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COMPARISON THEOREMS FOR SMALL DEVIATIONS
OF WEIGHTED SERIES∗

BY

LEONID V. RO Z OV S K Y (SAINT-PETERSBURG)

Abstract. We study comparison theorems for small deviation proba-
bilities of weighted series and obtain more refined versions of the known
comparison results. In particular, the following consequence is obtained im-
mediately from Theorem 2.1 of the paper.

Let a positive random variable X belong to the domain of attraction of
a stable law with an index greater than one and let its distribution function
be regularly varying at zero with an exponent β > 0. If {Xn}n1 are inde-
pendent copies of X, and {an} and {bn} are positive summable sequences
such that

∑
n1 |1− an/bn| <∞, then as r → 0+

P
( ∑
n1

an Xn < r
)
∼

( ∏
n1

bn/an
)β

P
( ∑
n1

bn Xn < r
)
.

2000 AMS Mathematics Subject Classification: Primary: 60G50;
Secondary: 60F99.

Key words and phrases: Series of weighted i.i.d. positive random
variables, small deviations, comparison theorems.

1. INTRODUCTION

We start with the well-known result of Li [6]:

THEOREM 1.1. Let {an} and {bn} be positive summable sequences such that

(1.1)
∑
n1
|1− an/bn| <∞.

If {Zn} is a sequence of i.i.d. standard Gaussian random variables, then as ε→ 0

(1.2) P
( ∑
n1

an Z
2
n < ε2

)
∼

( ∏
n1

bn/an
)1/2

P
( ∑
n1

bn Z
2
n < ε2

)
.
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Here and later on x(ε) ∼ y(ε) as ε→ 0 means limε→0 x(ε)/y(ε) = 1.
The above comparison theorem is a very useful tool for investigations of the

small ball probabilities of a centered Gaussian process in L2-norm (see, for in-
stance, [5] as an example of such an approach; other results on this subject can
be found in the bibliography on small deviation probabilities compiled by Lifshits
in [8]).

It looks natural to extend Li’s theorem on a larger class of positive indepen-
dent and identically distributed random variables, instead of Z2

n. This question was
raised in [3]. To recall the results of [3] (namely, Theorems 3 and 4), we have to
use some notation and conditions.

In what follows, let {Xn}n1 be independent copies of a positive random
variable X with distribution function F (x) = P(X < x).

As earlier in [7], introduce the following conditions:

Condition L. There exist constants b ∈ (0, 1), c1, c2 > 1 and ε > 0 such that
for each r ¬ ε the relation c1 F (br) ¬ F (r) ¬ c2 F (br) holds.

Note that L is obviously satisfied if F (1/·) ∈ Rα, the class of regularly vary-
ing (at infinity) functions of order α < 0.

Denote the Laplace transform of X by I(s) = Ee−sX and set f(s) = log I(s).

Condition I. The function sf ′(s) is of bounded variation on [0,∞).

This assumption played the key role in [1], where explicit forms of the small
deviation probabilities of weighted series were obtained.

Note that I holds iff
∫
[0,∞)

∣∣(sf ′(s))′∣∣ ds < ∞, which, in turn, is equivalent

to the assumption that the function
(
sf ′(s)

)′ is absolutely integrable at infinity. To
explain this fact, observe that for any fixed positive a

a∫
0

∣∣(sf ′(s))′∣∣ ds ¬ a∫
0

(
− f ′(s) + s f ′′(s)

)
ds

=
(
f(0)− f(a)

)
+

(
f ′(a)− f(a)

)
<∞.

(1.3)

Also notice that I guarantees the existence of a finite non-positive constant

(1.4) α = lim
s→∞

sf ′(s) = − lim
s→∞

s2f ′′(s) = lim
s→∞

s3f ′′′(s)/2.

Moreover (see [1] again), if F ∈ L ∩ I, then the assumption (∗) F (1/·) ∈ Rα

holds and α < 0.
It is worthwhile to point out that (1.4) with α ¬ 0 is equivalent to (∗). Indeed,

the first part of (1.4) obviously implies I(·) ∈ Rα, which is equivalent to (∗) (see
Feller [2], Chapter XIII, Section 5, Theorems 2 and 3). The inverse assertion admits
the direct verification.

Now recall the accurate statement of Theorem 3 from [3].
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THEOREM 1.2. Let X have a finite variance and an absolute continuous dis-
tribution F satisfying L and I. Let {an} and {bn} be positive, non-increasing,
summable sequences. If (1.1) holds, then as r → 0+

(1.5) P
( ∑
n1

anXn < r
)
∼

( ∏
n1

an/bn
)α

P
( ∑
n1

bnXn < r
)
.

