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Abstract. Lehmann and Rojo [8] proposed a concept of invariance of
stochastic orders and related probability metrics with respect to increasing
transformations of random variables. Bartoszewicz and Benduch [3] and
Bartoszewicz and Frąszczak [4] applied a concept of Lehmann and Rojo to
new settings. In the paper these results are applied to the problem of robust-
ness in the sense of Zieliński [11], [12]. Metrics related to some stochastic
orders are used to study the continuity (robustness) of scale parameter es-
timators when contaminations of the models are generated by stochastic
orders. The exponential model is considered in detail.
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1. PRELIMINARIES

Let X and Y be two random variables, F and G their respective probabil-
ity distribution functions, and f and g their respective density functions, if they
exist. Denote by F = 1 − F the tail (or survival function) of F , by F−1(u) =
inf{x : F (x) ­ u}, u ∈ (0, 1), the quantile function, and by F−1(0) and F−1(1)
the lower and upper respective bounds of the support of F being an interval; for
G analogously. We identify distribution functions F and G with respective prob-
ability distributions. We denote by fF−1 the composition of f and F−1, and by
G−1F the composition of G−1 and F (similarly for other densities, distributions
and quantile functions). We use increasing in place of nondecreasing, and decreas-
ing in place of nonincreasing.

Let (X1, X2, . . . , Xn) be a sample from the distribution F . Let X1:n ¬ X2:n

¬ . . . ¬ Xn:n be order statistics of the sample. We denote by Fi:n the distribution
function of Xi:n and by fi:n its density, if exists, i = 1, 2, . . . , n.
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Let F denote a class of distributions on R. Define a preorder S of distributions
from F as follows:

F ¬S F for all F ∈ F ,
F ¬S G and G ¬S H ⇒ F ¬S H.

In the literature of the subject one defines equivalently preorders between relative
random variables and uses the notation X ¬S Y if and only if F ¬S G.

Some of the preorders will be considered in this paper. Recall their definitions
and some properties for completeness. For more details and properties we refer to
Shaked and Shanthikumar [10].

We say that F is smaller than G in the likelihood ratio order (F ¬lr G) if
g(x)/f(x) is increasing. F is said to be smaller than G in the hazard rate order
(F ¬hr G) if G(x)/F (x) is increasing or rF (x) ­ rG(x) for every x if F and
G are absolutely continuous, where rF (x) = f(x)/F (x) is the hazard rate func-
tion of F (for rG analogously). We say that F is stochastically smaller than G
(F ¬st G) if F (x) ­ G(x) for every x or, equivalently, F (x) ¬ G(x) for every x.

We say that F is smaller than G in the dispersive order (F ¬disp G) if it
follows that G−1F (x)− x is increasing in x.

Lehmann and Rojo [8] proposed a concept of invariant stochastic orders and
invariant probabilistic metrics consistent with the stochastic orders.

Let Ψ be a class of operations ψ : F → F . The preorder S is invariant under
Ψ if

(F ¬S G)⇒
(
ψ(F ) ¬S ψ(G)

)
for all ψ ∈ Ψ.

The metric dS(F,G), invariant under transforms from Ψ, satisfies the following
conditions:

(a) if F ¬S G and G ¬S H , then dS(F,G) ¬ dS(F,H);
(b) dS(F,G) = dS

(
ψ(F ), ψ(G)

)
for all ψ ∈ Ψ.

Lehmann and Rojo [8] considered the class Φ of all continuous increasing
functions φ : R→ R of random variables X and Y . Then we define:

ψ(F ) = Fφ−1, F ∈ F .

