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Abstract. We study the instantaneous frequency (IF) of continuous-
time, complex-valued, zero-mean, proper, mean-square differentiable, non-
stationary Gaussian stochastic processes. We compute the probability den-
sity function for the IF for fixed time, which generalizes a result known
for wide-sense stationary processes to nonstationary processes. For a fixed
point in time, the IF has either zero or infinite variance. For harmonizable
processes, we obtain as a consequence the result that the mean of the IF, for
fixed time, is the normalized first-order frequency moment of the Wigner
spectrum.
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1. INTRODUCTION

This paper concerns the instantaneous frequency (IF) of mean-square differ-
entiable Gaussian complex-valued zero-mean proper nonstationary stochastic pro-
cesses defined on R. The IF of a stochastic process is the derivative of the phase
function. It is a real-valued stochastic process. Our main result is a formula for the
probability density function (pdf) for the IF, for an arbitrary fixed point in time.
The pdf is parameterized by the covariance function of the process and its partial
derivatives, of order not greater than two, evaluated at the same point in time.

The time axis may be divided into three subsets where the variance of the IF
process exhibits completely different behavior: In the first subset, the pdf has heavy
tails and behaves like x−3 for large x, which implies that the IF variance is infinite.
In the second subset, the IF has a degenerate pdf consisting of a Dirac measure
at its mean. In the third subset, the IF is +∞ with probability one. (Alternatively,
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one may say that the IF is not defined on the third subset.) Hence, the IF has either
infinite or zero variance where it is well defined. For wide-sense stationary (WSS)
processes we show that the first subset is either R or empty. In the latter case, the
covariance function has real part ρx(t) = α cos(βt), t ∈ R, for α > 0 and β ­ 0.
For harmonizable but not WSS processes, we give examples showing that the first
set may be R or may be empty, but not ruling out other possibilities.

Our main result is a generalization of results by Miller [17] (Theorem 9.3)
and Broman [3], who derived the formula for the pdf of the IF for fixed time for
Gaussian WSS processes. The generalization consists of a relaxation of their as-
sumption of wide-sense stationarity to a class of nonstationary processes, and a
proof of the formula under this weaker assumption.

The result is formulated for Gaussian complex-valued zero-mean proper pro-
cesses that are mean-square differentiable and have mean-square continuous deriva-
tive. When we specialize it to certain harmonizable stochastic processes z(t),
t ∈ R, the formula for the pdf of the IF for fixed time implies the identity

(1.1) E
d

dt
arg z(t) =

∫
R
ξ W̃z(t, ξ)dξ∫
R
W̃z(t, ξ)dξ

∀t : rz(t, t) > 0.

Here rz is the covariance function of z, and W̃z denotes the Wigner spectrum,

(1.2) W̃z(t, ξ) =
∫
R
E
(
z(t+ τ/2)z(t− τ/2)

)
e−iτξdτ, t, ξ ∈ R.

For WSS processes, the Wigner spectrum does not depend on t and reduces to the
(nonnegative) spectral density measure, i.e. the Fourier transform of the covariance
function. In this case (1.1) says that the expected value of the IF is the normalized
first-order frequency moment of the spectral density, and it does not depend on
time.

The formula (1.1) generalizes to stochastic processes the corresponding well-
known formula for deterministic functions:

(1.3)
d

dt
arg f(t) =

∫
R
ξ Wf (t, ξ)dξ∫
R
Wf (t, ξ)dξ

∀t : f(t) ̸= 0,

where the Wigner distribution Wf is defined by

(1.4) Wf (t, ξ) =
∫
R
f(t+ τ/2)f(t− τ/2)e−iτξdτ, t, ξ ∈ R, f ∈ L2(R).

Research on the IF has a long history in telecommunications, signal processing
and time-frequency analysis (see [4]; [5], Chapter 2; [6], p. 303; and [14]). In ana-
log frequency modulation, the IF (minus a constant carrier frequency) represents
the information in a modulated signal ([19], Chapter 8).
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The Wigner distribution (1.4) gives a time-frequency description of a func-
tion f . It was introduced in Quantum Mechanics as a candidate for a pdf of a
particle in phase space. It is well known that Wf is only rarely a nonnegative func-
tion (Hudson’s theorem; cf. [11], Theorem 4.4.1). Therefore, Wf may neither be
interpreted as an energy distribution nor as a pdf, in general. This is consistent
with the Uncertainty Principle (cf. [11], Chapters 2–4), which gives upper bounds
on the resolution of phase space localization of particles, or, in the mathematical
interpretation, of the time-frequency resolution of functions. Nevertheless, if the
Wigner distribution Wf is convolved with a sufficiently wide Gaussian function, it
becomes nonnegative, so domains of sufficiently large area in the time-frequency
(phase) plane admit localization. Formula (1.3) supports the interpretation of Wf

as a time-frequency distribution, since the right-hand side is a normalized first-
order frequency moment of the Wigner distribution for a fixed time instant, which
delivers the center frequency of a narrowband function.

A consequence of our result is a partition of the time axis into two parts where
the IF variance is zero and infinite, respectively. The question of the dichotomy
zero/infinite variance of the IF process is left somewhat open in this paper. We do
not know if one process may exhibit nonempty time sets of both kinds. We show by
examples that there exist processes whose IF process has zero variance constantly,
and there exist processes whose IF process has infinite variance constantly. Each
of these cases can occur both inside and outside the class of WSS processes.

The paper is organized as follows. After fixing some definitions and notation
in Section 2, we introduce the framework of mean-square differentiable Gaussian
proper stochastic processes in Section 3. Here we also give some background on
harmonizable processes. In Section 4, we define the IF and discuss formula (1.3),
expressing the IF of a deterministic function as a normalized first-order frequency
moment of the Wigner distribution (for fixed time). Then, in Section 5, we prove
our main result, which is a formula for the pdf of the IF for fixed time and its
relation to the Wigner spectrum. Finally, we show by examples in Section 6 that
a process may have infinite-variance IF for all time instants, or it may have zero-
variance IF for all time instants.

2. PRELIMINARIES

Let (Ω,B,P) be a probability space and let X : Ω 7→ Rd be a random variable.
The probability measure on B(Rd) (the Borel σ-algebra) induced by X is defined
by PX(A) = P

(
X−1(A)

)
, A ∈ B(Rd). If the probability measure PX is absolutely

continuous with respect to the Lebesgue measure, we have PX(A) =
∫
A
pX(x)dx,

where pX is the probability density function (pdf) of X . Sometimes, by abuse of
notation, we will say that a probability measure which is a Dirac measure at a point
a ∈ Rd, denoted by δa, has pdf δa. We denote the expectation of a random vari-
able X by EX , and by L2

0(Ω) = L2
0(Ω,B,P) we understand the Hilbert space of
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complex-valued zero-mean finite-variance random variables. The space of second-
order random variables with nonzero mean is denoted by L2(Ω).

Given a probability space (Ω,B,P), a continuous-time stochastic process on
R is defined as a family of complex-valued B-measurable functions zt(ω) indexed
by t ∈ R. We often suppress the variable ω ∈ Ω and write z(t) = zt(ω), t ∈ R, and
occasionally we also suppress the t variable. Sometimes we write zt(ω) = z(t, ω)
to emphasize the fact that z : R× Ω 7→ C is a function of two variables.