The next reasonable step, undertaken in [3] and [4], was to weaken the as-
sumption (1.1).

So, in [4] (also see the corrections) it was proved that (1.2) still holds true if
{an} and {bn} are positive, non-increasing, summable sequences and

∏
n1 an/bn

converges.
Recall the revised (taking into account the corrections) version of one more

result in [3].

THEOREM 1.3. Assume that the conditions of Theorem 1.2 hold and that∏
n1 bn/an converges. Further, suppose that either (i) s I(j+1)(s)/I(j)(s), j =

0, 1, 2, are bounded monotone on [0,∞) or (ii) s I(j+1)(s)/I(j)(s), j = 0, 1, 2,
are functions of bounded variation on [0,∞), and

∑
n1(1− an/bn)

2 <∞. Then
(1.5) holds.

Our main purpose is to represent the versions of Theorems 1.2 and 1.3 with
milder restrictions on F . In particular, we remove the redundant assumption of the
absolute continuity and relax the moment condition EX2 <∞ up to the stochastic
compactness condition of Feller:

Condition F. lim sups→∞ s2
(
1− F (s)

)
/EX2 1[X < s] <∞.

Note that F is obviously satisfied when X is in the domain of attraction of any
stable law. Let us also mention (see [10]) that F is equivalent to the assumption
that s−ωE(1 ∧ sX2) does not decrease as s > 0, for some ω ∈ (0, 1), and that
implies, in particular, the existence of a positive δ such that EXδ <∞.

Concerning Theorem 1.2, in addition, we succeeded to replace I, given in
terms of the Laplace transform I(s), by the assumption that F (1/·) ∈ Rα for some
α < 0.

Our results, namely, Theorems 2.1–2.4, are contained in Section 2. Section 3
contains the proofs of Theorems 2.1 and 2.2. In Section 4 we prove Theorems 2.3
and 2.4, and the Remarks.

2. RESULTS

In what follows the distribution F satisfies the condition F, {an} and {bn} are
positive sequences such that

∏
n1 an/bn converges, i.e.

(2.1) 0 <
∏
n1

an/bn <∞;
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Sa =
∑

n1 anXn, Sb =
∑

n1 bnXn, and, moreover,

(2.2) P(Sb <∞) = 1.

The condition (2.2), by the Three Series Theorem, is equivalent to

(2.3)
∑
n1

E(1 ∧ bnX) <∞,

and if EX < ∞, then (2.3) implies {bn} to be a summable sequence, and vice
versa. Therefore, the respective series in Theorems 1.2 and 1.3 converge with prob-
ability one.

Observe also that (2.3) imposes some moment restrictions on the random vari-
able X . For instance, if bn = n−ω, ω > 1, then (2.3) ⇔ EX1/ω < ∞, and if
bn = qn, 0 < q < 1, then (2.2)⇔ E log (1 +X) <∞.

The following result is a refinement of Theorem 1.2 (recall that in all theorems
of this section we assume that F, (2.1) and (2.2) are satisfied).

THEOREM 2.1. Assume that the distribution F (1/·) ∈ Rα for some α < 0. If
(1.1) holds, then

(2.4) P(r − s ¬ Sa < r) ∼
( ∏
n1

an/bn
)α

P(Sb < r) as r → 0+

uniformly in s  δ r for any positive δ.

REMARK 2.1. If, under the conditions F and L, (1.5) holds true for some
positive sequence {bn} and any positive sequence {an}, then F (1/·) ∈ Rα. In
other words, the last condition is necessary, to some extent.

Remind that the proofs of all the Remarks are given in Section 4.
Note that Theorem 2.1 implies P(r − s ¬ Sb < r) ∼ P(Sb < r), r → 0+,

uniformly in s  δ r for any positive δ. Actually, this fact holds true under the
conditions L, F and (2.2) (see [10]).

Now let us formulate the refined version of Theorem 1.3 (ii).

THEOREM 2.2. Assume that the distribution F satisfies I with α < 0 (see
(1.4)). If {bn} is non-increasing and

(2.5)
∑
n1

(1− an/bn)
2 <∞,

then (2.4) holds.

Let us stress that we do not require {an} and {bn} to be non-increasing simul-
taneously.

Also note that the conditions of Theorem 2.2 implicitly include the assumption

(2.6)
∑
n1

(1− an/bn) <∞

(actually, both (2.1) and (2.6) are satisfied simultaneously iff (2.5) holds true).
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REMARK 2.2. We mentioned already that I with α ¬ 0 implies F (1/·) ∈ Rα.
It is of special interest to point out the conditions on F that insure the validity
of I. Some classes of such regularly varying functions F were described in Chap-
ter 5 of [1]. We propose the alternative condition R under which I holds.