It is well known (see, e.g., Shaked and Shanthikumar [10]) that the likelihood,
hazard rate and usual stochastic orders are invariant under these transformations.
Rojo and Lehmann [8] defined and studied the following metrics related to these
orders:

dlr(F,G) = sup
x∈R

∣∣∣∣log g(x)f(x)

∣∣∣∣ ,
dhr(F,G) = sup

x∈R

∣∣∣∣log Ḡ(x)F̄ (x)

∣∣∣∣ ,
and

(1.1) dst(F,G) = sup
t∈(0,1)

|G−1(t)− F−1(t)|.
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Bartoszewicz and Benduch [3] gave a characterization of some stochastic or-
ders of absolutely continuous distributions on [0,∞) in terms of invariance under
the GTTT transform

H−1F (t;φ) =
F−1(t)∫

0

φF (x)dx, F ∈ F , t ∈ (0, 1),

with respect to the class Φ0 of continuous functions φ : (0, 1)→ R+ \ {0}. Here
ψ(F ) = HF (t;φ). Particularly, they proved that the dispersive order is invariant
under the GTTT transform and the respective metric is of the form

ddisp(F,G) = sup
t∈(0,1)

∣∣∣∣log fF−1(t)gG−1(t)

∣∣∣∣.
Bartoszewicz and Frąszczak[4] considered also the invariance of some stochas-

tic orders under transformations being compositions of distribution functions φ ∈
Φ1 with supports on [0, 1] with underlying distributions, i.e. ψ(F ) = φF , F ∈ F .
Particularly, for the usual stochastic order and the dispersive one the respective
metric is dst(F,G) defined by (1.1).

We use the above metrics to define a continuity of estimators with respect to
the stochastic orders. The invariance of these orders and metrics does not have any
importance in our considerations.

2. RESULTS

2.1. Continuity of estimators with respect to stochastic orders. Zieliński [11]
proposed the following concept of robustness. Consider a statistical model M =
(X ,A,F0), F0 ⊂ F , where F is the family of all probability distributions on the
sample space (X ,A). Define a function π : F0 → 2F , called the contamination
of the model M , satisfying the following two conditions: F ∈ π(F ), F ∈ F0, and
π(F )∩F0 = {F}. LetF1 =

∪
F∈F0

π(F ). The modelM1 = (X ,A,F1) is called
the extension of M or the supermodel.

Bartoszewicz [1], [2], studied robustness of estimators in some statistical mod-
els, using Zieliński’s concept of robustness, when contaminations of the model are
generated by some stochastic order S on F1. For F ∈ F0 we define the contami-
nation of F generated by the order S as the set of distributions from F1:

(2.1) πH,K(F ) = {G : H ¬S G ¬S K},

where H and K are fixed distributions from F1, F ∈ πH,K(F ) and πH,K(F ) ∩
F0 = {F}; see [2] for details.

In the statistical theory of robustness in the sense of Huber [7] and Hampel et
al. [6] there is a continuity of estimators, which plays an important role and means
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often robustness. It is necessary that distributions of an estimator in the model and
in the extended (contaminated) model should not essentially differ when sample
distributions do not essentially differ in these models. Such comparisons are usu-
ally due using neighborhoods (contaminations) generated by week topologies and
probability metrics. To make the robustness considered by Zieliński [11] and Bar-
toszewicz [2], [3] more close to the robustness in the sense of Huber and Hampel
we use probability metrics given in [8] as well as in [3] and [4] and propose the
following definition of continuity of estimators with respect to a given stochastic
order.

Let X = (X1, X2, . . . , Xn) be a sample from the distribution F ∈ F0. The
statistical model of the sample is of the product form (R,B,F0)n, and therefore
we take into account in our considerations simply the model (R,B,F0) of one
observation. Let T = T (X) be an estimator (a statistical functional). Denote by
L(T, F ) the distribution of T and by FT

1 the set of these distributions when F ∈
F1. Let the stochastic order S and the relative metric dS be defined on F1 as well
as on FT

1 . Denote by πH,K(F ) a contamination of the model generated by the
order S. Similarly as Hampel et al. [6], Chapter 2, Definition 3, we propose the fol-
lowing definition.

DEFINITION 2.1. The estimator T is continuous in the metric dS with respect
to the order S in the contamination πH,K(F ) if for every distribution F ∈ F0 and
G ∈ πH,K(F ):

(i) F ¬S G⇒ L(T, F ) ¬S L(T,G),
(ii) ∀ε>0∃δ>0 dS(F,G) < δ ⇒ dS

(
L(T, F ),L(T,G)

)
< ε.