For a space U , we denote by χA the indicator function of the subset A ⊆ U ,
that is, χA(x) = 1 if x ∈ A, and χA(x) = 0 if x ∈ U \A. The space of continuous
functions on R is denoted by C(R), and the space of continuously differentiable
functions on R is denoted by C1(R). The derivative with respect to time t is de-
noted by ḟ = df/dt. This notation is also used for stochastic processes, where
we define the derivative in the mean-square sense. This means that a process z is
mean-square differentiable at t = t0 if there exists ż(t0) ∈ L2(Ω) such that

(2.1) lim
ε→0

E
∣∣∣∣z(t0 + ε)− z(t0)

ε
− ż(t0)

∣∣∣∣2 = 0.

For a function f(x, y) of two variables, we write the partial derivative with respect
to the first variable as ∂1f(x, y) = ∂f(x, y)/∂x, and with respect to the second
variable as ∂2f(x, y) = ∂f(x, y)/∂y. The normalization of the Fourier transform
for functions f ∈ L1(R) is

Ff(ξ) = f̂(ξ) =
∫
R
f(t)e−itξdt, ξ ∈ R.

This gives the inverse Fourier transform

f(t) = F−1f̂(t) =
1

2π

∫
R
f̂(ξ)eitξdξ, t ∈ R.

We denote by FL1(R) the space of functions f with Fourier transform f̂ ∈ L1(R).
For functions of several variables, the partial Fourier transform with respect to
variable j is denoted by Fj . The Wigner(–Ville) distribution (see, e.g., [8], Sec-
tion 2.1.3) for f ∈ L2(R) is defined as in (1.4), where f denotes complex conju-
gation of f . Finally, we put R+ = [0,+∞), R− = (−∞, 0], the determinant of a
square matrix M is det(M) = |M |, and the transpose of a vector x is xT .

3. MEAN-SQUARE DIFFERENTIABLE AND HARMONIZABLE
GAUSSIAN STOCHASTIC PROCESSES

Let z(t) = x(t) + iy(t), t ∈ R, be a continuous-time, complex-valued, zero-
mean, Gaussian stochastic process z : R 7→ L2

0(Ω), not necessarily WSS. The as-
sumption that z is Gaussian means the following (cf., e.g., [12], Chapter 1). For
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any finite vector of time instants t = (tj)
n
j=1, the real-valued 2n-vector of samples

Zt :=
(
x(t1), . . . , x(tn), y(t1), . . . , y(tn)

)T has the pdf

pZt(u) = (2π)−n|M |−1/2 exp
(
− 1

2
uTM−1u

)
, u ∈ R2n,

provided the covariance matrix M = E(ZtZ
T
t ) is invertible. A more general defi-

nition, which works also when M is singular, is the requirement that the sampled
process Zt is a random variable with characteristic function

ϕZt(u) = E
(
exp(iuTZt)

)
= exp

(
− 1

2
uTMu

)
, u ∈ R2n.

The covariance function of the process z is denoted by

rz(t, s) = E
(
z(t)z(s)

)
, t, s ∈ R.

We assume that z is proper [18] (cf. [15], Section 33.3, and [7], p. 74). This means
that E

(
z(t)z(s)

)
= 0 for all t, s ∈ R. It follows that we have

(3.1)
rx(t, s) = ry(t, s), ryx(t, s) = −ryx(s, t),
rz(t, s) = 2rx(t, s) + 2iryx(t, s), t, s ∈ R,

where rx(t, s) = E
(
x(t)x(s)

)
, ry(t, s) = E

(
y(t)y(s)

)
, ryx(t, s) = E

(
y(t)x(s)

)
.

A complex-valued zero-mean Gaussian random variable Z such that EZ2 = 0 is
sometimes called (circularly) symmetric ([12], Chapter 1). The condition EZ2 = 0
is equivalent to the property that Z and eiθZ have identical probability distributions
for all θ ∈ R.

We require that the process z be mean-square continuous, and have a continu-
ous mean-square derivative according to the following definition.

DEFINITION 3.1. A mean-square continuous process z is mean-square differ-
entiable with continuous derivative ż provided the following holds: For all t0 ∈ R,
there exists ż(t0) ∈ L2(Ω) such that (2.1) is satisfied, and

lim
ε→0

E|ż(t0 + ε)− ż(t0)|2 = 0 ∀t0 ∈ R.

This definition guarantees that ∂1rz , ∂1∂2rz are continuous functions (see,
e.g., [15], Section 34.2), and we have

(3.2) E
(
ż(t)z(s)

)
= ∂1rz(t, s), E

(
ż(t)ż(s)

)
= ∂1∂2rz(t, s), t, s ∈ R.

REMARK 3.1. Note that in Definition 3.1, as well as in the rest of the paper,
we discuss the derivative process in the mean-square sense only. The definition
does not imply that each realization is continuously differentiable with probability
one. Conditions that are sufficient for continuously differentiable realizations with
probability one are considerably more subtle and difficult. See, e.g., [6], Chapter 9,
and [17], Chapter 2.
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For some results we will assume that z is strongly harmonizable (abbreviated
in this paper as harmonizable); see [13], Section 1.2; [15], Section 34.4; and [20].
This means that rz has a Fourier–Stieltjes representation

(3.3) rz(t, s) =
∫∫
R2

ei(tξ−sη)mz(dξ, dη), t, s ∈ R.

Here mz is a measure of bounded variation on R2, called the spectral measure.
This assumption implies that the process z has a Fourier transform representation

z(t) =
∫
R
eitξZ(dξ), t ∈ R,

where the so-called spectral process Z : B(R) 7→ L2
0(Ω) is a vector-valued mea-

sure of bounded semivariation ([13], Chapter 1).
An important special case of harmonizable processes are mean-square con-

tinuous WSS processes for which there exists, by definition, a continuous posi-
tive definite function ρz such that rz(t, s) = ρz(t− s) ([15], Section 34.5). In the
spectral domain the mean-square continuous WSS processes are characterized by
mz(A,B) = µz(A∩B), A,B ∈ B(R), for a nonnegative bounded measure of one
variable µz .

For harmonizable processes, the following requirement in the spectral domain
is sufficient to guarantee that the process z is differentiable in the sense of Defini-
tion 3.1.

DEFINITION 3.2. A harmonizable process z with spectral measure mz has
spectral moments of order one if

(3.4)
∫∫
R2

(1 + |ξ|2)1/2(1 + |η|2)1/2|mz|(dξ, dη) <∞.

Here |mz| denotes the total variation measure of the complex measure mz (see
[21], Chapter 6). Note that this definition implies that the following four integrals∫∫

R2

|mz|(dξ, dη),
∫∫
R2

|ξ||η||mz|(dξ, dη),∫∫
R2

|ξ||mz|(dξ, dη),
∫∫
R2

|η||mz|(dξ, dη)

are all finite. Definition 3.2 guarantees that we may take partial derivatives under
the integral in (3.3) as

(3.5)

∂1rz(t, s) =
∫∫
R2

iξei(tξ−sη)mz(dξ, dη),

∂2rz(t, s) =
∫∫
R2

(−iη)ei(tξ−sη)mz(dξ, dη),

∂1∂2rz(t, s) =
∫∫
R2

ξηei(tξ−sη)mz(dξ, dη), t, s ∈ R,
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due to Lebesgue’s dominated convergence theorem ([21], Chapter 1). Moreover,
the process satisfies Definition 3.1 and (3.2) (cf. [15], Section 34.2).

The Wigner distribution (1.4) may be written as Wf = F2(f ⊗ f ◦ κ), where
F2 denotes the partial Fourier transform in the second variable, and κ denotes the
coordinate transformation,

(3.6) κ(x, y) = (x+ y/2, x− y/2)⇔ κ−1(x, y) =
(
(x+ y)/2, x− y

)
.