Condition R. The function u
(
logF (u)

)′ tends monotonically to−α for some
α < 0 as u↘ 0.

It is worthwhile to mention that R holds if the function p(ut)/p(u), with
p(u) = F ′(u), tends monotonically to t−α−1 for any t ∈ (0, 1] as u ↘ 0 or, in
turn, if the following condition holds:

Condition R′. The function u
(
log p(u)

)′ tends monotonically to −α − 1 as
u↘ 0.

It is obvious that the distribution F of |Z|p, p > 0, where Z is a standard
Gaussian random variable, and gamma Γ(a) and beta B(a, b) distributions satisfy
R′ (with −α = 1/p, a and a, respectively).

The results below are mainly interesting when (2.5) is violated (recall that
(2.1) holds).

For positive s let us put D1(s) = −s I(s)/I(s), D2(s) = s2 I ′′(s)/I(s).
The first assertion refines and generalizes Theorem 1.3 (i).

THEOREM 2.3. Assume that

(2.7) Dj(s), j = 1, 2, are bounded monotone on [0,∞)

and also let {an} and {bn} be two non-increasing sequences. Then (2.4) follows
provided α = − lims→∞D1(s).

REMARK 2.3. The following special case of the condition R is sufficient
for (2.7):

Condition R∞. The function u
(
logF (u)

)′ is bounded and monotonically de-
creases at (0,∞).

Note that R∞ holds if u
(
logp(u)

)′ decreases at (0,∞) and (see the notation
in R′ and below) that the distribution function of |Z|p, p > 0, as well as gamma
and beta B(a, b), b  1, distributions have the same property.

COROLLARY 2.1. Let {Zn} be a sequence of i.i.d. standard Gaussian random
variables, and let {bn} and {an} be non-increasing summable sequences such that∏

n1 an/bn converges. Then for any positive p as ε→ 0+

P
( ∑
n1

an |Zn|p < εp
)
∼

( ∏
n1

bn/an
)1/p

P
( ∑
n1

bn |Zn|p < εp
)
.

This result was formulated in [3], Corollary 1. The correct version of the proof
is available from http://www.webpages.uidaho.edu/ fuchang/.
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The assertion below can be useful when both the conditions (2.5) and (2.7) do
not hold.

THEOREM 2.4. Let {an} and {bn} be two non-increasing sequences, and
assume that a constant α in (1.4) is negative,

(2.8) D′j(s), j = 1, 2, are absolutely integrable at infinity

and, furthermore,

lim
γ→∞

∑
n1

ρn
∣∣ γan∫
γbn

|D′1(s)| ds
∣∣ = 0,(2.9)

lim
γ→∞

∑
n1

ρ3n
∣∣ γan∫
γbn

|D′2(s)| ds
∣∣ = 0,(2.10)

where ρn = |1− an/bn|. Then (2.4) with α = − lims→∞D1(s) holds true.

Note that (2.8) for j = 1 coincides with I, and also that (2.8) follows from R.

REMARK 2.4. The “technical” conditions (2.9) and (2.10) are satisfied if

(2.11) Mn+k ¬ mn for all n  1 and some integer k  1,

where Mn = max (an, bn) and mn = min (an, bn).

The latter criterion holds true in the case lim supn→∞ bn+1/bn < 1. Thus, for
such bn Theorem 2.4 (not Theorem 2.3) works.

COROLLARY 2.2. Let the assumptions of Theorem 2.4 (without (2.9) and
(2.10)) be satisfied and, in addition, lim supn→∞ bn+1/bn < 1. Then (2.4) holds
true.

3. PROOFS OF THEOREMS 2.1 AND 2.2

Let us define (see the notation before the condition I)

ha(γ) =
∑
n1

f(anγ) and hb(γ) =
∑
n1

f(bnγ),

and set

ma(γ) = −h′a(γ) = −
∑
n1

an f
′(anγ), mb(γ) = −h′b(γ) = −

∑
n1

bn f
′(bnγ),

σ2
a(γ) = h′′a(γ) =

∑
n1

a2n f
′′(anγ), σ2

b (γ) = h′′b (γ) =
∑
n1

b2n f
′(bnγ),

τ2a (γ) = γ2 σ2
a(γ), τ2b (γ) = γ2 σ2

b (γ).
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LEMMA 3.1. Let (2.3) hold and the distribution F satisfy L and F. Then as
γ →∞

P(r − s ¬ Sb < r)

= exp
(
γ r + hb(γ)

) 1− e−γs

τb(γ)
√
2π

(
exp(−β2/2) + o(1)(1 + 1/γs)

)
uniformly in r > 0 and s > 0, where β =

(
r −mb(γ)

)
/σb(γ).