Let (X1, X2, . . . , Xn) be a sample from the distribution F ∈ F0 = {F (·; θ) :
θ > 0}, F (x; θ) = F (x/θ), where F is a fixed distribution on the positive half-
line, and the estimators Ti = Xi:n/E(Xi:n), i = 1, 2, . . . , n, of the parameter θ.
Let H and K be also fixed distributions on the positive half-line, and define the
contamination πH,K(F ) = {G : H ¬st G ¬st K} generated by the usual stochas-
tic order and the contamination π̃H,K(F ) = {G : H ¬disp G ¬disp K} generated
by the dispersive order. We can formulate the following result.

THEOREM 2.1. The estimators Ti = Xi:n/E1(Xi:n), i = 1, 2, . . . , n, are con-
tinuous in the metric dst:

(a) with respect to the usual stochastic order in the contamination πH,K(F );

(b) with respect to the dispersive order in the contamination π̃H,K(F ).

P r o o f. The theorem is implied by preservation of these two orders by or-
der statistics. Let G be any distribution from πH,K (π̃H,K , respectively). Since
L(Xi:n, F ) = Fi:n = Bi:nF and L(Xi:n, G) = Gi:n = Bi:nG, where Bi:n is the
beta distribution function B(i, n− i+ 1), i = 1, 2, . . . , n, we have

dst
(
L(Ti, F ),L(Ti, G)

)
= dst(F,G), i = 1, 2, . . . , n.
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Thus for every ε > 0 there exists δ = ε and for every G ∈ πH,K (G ∈ π̃H,K , re-
spectively) we have

dst(F,G) < δ ⇒ dst
(
L(Ti, F ),L(Ti, G)

)
< ε, i = 1, 2, . . . , n,

and the proof is complete. �

Let now the family F0 = {F (·; θ) : θ > 0}, where F (x; θ) = F (x/θ) for a
fixed F on the positive half-line, be dominated by the Lebesgue measure. Let H
and K be also fixed absolutely continuous distributions on the positive half-line,
and define the contamination π̃H,K(F ) = {G : H ¬disp G ¬disp K} generated by
the dispersive order. The following theorem also holds.

THEOREM 2.2. The estimators Ti = Xi:n/E1(Xi:n), i = 1, 2, . . . , n, are con-
tinuous in the metric ddisp with respect to the dispersive orders in the contamina-
tion π̃H,K(F ).

P r o o f. SinceFi:n(x) = Bi:nF (x), x > 0,F−1i:n (t) = F−1B−1i:n (t), t ∈ [0, 1],
and the density of Fi:n is equal to fi:n(x) = bi:nF (x)f(x), we have

fi:nF
−1
i:n (t) = bi:nB

−1
i:n (t)fF

−1(B−1i:n (t)
)
, t ∈ [0, 1],

where bi:n is the density of the distribution Bi:n. Similarly,

gi:nG
−1
i:n(t) = bi:nB

−1
i:n (t)gG

−1(B−1i:n (t)
)
, t ∈ [0, 1].

Thus we have

ddisp(Fi:n, Gi:n) = sup
t∈(0,1)

∣∣∣∣log fi:nF−1i:n (t)

gi:nG
−1
i:n(t)

∣∣∣∣ = sup
t∈(0,1)

∣∣∣∣ log fF−1
(
Bi:n(t)

)
gG−1

(
Bi:n(t)

) ∣∣∣∣
= ddisp(F,G).

The metric ddisp is invariant with respect to multiplying by the same scale param-
eter, and then ddisp(Fi:n, Gi:n) = ddisp

(
L(Ti, F ),L(Ti, G)

)
. Therefore, for every

ε > 0 there exists δ = ε and for every G ∈ π̃F,K :

ddisp(F,G) < δ ⇒ ddisp
(
L(Ti, F ),L(Ti, G)