The Wigner (–Ville) spectrum ([8], Section 2.4.3; [16]) of a harmonizable process
z is defined by

(3.7) W̃z = F2(rz ◦ κ).

Since rz may not be an integrable function, the partial Fourier transform in (3.7) is
in general defined with rz understood as a tempered distribution. However, in the
case when rz ∈ S0(R2), which means Feichtinger’s algebra (see [11], Chapters 11
and 12), we can write (3.7) as the partial Fourier integral

(3.8) W̃z(t, ξ) =
∫
R
rz(t+ τ/2, t− τ/2)e−iτξdτ, t ∈ R.

Under the same assumption (plus Gaussianity) we may interchange the order of
integration and expectation. Thus

W̃z(t, ξ) = E
( ∫
R
z(t+ τ/2)z(t− τ/2)e−iτξdτ

)
= E

(
Wz(t, ξ)

)
, t, ξ ∈ R,

that is, the Wigner spectrum is the expected value of the Wigner distribution of the
stochastic process z defined by (1.4) (see [23]).

Using (3.6) we may write the representation (3.3) as

(3.9) rz ◦ κ(t, s) =
∫∫
R2

ei(sξ+tη)mz ◦ κ(dξ, dη).

Thus, by identification with (3.7), it follows that

(3.10) W̃z(t, dξ) = 2π
∫
η∈R

eitηmz ◦ κ(dξ, dη).

4. THE INSTANTANEOUS FREQUENCY, THE WIGNER DISTRIBUTION
AND THE WIGNER SPECTRUM

The argument (or phase) of a complex number z = x + iy ∈ C \ {0} is de-
fined by z = |z|ei arg z , where we impose the restriction−π < arg z ¬ π. We have

(4.1) arg z =


arctan(y/x), x > 0,
π sgn(y) + arctan(y/x), x < 0, y ̸= 0,
(π/2) sgn(y), x = 0, y ̸= 0,
π, x < 0, y = 0,
undefined, x = y = 0.
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For z ∈ U := C \ {(−∞, 0] + i0} we have arg z = Im (log z) = −i log(z/|z|),
where the principal branch of the logarithm function is understood, i.e. −π <
Im (log z) < π. The function log z is holomorphic from the domain U onto R +
i(−π, π) ⊆ C, and therefore z 7→ arg z is a smooth function U 7→ (−π, π).

Let f(t) = x(t) + iy(t), t ∈ R, be a function f : R 7→ C. If f(t) ̸= 0, we
reserve the notation

φ(t) = arg f(t), t ∈ R,

for the phase function. For f ∈ C(R), the set Uf := {t ∈ R : f(t) ∈ U} ⊆ R is
open and φ = arg ◦f : Uf 7→ (−π, π) is continuous. If, moreover, f ∈ C1(R), it
follows from the above that φ is differentiable on Uf . Since (d/dt) arctan(t) =
1/(1 + t2), the derivative is

φ̇(t) =
d

dt
arg f(t) =

1

1 + y2(t)/x2(t)
· x(t)ẏ(t)− ẋ(t)y(t)

x2(t)
(4.2)

=
x(t)ẏ(t)− ẋ(t)y(t)

x2(t) + y2(t)

for t ∈ Uf . In fact, for {t ∈ R : x(t) > 0} and {t : x(t) < 0, y(t) ̸= 0}, this fol-
lows from (4.1). In the remaining case, i.e., {t ∈ R : x(t) = 0, y(t) ̸= 0}, we may
use the following modified definition, equivalent to (4.1) in {t ∈ R : y(t) ̸= 0},

arg z =
π

2
sgn(y)− arctan

(
x

y

)
,

which gives φ̇(t) = −ẋ(t)/y(t) for {t ∈ R : x(t) = 0, y(t) ̸= 0}. This also leads
to the expression on the right-hand side of (4.2).

Clearly, (4.2) can be extended from the domain Uf to {t ∈ R : f(t) ̸= 0}
and φ̇ is still a continuous function {t ∈ R : f(t) ̸= 0} 7→ R. The instantaneous
frequency (IF) of f (see [4]; [5], Chapter 2; [6], p. 303; [19], p. 267; [8], Sec-
tion 2.3.2) is defined by (4.2) as the derivative φ̇ with domain {t ∈ R : f(t) ̸= 0}.
For an exponential function t 7→ eiξt with frequency ξ ∈ R, the IF is thus ξ con-
stantly, which means that the term instantaneous frequency is an extension of the
concept of a constant (global) frequency. For {t ∈ R : f(t) = 0} it will turn out to
be convenient to define (by abuse of notation) φ̇(t) = +∞. In summary, we have
for f ∈ C1(R)
(4.3)

φ̇(t) =

{(
x(t)ẏ(t)− ẋ(t)y(t)

)(
x2(t) + y2(t)

)−1 if x2(t) + y2(t) > 0,
+∞ if x2(t) + y2(t) = 0.

If f is real-valued and continuous, then f(t) ̸= 0 implies that f has constant
sign, that is, φ(t) = 0 or φ(t) = π, in a neighborhood of t. Hence φ̇(t) is well-
defined and equals zero in this neighborhood of t. The derivative of the phase func-
tion of real-valued functions is thus not interesting. However, the Hilbert transform
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(see, e.g., [6], Section 7.8; [19], Section 4.2) of a real-valued function gives rise to a
complex-valued function with a nonzero IF. Since this transformation from a real-
valued signal to a so-called analytic signal transforms cos(ξt) into eiξt, it gives a
natural definition of the IF of a real-valued function, commonly used in the signal
analysis literature.

The IF can be written as a normalized first-order frequency moment of the
Wigner distribution ([4]; [5], Section 8.5; [8], Section 2.1.3). The heuristic version
of this result is well known ([5], Section 8.5). The following more precise version
can be shown (for a proof, see [2], Proposition 4.1). To state the result, we need
the definition of the Sobolev space of order s ∈ R, denoted by f ∈ Hs(R) (cf.
[10], p. 115). A tempered distribution f belongs to Hs(R) provided its Fourier
transform f̂ is locally square-integrable and satisfies∫

R
(1 + |ξ|2)s|f̂(ξ)|2dξ <∞.

The Sobolev scale is a smoothness scale, since for f ∈ Hs(R) and s large, a certain
amount of asymptotic decay at infinity of the Fourier transform is required. This
implies that f will be differentiable to a degree that increases with s.

PROPOSITION 4.1. Suppose ε > 0, f ∈ H3/2+ε(R), f = x + iy and φ̇ is
defined by (4.3). Then for any t ∈ R such that f(t) ̸= 0 we have

(4.4) φ̇(t) =

∫
R
ξ Wf (t, ξ)dξ∫
R
Wf (t, ξ)dξ

.

One of the goals of this paper is to generalize Proposition 4.1 from deter-
ministic functions to certain stochastic processes defined on R, denoted by z(t) =
x(t) + iy(t) = |z(t)|eiφ(t), t ∈ R. More precisely, we would like to prove the for-
mula

(4.5) E
(
φ̇(t)

)
=

∫
ξ∈R

ξ W̃z(t, dξ)∫
ξ∈R

W̃z(t, dξ)
∀t : rz(t, t) > 0.

