = X

′
j is a column vector, Fj has mean a

′
jβ, β(µ,V) = D−1N,

where N = n0

∑q
j=1 µjaj/(njVj) and D = n0

∑q
j=1 aja

′
j/(njVj). Therefore,

we need q ­ r for D to have full rank. Also

cj = λjL
j = n0D

−1aj/ (njVj)

is a column vector, and

Kj = λj/Vj − a
′
j D
−1aj λ

2
j /V

2
j = (1− a

′
jcj)λj/Vj

is a scalar. The leading bias term is

n−10 C = −
q∑

j=1

cj(1− a
′
jcj)µ

j
111/(njVj).

Note that
∑q

j=1 cja
′
j = Ir.

If also β is univariate (r = 1) then D = β−2D0, where D0 =
∑q

j=1 λjµ
2
j/Vj ,

and the relative bias is (approximately)

n−10 C/β = −n−10 D−10

q∑
j=1

λ2
j (1− qj) νj ,
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where qj = (λjµ
2
j/Vj)/D0, so

∑q
j=1 qj = 1, and νj = µj µj

111/V
2
j . These ex-

pressions are not changed by rescaling {Fj}. Consequently, for fixed {pj , νj} the
relative bias decreases from∞ at D0 = 0 to zero at D0 =∞. If also Fj ≡ L σjY0
for some random variable Y0 and nj ≡ n, then this gives the asymptotic variance

(nq)−1β2µ2(Y0)
(
E(Y0)

)−2
and the relative bias (approximately)

−n−1(1− q−1)
(
E(Y0)

)
µ3(Y0)µ2(Y0)

−2

which doubles as q increases from 2 to ∞: bias O(n−2) is only achieved if one
discards all samples save one. Of course, the cost of this procedure is to increase
the covariance by a factor q. This illustrates that the bias need not decrease as the
total sample size increases.

Suppose pj ≡ 1, r = 1, Fj = LσjGj for Gj ∼ Gamma(γj) and σi some
scale factor. Then, regardless of the choice of {Yj} and {σj},

D0 =
2∑

j=1

λjγj , qj = λjγj/D0, νj = 2,

so D0 approaches zero as all γj approach zero, and D0 approaches ∞ if any γj
approaches∞.

If nj ≡ n and γj ≡ γ, then the relative bias is asymptotically

n−10 C/β = −2n−1γ−1(1− q−1)

which doubles from −n−1γ−1 for two samples to −2n−1γ−1 for q =∞.

5. A SIMULATION STUDY

Here, we perform a simulation study to compare the usual maximum likeli-
hood estimate, β̂, with the bias reduced version, β̂ − n−1C(F̂ ), given by Theo-
rem 1.1. For simplicity, we take into consideration the model: yi = β0 + β1xi + ϵi
for i = 1, 2, . . . , n, where β0 is the intercept parameter, β1 is the slope parameter,
and ϵi are independent errors not necessarily normally distributed. In our simula-
tions, we take β0 = 0, β1 = 1, xi = i, i = 1, 2, . . . , n, n = 10, 20, . . . , 1000 and
consider the following distributions for {ϵi, i = 1, 2, . . . , n}:

1. skew normal distribution (Azzalini [2]) with λ = 1;
2. skew normal distribution (Azzalini [2]) with λ = 5;
3. standard Gumbel distribution;
4. skew Cauchy distribution (Behboodian et al. [3]) with λ = 1.
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Figure 1. The biases for the maximum likelihood (solid curve) and bias reduced (broken
curve) estimates of β1 when the errors follow the skew normal distribution with λ = 1
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Figure 2. The biases for the maximum likelihood (solid curve) and bias reduced (broken
curve) estimates of β1 when the errors follow the skew normal distribution with λ = 5
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Figure 3. The biases for the maximum likelihood (solid curve) and bias reduced (broken
curve) estimates of β1 when the errors follow the standard Gumbel distribution
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Figure 4. The biases for the maximum likelihood (solid curve) and bias reduced (broken
curve) estimates of β1 when the errors follow the skew Cauchy distribution with λ = 1
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All of these four distributions are asymmetric. The skew normal distribution con-
tains the standard normal as a particular case for λ = 0.

We assess the performance of the two estimates (the usual maximum likeli-
hood estimate and its bias reduced version) by computing the bias of the slope
parameter β1. This was computed by fitting the simple linear regression model ten
thousand times for every n. The biases of the slope parameter versus n are plotted
in Figures 1–4 for the four distributions.

It is evident that the bias reduced version has smaller biases for all values of
n and for the four distributions considered. The biases are consistently smaller for
the estimate given by Theorem 1.1. The bias reduction appears substantial for all
four distributions for n up to two hundred. With respect to n, the biases generally
decrease in magnitude for all of the four distributions.
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