)
< ε, i = 1, 2, . . . , n,

which completes the proof. �

REMARK 2.1. The estimators given in Theorems 2.1 and 2.2 were constructed
by Bartoszewicz [1] in the context of bias-robustness of estimators when contam-
inations of the model are generated by stochastic orders. He proved [1] that the
statistic Tn = Xn:n/E1(Xn:n) is the uniformly most robust estimate of the scale
parameter θ in the class of nonnegative L-statistics, unbiased estimators in the
model, under contaminations πF,K(F ) and π̃F,K(F ). Now we see that Tn is also
continuous in the respective metrics with respect to considered orders.
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2.2. Continuity of estimators in the exponential model. Let (X1, X2, . . . , Xn)
be a sample from the distribution F ∈ F , where F is the family of exponential dis-
tributions F1(x; θ) = 1− e−x/θ, x > 0, with mean θ > 0 and its contamination of
the form

πγ1,k(θ) = {Fγ(x; θ) = γF1(x; θ)+(1− γ)F1(x; θ/k) : x > 0, 0 < γ1 ¬ γ ¬ 1},

where γ1 is a fixed number from (0, 1] and k ­ 2 is a fixed integer. The contami-
nation πγ1,k(θ) is a set of mixtures of two exponential distributions with densities:

(2.2) fγ(x; θ) =
γ

θ
e−x/θ +

k(1− γ)
θ

e−kx/θ, x > 0, 0 < γ1 ¬ γ ¬ 1.

It is obvious that any density of the form (2.2) is not exponential except for the case
γ = 1. It is easy to verify that πγ1,k(θ) is ordered with respect to likelihood ratio
order for every θ, i.e. Fγ(·; θ) ¬lr Fγ′(·; θ) whenever γ ¬ γ′, and therefore also
Fγ(·; θ) ¬hr Fγ′(·; θ) and Fγ(·; θ) ¬st Fγ′(·; θ) for every θ > 0. Thus πγ1,k(θ) is
a contamination of the form (2.1) where H = Fγ1 and K = F1 for S being the
likelihood ratio order, the hazard order and the usual stochastic one.

We shall prove the following result.

THEOREM 2.3. The estimator Tn = Xn:n/E1(Xn:n) is continuous in metrics
dlr and dhr with respect to likelihood ratio and hazard orders in the contamination
πγ1,k(θ).

P r o o f. It is well known that order statistics preserve the likelihood ratio and
hazard orders (see Shaked and Shanthikumar [10], Theorems 1.C.33 and 1.B.35).
Then it suffices to verify the condition (ii) in Definition 2.1.

Let us calculate dlr(F1, Fγ), γ ∈ [γ1, 1). We have

log
fγ(x; θ)

f1(x; θ)
= log

γθ−1e−x/θ + k(1− γ)θ−1e−kx/θ

θ−1e−x/θ
(2.3)

= log [γ + k(1− γ)e−(k−1)x/θ].

The function (2.3) is decreasing with maximum at zero and minimum at infin-
ity, which are equal to

log[γ + (1− γ)k] > 0 and log γ < 0,

respectively. It suffices to verify when

|log[γ + (1− γ)k]| ¬ (>) |log γ| =
∣∣∣∣− log

1

γ

∣∣∣∣ ,
which is equivalent to

k ¬ (>)
1 + γ

γ
.
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Therefore

dlr(F1, Fγ) = sup
x>0

∣∣∣∣log fγ(x; θ)f1(x; θ)

∣∣∣∣ = {
log[γ + (1− γ)k] for k > (1 + γ)/γ,
| log γ| for k ¬ (1 + γ)/γ.

Let cn = E1(Xn:n) = 1 + 1/2 + 1/3 + . . .+ 1/n and Fγ,Tn be the distribu-
tion function of Tn when Fγ (particularly, γ = 1) is the distribution of the observed
random variable. Let fγ,Tn be a density of Fγ,Tn . It is obvious that Fγ;Tn(x; θ) =
Fγ,n:n(cnx; θ) = [Fγ(cnx; θ)]

n and

fγ;Tn(x; θ) = cnfγ,n:n(cnx; θ) = ncnfγ(cnx; θ)[Fγ(cnx; θ)]
n−1.

Hence after easy calculations we obtain

fγ,Tn(x; θ)

f1,Tn(x; θ)
=

[
γ + (1− γ)1− e

−cnkx/θ

1− e−cnx/θ

]n−1
[γ + k(1− γ)e−cn(k−1)x/θ]

=
[
γ + (1− γ)

k−1∑
j=0

e−jcnx/θ
]n−1

[γ + k(1− γ)e−cn(k−1)x/θ].