In fact, we will compute the pdf of the random variable φ̇(t) for fixed t ∈ R, and
then, as a consequence, derive formula (4.5). This problem has been studied by
Miller [17] (Theorem 9.3) and Broman [3] for WSS Gaussian proper stochastic
processes. Miller and Broman independently derived the probability density func-
tion for φ̇(t) for fixed t, using either (in [17]) the assumption that the process is
proper or (in [3]) the more restrictive assumption that the signal is analytic ([19],
Section 4.2). Our aim here is to generalize their results from WSS to Gaussian,
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proper, nonstationary processes that have mean-square continuous derivative. As
a special case, we will study certain harmonizable processes and prove that the
identity (4.5) holds for them.

Assume that z(t) = x(t) + iy(t) = |z(t)|eiφ(t), t ∈ R, is a zero-mean, comp-
lex-valued, proper, Gaussian stochastic process that is differentiable in the sense of
Definition 3.1. We define the stochastic IF process by (4.3), which implies that φ̇
is an R ∪ {+∞}-valued stochastic process defined on R.

REMARK 4.1. A trivial case of a second-order zero-mean stochastic process
consists of a random variable X ∈ L2

0(Ω) times a function f ∈ C1(R), that is,
z(t) = Xf(t), t ∈ R. For such a process we have

z(t, ω) = |X(ω)||f(t)|ei(argX(ω)+φ(t)),

where f(t) = |f(t)|eiφ(t), provided f(t) ̸= 0 and X(ω) ̸= 0. It follows that the
IF of z(t, ω) is φ̇(t) provided that f(t) ̸= 0 and X(ω) ̸= 0. That is, the IF of
z(t) is φ̇(t)χ{ω:X(ω)̸=0}(ω) +∞χ{ω:X(ω)=0}(ω), t ∈ R. This means that the IF
is essentially the deterministic IF of f . It is only stochastic in the sense that for
certain ω ∈ Ω it is +∞ for all t ∈ R, and for the remaining ω it does not depend
on ω. This is true also when X is non-Gaussian and improper, that is, EX2 ̸= 0.

5. THE PROBABILITY DENSITY FUNCTION FOR THE STOCHASTIC IF
FOR FIXED TIME

In this section we will derive the pdf of the IF stochastic process. More pre-
cisely, for a fixed arbitrary t ∈ R, we will compute the pdf of the random vari-
able φ̇(t), defined by (4.3) for a mean-square differentiable stochastic process
z(t) = x(t) + iy(t) = |z(t)|eiφ(t), t ∈ R. As a consequence, we will obtain for-
mula (4.5) for E

(
φ̇(t)

)
provided the process is harmonizable and satisfies (3.4).

Let z = x+ iy be a proper Gaussian stochastic process which is differentiable
according to Definition 3.1. Fix t ∈ R and define the random R4-valued random
variable X =

(
x(t), ẏ(t), y(t), ẋ(t)

)T . Then X is zero-mean and Gaussian, since
Gaussianity is preserved under mean-square limits ([12], Theorem 1.3). Because
z is proper, (3.1) holds, and thus Ex(t)y(t) = Eẏ(t)ẋ(t) = ∂1∂2ryx(t, t) = 0 and
Eẏ(t)y(t) = ∂1ry(t, t) = ∂1rx(t, t) = Ex(t)ẋ(t). It follows that the vector X has
covariance matrix M = EXXT ∈ R4×4 with the structure

M =


a b 0 c
b d c 0
0 c a −b
c 0 −b d

,(5.1)

and parameter values

(5.2)
a = Ex(t)2 = rx(t, t), b = Ex(t)ẏ(t) = ∂1ryx(t, t),

c = Eẏ(t)y(t) = ∂1rx(t, t), d = Eẏ(t)ẏ(t) = ∂1∂2rx(t, t).
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We have |M | = (ad− c2 − b2)2 and

(5.3) ad− c2 − b2 ­ 0,

which follows from taking the determinant of the upper left 3× 3 submatrix of the
nonnegative definite matrix M .

Our main technical result concerns real Gaussian zero-mean four-vectors with
covariance matrix (5.1). In the proof we will need the following small lemma.

LEMMA 5.1. Let X : Ω 7→ Rd be a random variable. Suppose that N ∈
B(Rd), x0 ∈ Rd are two disjoint null sets for PX , i.e. PX(N) = PX({x0}) = 0,

and x0 /∈ N . If we define X̃ : Ω 7→ Rd \N by

(5.4) X̃(ω) =

{
X(ω), ω ∈ Ω \X−1(N),
x0, ω ∈ X−1(N),

then P
X̃
(A) = PX(A) for all A ∈ B(Rd).

P r o o f. Let A ∈ B(Rd). We write A = A1 ∪ A2 ∪ A3 as a pairwise disjoint
union with A1 = A ∩N , A2 = (A ∩ {x0}) \N and A3 = A \ (N ∪ {x0}). Since
X̃ takes values in Rd \N , we have P

X̃
(A1) ¬ P

X̃
(N) = 0, and moreover

P
X̃
(A2) ¬ P

X̃
({x0}) = P

(
X−1(N) ∪X−1(x0)

)
¬ PX(N) + PX({x0}) = 0.

Thus
P
X̃
(A) = P

X̃
(A1) + P

X̃
(A2) + P

X̃
(A3)

= P
X̃

(
A \ (N ∪ {x0})

)
= PX

(
A \ (N ∪ {x0})

)
,

where the final equality is obtained as follows:

X̃(ω) ∈ A \ (N ∪ {x0})⇔ ω ∈ X−1(A) \
(
X−1(N) ∪X−1(x0)

)
⇔ X(ω) ∈ A \ (N ∪ {x0}).

This finally gives

PX(A) = PX

(
A ∩ (N ∪ {x0})

)
+ PX

(
A \ (N ∪ {x0})

)
= PX

(
A \ (N ∪ {x0})

)
= P

X̃
(A)

because PX

(
A ∩ (N ∪ {x0})

)
¬ PX(N) + PX({x0}) = 0. �

Next we give the crucial result about Gaussian four-vectors with covariance
matrix M according to (5.1).

PROPOSITION 5.1. Let X = (X1, X2, X3, X4) be a zero-mean Gaussian real-
valued vector with covariance matrix M defined in (5.1). Define the R ∪ {+∞}-
valued random variable

(5.5) Y =

{
(X1X2 −X3X4)(X

2
1 +X2

3 )
−1 if X2

1 +X2
3 > 0,

+∞ if X2
1 +X2

3 = 0.
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If ad− c2 − b2 > 0, then Y has probability density function

(5.6) pY (y) =
a

2
|M |1/2

(
(ay − b)2 + |M |1/2

)−3/2
.

Consequently, Y has infinite variance and mean

(5.7) EY = b/a.

If ad− c2 − b2 = 0, we have the two subcases:
(i) If a > 0, then Y = b/a a.s.
(ii) If a = 0, then Y = +∞ a.s.

P r o o f. Suppose first that ad − c2 − b2 > 0, which means that M is invert-
ible with the inverse

M−1 = |M |−1/2


d −b 0 −c
−b a −c 0
0 −c d b
−c 0 b a

.(5.8)

Furthermore, ad − c2 − b2 > 0 implies a > 0. Let us define the smooth function
f : R+ × (−π, π]× R× R 7→ R4, f(y) =

(
f1(y), f2(y), f3(y), f4(y)

)
by

(5.9)

f1(y) = y1 cos y2,

f2(y) = y3 sin y2 + y1y4 cos y2,

f3(y) = y1 sin y2,

f4(y) = y3 cos y2 − y1y4 sin y2.