LEMMA 3.2. If the condition L holds, then for all h  1

c ¬ h
(
− f ′(h)

)
¬ C, c ¬ h2f ′′(h) ¬ C, h3|f ′′′(h)| ¬ C;

if the condition F holds, then for all h ∈ (0, 1]

c¬ h
(
− f ′(h)

)
/G1(h)¬ C, c¬ h2f ′′(h)/G(h)¬ C, h|f ′′′(h)|/f ′′(h)¬ C,

provided G(h) = E
(
1 ∧ (hX)2

)
, G1(h) = E(1 ∧ hX), where positive constants

c and C do not depend on h.

Lemmas 3.1 and 3.2 follow from [10], Theorems 2.3 and 3.1, and Lemma 3,
respectively.

Let us start the proofs.
Henceforth we assume that (2.1) and (2.3) hold, and γ = γ(r) is the solution

of the equation mb(γ) = r.
We have an ∼ bn and, therefore, P(Sa < ∞) = 1. Moreover, Lemma 3.2

gives
γmb(γ)  c#{n : γbn  1} → ∞ as γ →∞.

This implies for s  δr, provided a fixed δ > 0,

γ s =
s

r
γmb(γ)→∞ as r → 0+.

Therefore, applying Lemma 3.1 twice, we obtain as r → 0+

(3.1)

P(r − s ¬ Sa < r)

P(Sb < r)
= exp

(
ha(γ)− hb(γ)

) τb(γ)

τa(γ)

(
exp(−β2/2) + o(1)

)
uniformly in s  δr, where

(3.2) β(γ) =
r −ma(γ)

σa(γ)
=

mb(γ)−ma(γ)

σa(γ)
.

Let us prove Theorems 2.1 and 2.2, and, at first, show that if (2.5) and (2.6)
hold, then as r → 0+

(3.3) τa(γ) ∼ τb(γ)
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and

(3.4) β(γ) = o (1).

For positive u write q(u) = −uf ′(u) and g(u) = u2f ′′(u). We have, with
ρn = (an − bn)/bn,

|τ2a (γ)− τ2b (γ)| ¬
∑
n1
|g(anγ)− g(bnγ)|(3.5)

¬
∑
n1
|ρn| (bnγ/un)

(
2g(un) + u3n |f ′′′(un)|

)
for some un between γan and γbn.

Taking into account Lemma 3.2, together with the simple estimate

(3.6) g(un) ¬ Cc−1
(
g(anγ) + g(bnγ)

)
and Schwarz’s inequality, we easily deduce by (3.5)

|τ2a (γ)− τ2b (γ)| ¬ A
(
τ2a (γ) + τ2b (γ)

)1/2 ( ∑
n1

ρ2n
)1/2

,

where A = (2+C)C c−1/2 maxn1 bn/(an ∧ bn). Since τ2a (γ) + τ2b (γ)→∞ as
γ →∞, the relation (3.3) follows.

Let us check (3.4). We have

(3.7) γ
(
ma(γ)−mb(γ)

)
=

( N∑
n=1

+
∑
n>N

)(
q(anγ)− q(bnγ)

)
= I1 + I2.

Next, with some un between anγ and bnγ,

q(anγ)− q(bnγ) = ρn q(bnγ)− ρn g(un) (γ
2 anbn/u

2
n)

and, by Lemma 3.2, q2(u) ¬ C2c−1g(u), u > 0. This, together with (3.5) and
Schwarz’s inequality, implies
(3.8)

|I2| ¬ Cc−1/2
( ∑
n>N

ρ2n
)1/2(

τb(γ) + max
n>N

(
bn
an
∨ an

bn

)(
τ2a (γ) + τ2b (γ)

)1/2)
.

Now (3.4) follows from (3.6) (see also (1.4), (3.8) and (3.3)) provided N is growing
to infinity slowly enough as r → 0+.

Furthermore, we have

(3.9) ha(γ)− hb(γ) =
( N∑
n=1

+
∑
n>N

)(
f(anγ)− f(bnγ)

)
= J1 + J2.
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If N grows to infinity slowly enough as r → 0+, then by (1.4) with α < 0

(3.10) J1 → −α
N∑

n=1

log (an/bn)→ log
( ∏
n1

bn/an
)α

as r → 0+.