The function log[fγ,Tn(x; θ)/f1,Tn(x; θ)] is decreasing with maximum at zero and
minimum at infinity, which are equal to

log{[γ + (1− γ)k]n} > 0 and log γn < 0,

respectively. Similarly as previously we obtain

dlr(F1,Tn , Fγ,Tn) = sup
x>0

∣∣∣∣log fγ,Tn(x; θ)

f1,Tn(x; θ)

∣∣∣∣
=

{
n log[γ + (1− γ)k] for k > (1 + γ)/γ,
n| log γ| for k ¬ (1 + γ)/γ.

Thus dlr(F1,Tn , Fγ,Tn) = ndlr(F1, Fγ) and for every ε > 0 there exists δ = ε/n
such that for every distribution G ∈ πγ1,k(θ) and every θ > 0,

dlr(F1, G) < δ ⇒ dlr
(
L(Tn, F1),L(Tn, G)

)
< ε.

Now we verify the condition (ii) in Definition 2.1 for the metric dhr. We have

dhr(Fγ , F1) = sup
x>0

∣∣∣∣log F̄γ(x; θ)

F̄1(x; θ)

∣∣∣∣ = sup
x>0

∣∣∣∣ log γe−x/θ + (1− γ)e−xk/θ

e−x/θ

∣∣∣∣
= sup

x>0
| log[γ + (1− γ)e−x(k−1)/θ]| = log γ−1.
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It is easy to notice that F̄γ,Tn(x; θ) = 1 − [Fγ(cnx; θ)]
n with cn = E1(Xn:n) is

the survival function of Tn when Fγ is the distribution of the observed random
variable. The ratio

F̄γ,Tn(x; θ)

F̄1,Tn(x; θ)
=

1− [γ(1− e−xcn/θ) + (1− γ)(1− e−xcnk/θ)]n

1− [1− e−xcn/θ]n

is decreasing with maximum equal to one at x = 0 and minimum equal to γ at
infinity. Hence

dhr(F1,Tn , Fγ,Tn) = sup
x>0

∣∣∣∣log F̄γ,Tn(x; θ)

F̄1,Tn(x; θ)

∣∣∣∣ = log
1

γ
= dhr(F1, Fγ).

Thus for every ε > 0 there exists δ = ε and for every distribution G ∈ πγ1,k(θ)
and every θ > 0 we have

dhr(F1, G) < δ ⇒ dhr
(
L(Tn, F1),L(Tn, G)

)
< ε,

which completes the proof. �

REMARK 2.2. The estimator Xn:n/E1(Xn:n) is the uniformly most bias-
robust estimator of θ in the class of nonnegative linear combinations of order
statistics, unbiased estimators in the exponential model, under the contamination
πγ1,k(θ); see [2].

Consider a sample (X1, X2, . . . , Xn) from the distribution F ∈ F , where F
is the Marshall–Olkin family of distributions with survival function (see [9]),

F̄α(t) =
αF̄ (t)

1− (1− α)F̄ (t)
, α > 0,

where F (t) = F1(t; θ) = 1 − e−t/θ. In the sequel, the distribution Fα from this
family will be denoted by

Fα(t; θ) =
1− e−t/θ

1− (1− α)e−t/θ
,

and its density by

fα(t; θ) =
αθ−1e−t/θ

[1− (1− α)e−t/θ]2
.

Consider a contamination of the exponential model of the form:

πα0(θ) = {Fα(·; θ) : 0 < α0 ¬ α ¬ 1},

where α0 is fixed. It is easy to verify that this family of distributions is ordered with
respect to the likelihood ratio order for every θ, i.e. Fα(·; θ) ¬lr Fα′(·; θ) if α ¬ α′,
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and hence they are also ordered with respect to the hazard and usual stochastic
order. From Theorem 1 in Benduch-Frąszczak [5] we immediately infer that πα0(θ)
is also ordered with respect to the dispersive order. Therefore, the contamination
πα0(θ) is of the form (2.1), where H = Fα0 , K = F1 and S being the likelihood
ratio order or the dispersive one.