The Jacobian of f is

Df(y) =


cos y2 −y1 sin y2 0 0

y4 cos y2 y3 cos y2 − y1y4 sin y2 sin y2 y1 cos y2
sin y2 y1 cos y2 0 0
−y4 sin y2 −y3 sin y2 − y1y4 cos y2 cos y2 −y1 sin y2


whose determinant is detDf(y) = y21 . Note that (y1, y2) 7→

(
f1(y), f3(y)

)
is the

polar-to-rectangular coordinate transformation on R2.
We will use f as a coordinate transformation, and then we will need f to

be a bijection with a differentiable inverse. Since f(0, y2, 0, y4) = 0 for any y2 ∈
(−π, π] and any y4 ∈ R, it follows that the function f is not injective on the domain
R+ × (−π, π]× R× R. Therefore, we need to restrict the domain of f . Define

N ′ =
(
{0} × (−π, π]× R× R

)
∪ (R+ × {π} × R× R)(5.10)

⊆ R+ × (−π, π]× R× R,
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and

(5.11) N = {x ∈ R4 : x1 ¬ 0, x3 = 0} = R− × R× {0} × R ⊆ R4.

Then it can be verified that f(N ′) = N and the restriction

(5.12) f : R+ × (−π, π]× R× R \N ′ 7→ R4 \N

of f to the open set R+ × (−π, π] × R × R \ N ′ is surjective and injective. Its
inverse is f−1 = g = (g1, g2, g3, g4), where

(5.13)

g1(x) = (x21 + x23)
1/2,

g2(x) = arg(x1 + ix3),

g3(x) =
x2x3 + x1x4

(x21 + x23)
1/2

,

g4(x) =
x1x2 − x3x4

x21 + x23
.

Since x /∈ N implies x21 + x23 > 0, it is clear that g1, g3, and g4 are differentiable
on R4 \ N . Since the nonpositive x1-axis in the (x1, x3)-plane, in conjunction
with any (x2, x4) ∈ R2, does not belong to R4 \N , g2 is differentiable on R4 \N .
Hence the restriction of f defined by (5.12) is differentiable and has a differentiable
inverse.

The sets N ′ ⊆ R+ × (−π, π]×R×R and N ⊆ R4 are null sets with respect
to the Lebesgue measure, and PX(N) = 0. Let x0 ∈ R4 \ N be fixed arbitrarily
and define the random variable X̃ : Ω 7→ R4 \N by

(5.14) X̃(ω) =

{
X(ω), ω ∈ Ω \X−1(N),
x0, ω ∈ X−1(N).

It follows from Lemma 5.1 that X̃ and X induce identical probability measures,
i.e. P

X̃
(A) = PX(A) for all A ∈ B(R4). This means that

(5.15) P
X̃
(A) = (2π)−2|M |−1/2

∫
A

exp

(
−1
2
xTM−1x

)
dx, A ∈ B(R4),

because X is a zero-mean Gaussian with covariance matrix M .
Define the random variable Z : Ω 7→ R4 by Z = f−1(X̃), which is well de-

fined because X̃(Ω) = R4 \ N and the restriction (5.12) is bijective. If we write
Z = (Z1, Z2, Z3, Z4) and x0 = (x0,1, x0,2, x0,3, x0,4), then by (5.5), (5.13) and
(5.14) we have

(5.16) Z4(ω) =

{
Y (ω), ω ∈ Ω \X−1(N),
(x0,1x0,2 − x0,3x0,4)(x

2
0,1 + x20,3)

−1, ω ∈ X−1(N).
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We claim that the random variables Y and Z4 have identical probability measures,
that is,

(5.17) PY (A) = PZ4(A), A ∈ B(R).

In fact, let A ∈ B(R). We decompose

Y −1(A) =
(
Y −1(A) ∩X−1(N)

)
∪
(
Y −1(A) \X−1(N)

)
.

Since P
(
Y −1(A) ∩ X−1(N)

)
¬ P

(
X−1(N)

)
= PX(N) = 0 and, according to

(5.16), Y −1(A) \X−1(N) = Z−14 (A) \X−1(N), we obtain

PY (A) = P
(
Y −1(A)

)
= P

(
Y −1(A) \X−1(N)

)
= P

(
Z−14 (A) \X−1(N)

)
= P

(
Z−14 (A)

)
= PZ4(A),

proving (5.17).
Denote the probability density functions for X , X̃ and Z by pX , p

X̃
and pZ ,

respectively. Then (5.15) implies

p
X̃
(x) = pX(x) = (2π)−2|M |−1/2 exp

(
−1
2
xTM−1x

)
, x ∈ R4.

For an arbitrary Borel set A ∈ B
(
R+ × (−π, π]× R× R

)
, we have

PZ(A) = P(Z ∈ A) = P
(
Z ∈ A \ (X ∈ N)

)
= P

(
X̃ ∈ f(A) \ (X ∈ N)

)
= P

(
X ∈ f(A) \N

)
= P

(
X ∈ f(A \N ′)

)
=

∫
f(A\N ′)

pX(x)dx =
∫

A\N ′
pX ◦ f(y) |detDf(y)| dy

=
∫
A

pX ◦ f(y) |detDf(y)| dy

=
∫
A

pX ◦ f(y) |detDf(y)| χ[0,+∞)(y1) χ(−π,π](y2) dy.

In fact, the seventh equality above is the formula for changing variables in integrals
([9], Theorem 5.8). To justify its use, we need the fact that (5.12) is differentiable
and has a differentiable inverse, which has been proved above. Inserting (5.8) and
(5.9), after some computations, we obtain

(5.18) pZ(z) = pX
(
f(z)

)
|detDf(z)| χ[0,+∞)(z1) χ(−π,π](z2)

=
1

(2π)2
|M |−1/2z21 exp

(
− 1

2
f(z)TM−1f(z)

)
χ[0,+∞)(z1)χ(−π,π](z2)

=
1

(2π)2
|M |−1/2z21 exp

(
− |M |−1/2

(
z21(d+ az24 − 2bz4) + az23 − 2cz1z3

)
/2

)
× χ[0,+∞)(z1) χ(−π,π](z2).
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Using
∫∞
0

x2 exp(−sx2/2)dx =
√

π/2s−3/2, s > 0, and |M | = (ad− c2 − b2)2,
we obtain the marginal probability density for Z4:

pZ4(z4) =
∞∫
0

π∫
−π

∞∫
−∞

pZ(z1, z2, z3, z4)dz1dz2dz3

= (2π)−1|M |−1/2
∞∫
0

z21 exp
(
−|M |−1/2

(
z21(d+ az24 − 2bz4)/2

))
×

( ∞∫
−∞

exp
(
− |M |−1/2(az23 − 2cz1z3)/2

)
dz3

)
dz1

= (2πa)−1/2|M |−1/4
∞∫
0

z21 exp
(
− |M |−1/2z21(d+ az24 − 2bz4 − c2/a)/2

)
dz1

=
a

2
|M |1/2

(
(az4 − b)2 + |M |1/2

)−3/2
.

Thus, the observation (5.17) now proves (5.6). Finally, (d/dx)
(
x(x2 + s)−1/2

)
=

s(x2 + s)−3/2 gives

∞∫
−∞

dx

(x2 + s)3/2
=

2

s

∞∫
0

d

dx

(
x(x2 + s)−1/2

)
dx =

2

s
, s > 0,

so we have

EZ4 =
a

2
|M |1/2

∞∫
−∞

zdz(
(az − b)2 + |M |1/2

)3/2
=
|M |1/2b

2a

∞∫
−∞

dz

(z2 + |M |1/2)3/2

=
b

a
.

Note that pZ4(y) behaves like Cy−3 for large y. Therefore,∫
R
(y − EY4)2pZ4(y)dy = +∞,

which means that the variance of Z4, and therefore also that of Y , is infinite. This
proves the proposition in the case ad− c2 − b2 > 0.

It remains to consider the case when ad− c2− b2 = 0, i.e. M is not invertible.
If a = 0, then X1 = 0 a.s. and X3 = 0 a.s. imply Y = +∞ a.s. This proves the
case (ii). Assume henceforth that a > 0. If a > 0 and d = 0, then X2 = 0 a.s.;
X4 = 0 a.s. and X2

1 +X2
3 > 0 a.s. give Y = 0 a.s. Since b2 + c2 = ad = 0, we

have b = 0, so the case (i) is proved if d = 0.
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The rest of the proof is devoted to the case (i) with ad− c2− b2 = 0, a > 0 and
d > 0. We will employ a regularization technique. The characteristic polynomial
of M is det(λI −M) = λ2

(
λ− (a+ d)

)2. Let

Ua+d = N
(
M − (a+ d)I

)
⊆ R4

denote the two-dimensional eigenspace for M corresponding to the nonzero eigen-
value λ = a+ d. The probability measure PX is a Gaussian which is supported on
Ua+d and non-degenerate on this two-dimensional subspace. With N defined by
(5.11), it can be verified that N ∩ Ua+d ⊆W ⊆ R4, where W is a linear subspace
with dimW = 1. This means that PX(N) = 0. If X̃ is defined by (5.14) for some
x0 ∈ R4 \N , then Lemma 5.1 gives PX = P

X̃
.

Let n > 0 be an integer. Define

X(n) = (X1, X2 +X ′2/
√
n,X3, X4 +X ′4/

√
n),

where X ′2, X ′4 are Gaussian zero-mean, unit-variance random variables, pairwise
independent of each other and of X1, X2, X3 and X4. Then X(n) : Ω 7→ R4 is a
Gaussian random variable with covariance matrix

Mn =


a b 0 c
b d+ n−1 c 0
0 c a −b
c 0 −b d+ n−1

,
the determinant of which is |Mn| = a2/n2 > 0, so Mn is invertible. For the char-
acteristic functions of X(n) and X , denoted by ϕX(n) and ϕX , respectively, we
have

ϕX(n)(ξ) = E
(
exp(iξTX(n))

)
= exp

(
−1
2
ξTMnξ

)
= exp

(
−1
2
ξTMξ − 1

2n
(ξ22 + ξ24)

)
→ exp

(
−1
2
ξTMξ

)
= ϕX(ξ), n→ +∞, ξ ∈ R4.

This is equivalent to the weak convergence of probability measures

PX(n) → PX as n→ +∞

([1], Theorem 7.6), which means that
∫
h(x)PX(n)(dx)→

∫
h(x)PX(dx) for all

bounded and continuous functions h defined on R4.
If we define the random variable X̃(n) by

X̃(n)(ω) =

{
X(n)(ω), ω ∈ Ω \ (X(n))−1(N),

x0, ω ∈ (X(n))−1(N),
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with N determined by (5.11) and x0 ∈ R4 \N fixed for all n > 0, then Lemma 5.1
again gives PX(n) = P

X̃(n) for all n > 0. Hence P
X̃(n) → P

X̃
weakly. Let us de-

fine Z=f−1(X̃) and Z(n)=f−1(X̃(n)), where Z=(Z1, Z2, Z3, Z4) and Z(n) =

(Z
(n)
1 , Z

(n)
2 , Z

(n)
3 , Z

(n)
4 ). Then we have PY = PZ4 as in the first part of the proof.

Since f−1 is continuous on the range spaces of X̃ and X̃(n), and P
X̃(n) → P

X̃
weakly, we may conclude that PZ(n) → PZ weakly ([1], Section 1.5). The weak
convergence PZ(n) → PZ is equivalent to the limit of characteristic functions ([1],
Theorem 7.6)

(5.19) ϕZ(ξ) = lim
n→∞

ϕZ(n)(ξ) ∀ξ ∈ R4.

In the following we will compute ϕZ(n) using the probability density evaluated
in (5.18) for invertible covariance matrix M . Since |Mn|1/2 = a/n, we obtain from
(5.18) the pdf of Z(n) as
(5.20)

pZ(n)(z) =
n

a(2π)2
z21 exp

(
− n

2a

[
z21

(
d+

1

n
+ az24 − 2bz4

)
+ az23 − 2cz1z3

])
× χ[0,+∞)(z1) χ(−π,π](z2).

It depends trivially on z2, so we may concentrate on theR3-valued random variable
U (n) = (Z

(n)
1 , Z

(n)
3 , Z

(n)
4 ). The marginal probability density for U (n) is

pU(n)(z1, z3, z4)

=
π∫
−π

pZ(n)(z1, z2, z3, z4) dz2

=
n

2πa
z21 exp

(
− n

2a

[
z21

(
d+

1

n
+ az24 − 2bz4

)
+ az23 − 2cz1z3

])
χ[0,+∞)(z1).

Thus, the characteristic function of U (n) is, with (ξ1, ξ3, ξ4) ∈ R3,

ϕU(n)(ξ) = ϕU(n)(ξ1, ξ3, ξ4) = E
(
exp

(
i(ξ1, ξ3, ξ4)

TU (n)
))

=
∫∫
R3

∫
pU(n)(z1, z3, z4) exp

(
i(z1ξ1 + z3ξ3 + z4ξ4)

)
dz1dz3dz4

=
n

2πa

+∞∫
0

z21 exp

(
− n

2a
z21

(
d+

1

n

)
+ iz1ξ1

)
×

(+∞∫
−∞

+∞∫
−∞

exp

[
− n

2
z21

(
z24 −

2b

a
z4

)
+ iz4ξ4

− n

2

(
z23 −

2c

a
z1z3

)
+ iz3ξ3

]
dz3dz4

)
dz1

= a−1 exp

(
iξ4

b

a
− ξ23

2n

)+∞∫
0

z1 exp

[
− z21

2a
+ iz1

(
ξ1 + ξ3

c

a

)
− ξ24

2nz21

]
dz1.



86 P. Wahlberg and P. J . Schreier

Set U = (Z1, Z3, Z4). It follows from (5.19) and the dominated convergence that
for (ξ1, ξ3, ξ4) ∈ R3

(5.21)
ϕU (ξ1, ξ3, ξ4) = ϕZ(ξ1, 0, ξ3, ξ4) = lim

n→∞
ϕZ(n)(ξ1, 0, ξ3, ξ4)

= lim
n→∞

ϕU(n)(ξ1, ξ3, ξ4)

= a−1 exp

(
iξ4

b

a

)+∞∫
0

z1 exp

[
− z21

2a
+ iz1

(
ξ1 + ξ3

c

a

)]
dz1.

From (5.21) we may conclude that the characteristic function for Z4 is

ϕZ4(ξ4) = ϕU (0, 0, ξ4) = a−1 exp

(
iξ4

b

a

)+∞∫
0

z1 exp

(
− z21
2a

)
dz1

= exp

(
iξ4

b

a

)
, ξ4 ∈ R.

This implies that the probability measure for Z4 is PZ4 = δb/a. Finally, the equali-
ties PY = PZ4 = δb/a give Y = b/a a.s. �

REMARK 5.1. If z is WSS, then rx(t, s) = ρx(t− s), t, s ∈ R, for some even
function ρx, which implies ∂ρx(0) = 0 and, consequently, c = ∂1rx(t, t) = 0 for
all t ∈ R. In this case the matrix M is block-diagonal and this special case of
Proposition 5.1 was proved by Miller [17], Theorem 9.3.