We shall prove the following result.

THEOREM 2.4. The estimator Tn = Xn:n/E1(Xn:n) is continuous:
(i) in the metric dlr with respect to likelihood ratio order in the contamination

πα0(θ);

(ii) in the metric ddisp with respect to dispersive order in the contamination
πα0(θ).

P r o o f. It is well known that order statistics preserve the likelihood ratio
order as well as the dispersive one; see, e.g., Shaked and Shanthikumar [10].
Then it suffices to verify only the condition (ii) in Definition 2.1. First calculate
dlr(F1, Fα), α0 ¬ α < 1:

dlr(F1, Fα) = sup
x>0

∣∣∣∣log fα(x; θ)f1(x; θ)

∣∣∣∣ = sup
x>0

∣∣∣∣log α

[1− (1− α)e−x/θ]2

∣∣∣∣ = log
1

α
.

Let now fα,Tn denote a density of the distribution of Tn when the observed
random variable has the distribution Fα. We have

fα,Tn(x; θ) = ncnfα(cnx; θ)[Fα(cnx; θ)]
n−1

=
nαcne

−xcn/θ

θ[1− (1− α)e−xcn/θ]2

[
1− e−xcn/θ

1− (1− α)e−xcn/θ

]n−1
,

where cn = E1(Xn:n). Thus

fα,Tn(x; θ)

f1,Tn(x; θ)
=

α

[1− (1− α)e−xcn/θ]n+1
,

and

dlr(Fα,Tn , F1,Tn) = sup
x>0

∣∣∣∣log α

[1− (1− α)e−xcn/θ]n+1

∣∣∣∣= log
1

αn
= ndlr(F1, Fα).

Hence for every ε > 0 there exists δ = ε/n such that for every distribution G ∈
πα0(θ) and each θ > 0 the following implication holds:

dlr(F1, G) < δ ⇒ dlr
(
L(Tn, F1),L(Tn, G)

)
< ε.
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The inverse of the density quantile function of F1 is of the form

f1F
−1
1 (t; θ) =

1

θ
(1− t), t ∈ (0, 1).

It is easy to calculate

fαF
−1
α (t; θ) =

1

α(1− t+ tα)2
f1F

−1
1

(
αt

1− t+ αt
; θ

)
=

1

αθ
(1− t)(1− t+αt).

Then we obtain

ddisp(F1, Fα) = sup
t∈(0,1)

∣∣∣∣log f1F−11 (t; θ)

fαF
−1
α (t; θ)

∣∣∣∣ = sup
t∈(0,1)

∣∣∣∣log α

1− t+ αt

∣∣∣∣ = log
1

α
.

For the distributions of Tn, Fα,Tn(x; θ) = [Fα(cnx; θ)]
n, we calculate the quantile

function of the form
F−1α,Tn

(t; θ) =
1

cn
F−1α (t1/n, θ).

Therefore, we may calculate a quantile density of Fα,Tn :

fα,TnF
−1
α,Tn

(t; θ) =
ncn
αθ

t(n−1)/n(1− t1/n)(1− t1/n + αt1/n),

and next obtain

ddisp(F1,Tn , Fα,Tn) = sup
t∈(0,1)

∣∣∣∣ log f1,TnF
−1
1,Tn

(t; θ)

fα,TnF
−1
α,Tn

(t; θ)

∣∣∣∣
= sup

t∈(0,1)

∣∣∣∣ log α

1− t1/n + αt1/n

∣∣∣∣ = log
1

α
= ddisp(F1, Fα).

Hence for every ε > 0 there exists δ = ε and for every distribution G ∈ πα0(θ)
and each θ > 0 the implication

ddisp(F1, G) < δ ⇒ ddisp
(
L(Tn, F1),L(Tn, G)

)
< ε

holds. �

REMARK 2.3. Using methods presented in [2] one may also prove that the
statistic Xn:n/E1(Xn:n) is the uniformly most bias-robust estimator of θ in the
class of nonnegative linear combinations of order statistics, unbiased in the expo-
nential model, under the contamination πα0(θ).
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