As a corollary to Proposition 5.1, we obtain the following result for Gaussian
stochastic processes. To formulate it we need to introduce a partition of the time
axis into two disjoint sets, depending on the covariance function rz for a given
process z. The partition is
(5.22)

T :=
{
t ∈ R : rx(t, t) ∂1∂2rx(t, t)−

(
∂1ryx(t, t)

)2 − (
∂1rx(t, t)

)2
= 0

}
,

and, consequently,

R \ T =
{
t ∈ R : rx(t, t) ∂1∂2rx(t, t)−

(
∂1ryx(t, t)

)2 − (
∂1rx(t, t)

)2
> 0

}
,

since rx(t, t) ∂1∂2rx(t, t)−
(
∂1ryx(t, t)

)2 − (
∂1rx(t, t)

)2 ­ 0 holds for all t ∈ R
due to (5.2) and (5.3). It is clear that T ⊆ R is closed under the assumptions of
Corollary 5.1, since T is the inverse image of {0} of a continuous function. We
further subdivide T = T ′ ∪ T ′′, where T ′′ ⊆ R is closed as a disjoint union of the
measurable sets defined by

T ′ := {t ∈ T : rx(t, t) > 0},
T ′′ := {t ∈ T : rx(t, t) = 0}.
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COROLLARY 5.1. Suppose that z(t) = x(t) + iy(t) = |z(t)|eiφ(t), t ∈ R, is
a zero-mean proper Gaussian stochastic process which is differentiable according
to Definition 3.1. Let the instantaneous frequency stochastic process φ̇(t) be de-
fined by (4.3) for all t ∈ R. Fix t ∈ R, define a, b, c, d by (5.2) and the matrix M
by (5.1). Then φ̇(t) has the pdf

(5.23) pφ̇(t)(y) =

{
(a/2)|M |1/2

(
(ay − b)2 + |M |1/2

)−3/2
if t ∈ R \ T,

δb/a(y) if t ∈ T ′,

and if t ∈ T ′′, then φ̇(t) = +∞ a.s. Consequently, φ̇(t) has mean

Eφ̇(t) =
{
b/a if t ∈ R \ T ′′,
+∞ if t ∈ T ′′,

and variance

E
(
φ̇(t)− Eφ̇(t)

)2
=

+∞ if t ∈ R \ T,
0 if t ∈ T ′,
undefined if t ∈ T ′′.

Finally, we restrict ourselves to harmonizable processes whose spectral mea-
sure satisfies (3.4). This assumption admits a connection to the Wigner spectrum
as follows.

THEOREM 5.1. Suppose that z(t) = x(t) + iy(t) = |z(t)|eiφ(t), t ∈ R, is a
proper Gaussian harmonizable stochastic process whose spectral measure satisfies
(3.4). Let the instantaneous frequency stochastic process φ̇(t) be defined by (4.3)
for all t ∈ R. Fix t ∈ R. Then φ̇(t) has the pdf (5.23) where a, b, c, d are defined
by (5.2) and the matrix M by (5.1). The process φ̇(t) has mean

Eφ̇(t) =



∫
ξ∈R

ξ W̃z(t, dξ)∫
ξ∈R

W̃z(t, dξ)
if t ∈ R \ T ′′,

+∞ if t ∈ T ′′,

and variance

E
(
φ̇(t)− Eφ̇(t)

)2
=

+∞ if t ∈ R \ T,
0 if t ∈ T ′,
undefined if t ∈ T ′′.

P r o o f. First we note that (3.3), (3.6) and (3.10) give

E|z(t)|2 = rz(t, t) =
∫∫
R2

eit(ξ−η)mz(dξ, dη) =
∫∫
R2

eitηmz ◦ κ(dξ, dη)(5.24)

=
1

2π

∫
ξ∈R

W̃z(t, dξ).
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We further observe that (3.1), (5.24) and (5.2) give

a = rx(t, t) =
1

2
Re rz(t, t) =

1

2
rz(t, t) =

1

4π

∫
ξ∈R

W̃z(t, dξ).

Next, from the requirement (3.4) it follows that (3.9) may be differentiated with
respect to τ under the integral:

∂

∂τ
(rz ◦ κ) (t, τ) =

∫∫
R2

iξei(τξ+tη)mz ◦ κ(dξ, dη).

Using (3.10) we obtain

(5.25)
∂

∂τ
(rz ◦ κ) (t, 0) = i

∫∫
R2

ξ eitηmz ◦ κ(dξ, dη) =
i

2π

∫
ξ∈R

ξ W̃z(t, dξ).

On the other hand, (3.1) implies

∂1rx(t, t) = ∂2rx(t, t) and ∂2ryx(t, t) = −∂1ryx(t, t).

Hence we get

(5.26)
∂

∂τ
(rz ◦ κ) (t, τ)

∣∣∣∣
τ=0

= 2
∂

∂τ
(rx ◦ κ+ iryx ◦ κ) (t, τ)

∣∣∣∣
τ=0

= ∂1rx(t, t)− ∂2rx(t, t) + i
(
∂1ryx(t, t)− ∂2ryx(t, t)

)
= 2i∂1ryx(t, t).

Combining (5.25), (5.26) and (5.2), we have proved that

4πb =
∫
ξ∈R

ξ W̃z(t, dξ).

The result now follows from Corollary 5.1, which in particular gives

(5.27) Eφ̇(t) =
b

a
=

∫
ξ∈R

ξ W̃z(t, dξ)∫
ξ∈R

W̃z(t, dξ)

provided t ∈ R \ T ′′. �
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6. CASES OF CONSTANTLY ZERO OR CONSTANTLY INFINITE VARIANCE IF

The process φ̇(t) exhibits completely different behavior on t ∈ T ′ = T \ T ′′
(where it is equal to b/a with probability one), and t ∈ R \ T (where it has infinite
variance with mean value b/a). It is therefore of interest to investigate questions
like necessary or sufficient conditions for T = ∅ or T = R. We restrict ourselves
to harmonizable processes whose spectral measure satisfies (3.4). First we look at
WSS processes.

PROPOSITION 6.1. Suppose that z is nonzero, satisfies the requirements
of Theorem 5.1, and z is WSS with covariance function rz(t, s) = ρz(t − s) for
t, s ∈ R. Then we have T ′′ = ∅, and either T = ∅ or T = T ′ = R. In the latter
case ρz = 2ρx + 2iρyx, where ρx(t) = α cos(βt), t ∈ R, α > 0 and β ­ 0.

P r o o f. The assumption that z is nonzero means that ρx(0) > 0. As ob-
served in Remark 5.1, we have c = ∂1rx(t, t) = 0 for all t ∈ R if z is WSS. Since
∂1∂2rx(t, s) = −∂2ρx(t− s), we have

T =
{
t ∈ R : rx(t, t) ∂1∂2rx(t, t) =

(
∂1ryx(t, t)

)2}
=

{
t ∈ R : −ρx(0) ∂2ρx(0) =

(
∂ρyx(0)

)2}
.

It is thus clear that either T = R or T = ∅, depending on whether

−ρx(0) ∂2ρx(0) =
(
∂ρyx(0)

)2 or − ρx(0) ∂
2ρx(0) >

(
∂ρyx(0)

)2
holds. If T = ∅, then, of course, T ′′ = ∅. Thus suppose that T = R, i.e.

−ρx(0) ∂2ρx(0) =
(
∂ρyx(0)

)2
.

This means that

Ex(t)x(t)Eẋ(t)ẋ(t) =
(
Eẏ(t)x(t)

)2 ¬ Ex(t)x(t)Eẏ(t)ẏ(t)
= Ex(t)x(t)Eẋ(t)ẋ(t), t ∈ R,

where the inequality follows from the Cauchy–Schwarz inequality, and where

Eẋ(t)2 = Eẏ(t)2 = ∂1∂2rx(t, t) ∀t ∈ R,

since rx = ry. Therefore, we have equality in the Cauchy–Schwarz inequality, i.e.,

Ex(t)2 Eẏ(t)2 =
(
Eẏ(t)x(t)

)2 ∀t ∈ R.

This means that, for any t ∈ R, ẏ(t) equals a real multiple of x(t) as a member
of L2

0(Ω), i.e., ẏ(t) = c(t)x(t), where c(t) ∈ R for t ∈ R. This gives rẏ(t, s) =
∂1∂2ry(t, s) =−∂2ρx(t− s) = c(t)c(s)ρx(t− s)⇒ c(t) =±

√
−∂2ρx(0)/ρx(0).

Thus c(t) is constant. We obtain the differential equation −∂2ρx(t) = c2ρx(t),
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t ∈ R, with solution ρx(t) = α cos(ct) = α cos(|c|t) (since ρx is even), where α =
ρx(0) = Ex(t)2 > 0, and β = |c| ­ 0. Finally, T = T ′, that is, T ′′ = ∅, since
ρx(0) > 0. �

EXAMPLE 6.1. Consider the process z(t) = X1e
itξ +X2e

itη, t ∈ R, where
ξ, η ∈ R, ξ ̸= η, and X1, X2 are proper, independent zero-mean Gaussians. Thus
we have EX1X2 = EX1X2 = EX2

1 = EX2
2 = 0. The process z is proper, and z

is WSS because the covariance function is

rz(t, s) = E|X1|2eiξ(t−s) + E|X2|2eiη(t−s), t, s ∈ R.

The real part of rz is

Re rz(t, s) = 2rx(t, s) = 2ρx(t− s)

= E|X1|2 cos
(
ξ(t− s)

)
+ E|X2|2 cos

(
η(t− s)

)
.

From Proposition 6.1 we may conclude that T = ∅, that is, the IF process φ̇(t)
has infinite variance for all t ∈ R. So a linear combination of pure exponential
functions, with independent proper Gaussian weights, has an infinite-variance IF
process everywhere unless it consists of a single term. In the latter case it follows
from Remark 4.1 that its IF process is deterministic (with variance zero for all time
instants).

Next we study the class of harmonizable processes, which is larger than the
class of mean-square continuous WSS processes. By the following three examples
we show that T = R or T = ∅ may occur for harmonizable processes that are not
WSS. We do not know whether ∅  T  R may occur.

EXAMPLE 6.2. Let z = x + iy, where x and y are independent Gaussian
real-valued processes with identical locally stationary ([8], Section 1.2.2; [22])
covariance function

rx(t, s) = ry(t, s) = exp

[
− 2a

(
t+ s

2

)2

− b

2
(t− s)2

]
, t, s ∈ R.

This is a covariance function if b ­ a ­ 0 (see [22]). We compute ∂1∂2rx(t, t) =(
(b− a) + 4a2t2

)
exp(−2at2) and ∂1rx(t, t) = −2at exp(−2at2). This gives

rx(t, t) ∂1∂2rx(t, t)−
(
∂1rx(t, t)

)2
= (b− a+ 4a2t2 − 4a2t2) exp(−4at2)
= (b− a) exp(−4at2) > 0, t ∈ R,

if b > a. Thus, by (5.22), T = ∅ in this example.

EXAMPLE 6.3. Let g ∈ C1(R) be real-valued and the Fourier transform of
a bounded measure, and let again x and y be independent Gaussian real-valued
processes with equal covariance function rx(t, s) = ry(t, s) = g(t)g(s), t, s ∈ R.
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If z = x+ iy, then rz(t, s) = 2g(t)g(s), t, s ∈ R. We have

rx(t, t) ∂1∂2rx(t, t)−
(
∂1rx(t, t)

)2
= g(t)2ġ(t)2 −

(
ġ(t)g(t)

)2
= 0, t ∈ R,

which means that T =R, where T is defined by (5.22). In this example |rz(t, s)|2 =
rz(t, t)rz(s, s), i.e. we have equality in the Cauchy–Schwarz inequality for all
t, s ∈ R. Thus there exists s0 ∈ R such that z(t) = c(t)z(s0), where c(t) is a de-
terministic function. In fact, c(t) is a multiple of g(t). Thus we are in the situation
of Remark 4.1.

EXAMPLE 6.4. This final example is a generalization of Example 6.1. Let
z(t) = X1e

itξ + X2e
itη, t ∈ R, where ξ, η ∈ R, ξ ̸= η and X1, X2 are jointly

proper, zero-mean, unit-variance Gaussians, i.e.E|X1|2 = E|X2|2 = 1 andEX1X2

= EX2
1 = EX2

2 = 0. In contrast to Example 6.1, we allow a nonzero correla-
tion between X1 and X2, EX1X2 := c ̸= 0. We assume |c| < 1, since otherwise
we have equality |EX1X2|2 = E|X1|2E|X2|2 in the Cauchy–Schwarz inequality,
which implies that X2 is a complex multiple of X1, reducing the problem to that
of Remark 4.1.

The process z is proper, harmonizable but not WSS, because the covariance
function is rz(t, s) = eiξ(t−s) + eiη(t−s) + cei(ξt−ηs) + cei(ηt−ξs), t, s ∈ R. The
terms in the decomposition rz = 2rx + 2iryx are

2rx(t, s) = cos
(
ξ(t− s)

)
+ cos

(
η(t− s)

)
+ Re c

(
cos(ξt− ηs) + cos(ηt− ξs)

)
+ Im c

(
sin(ηt− ξs)− sin(ξt− ηs)

)
,

2ryx(t, s) = sin
(
ξ(t− s)

)
+ sin

(
η(t− s)

)
+ Re c

(
sin(ξt− ηs) + sin(ηt− ξs)

)
+ Im c

(
cos(ξt− ηs)− cos(ηt− ξs)

)
.

Straightforward computations give

2rx(t, t) = 2
[
1 + Re c cos

(
t(ξ − η)

)
− Im c sin

(
t(ξ − η)

)]
,

2∂1∂2rx(t, t) = ξ2 + η2 + 2ξη
[
Re c cos

(
t(ξ − η)

)
− Im c sin

(
t(ξ − η)

)]
,

2∂1rx(t, t) = (η − ξ)
[
Re c sin

(
t(ξ − η)

)
+ Im c cos

(
t(ξ − η)

)]
,

2∂1ryx(t, t) = (η + ξ)
[
1 + Re c cos

(
t(ξ − η)

)
− Im c sin

(
t(ξ − η)

)]
.

This yields

4
[
rx(t, t) ∂1∂2rx(t, t)−

(
∂1ryx(t, t)

)2− (
∂1rx(t, t)

)2]
= (ξ − η)2(1− |c|2)> 0

for all t ∈ R. This means that T = ∅. We conclude that a linear combination of two
exponential functions, with correlated proper Gaussian weights of equal power, is
a nonstationary process whose IF process φ̇ has infinite variance everywhere.
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