Now,

(3.11) J2 = −
∑
n>N

ρn q(bnγ) +
∑
n>N

1

2
ρ2n g(un) = J21 + J22

with un between γan and γbn.
Lemma 3.2 obviously implies

(3.12) |J22| ¬ (C/2)
∑
n>N

ρ2n

and

(3.13) |J21| ¬ C
∑
n>N

|ρn|.

Thus, the assertion of Theorem 2.1 follows from the relations (3.3), (3.4), (3.9)–
(3.13) and (3.1). �

For proving Theorem 2.2 it is sufficient only to refine (3.13). To do it we use
the following elementary fact.

LEMMA 3.3. We have∣∣ ∑
n>N

αn βn
∣∣ ¬ sup

iN

∣∣ ∑
n>i

βn
∣∣ ∑
n>N

|αn − αn−1|

provided αN = 0.

Lemma 3.3 (see also Lemma 5 in [3]) gives

(3.14) |J21| ¬ A1 sup
iN

∣∣ ∑
n>i

ρn
∣∣.

where A1 =
∫
[0,∞)
|(sf ′(s))′| ds <∞, and Theorem 2.2 follows. �

4. PROOFS OF THEOREMS 2.3 AND 2.4 AND OF THE REMARKS

We need to change some details in the reasonings of Section 3.
At first, let us improve (3.5). We have, for q(u)=−uf ′(u) and g(u)=u2f ′′(u)

again,

τ2a (γ)− τ2b (γ) =
( N∑
n=1

+
∑
n>N

)
log (an/bn)R(un) = I1 + I2

provided R(u) = ug′(u) and un between anγ and bnγ.
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If N grows to infinity slowly enough as r → 0+, then I1 → 0 by (1.4) and, by
virtue of Lemmas 3.3 and 3.2,

|I2| ¬ sup
iN

∣∣ ∑
n>i

log (an/bn)
∣∣· 2 ∑

n>N

R(un) = o
(
τ2b (γ)

)
as r → 0+.

Thus, (3.3) follows.
Now let us evaluate anew J2 from (3.9). Setting an = (1 + rn) bn, we find

(4.1) J2 = −
∑
n>N

γan∫
γbn

q(s) ds/s = −
∑
n>N

1+rn∫
1

q(γbn s) ds/s.

We have

(4.2)
1+rn∫
1

q(γbn s) ds/s = q(γan) log (1 + rn)−
1+rn∫
1

log s dq(γbn s)

= q(γbn) log (1 + rn) +
1+rn∫
1

(
q(γbn s)− q(γbn)

)
ds/s.

Let us assume for a while that (2.7) is satisfied. Then q(·) grows from zero to |α|
on [0,∞) and, therefore, (4.2) and (4.1) imply

∑
n>N

q(γbn) log (1 + rn) ¬ −J2 ¬
∑
n>N

q(γan) log (1 + rn).

This and Lemma 3.3 yield

|J2| ¬ |α| sup
iN

∣∣ ∑
n>i

log (1 + rn)
∣∣.

Thus (see also (3.9), (3.10) and (2.1))

(4.3) ha(γ)− hb(γ)→ log
( ∏
n1

bn/an
)α

as r → 0+.

In a general case, by (4.1), (4.2) and Lemma 3.3 (see (3.14)) we get

|J2| ¬
∣∣ ∑
n>N

q(γbn) log (1 + rn)
∣∣+ ∑

n>N

∣∣ γan∫
γbn

|dq(u)|
∣∣| log (1 + rn)|

¬ A1 sup
iN

∣∣ ∑
n>i

log (1 + rn)
∣∣+ sup

n>N
| log (1 + rn)/rn|

∑
n>N

|rn|
∣∣ γan∫
γbn

|D′1(u)| du
∣∣

and (4.3) follows again now by (3.9), (3.10) and (2.9).
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Finally, let us establish (3.4). We have (see (2.7) and (4.1) for the notation)

γ
(
mb(γ)−ma(γ)

)
=

∑
n1

γbn(1+rn)∫
γbn

(
D2(u)− q(u)− q2(u)

)
du/u.

As earlier in (4.1) and after that formula, under the condition (2.7) we have∣∣γ (mb(γ)−ma(γ)
)∣∣ ¬ 2|α|(1 + |α|) sup

i1

∣∣ ∑
ni

log (1 + rn)
∣∣,

and (see also (2.1)) (3.4) follows since τb(γ)→∞ as r → 0+.
Now consider the general case. We get again with g(u) = u2 f ′′(u)

(4.4)
∣∣γ (mb(γ)−ma(γ)

)∣∣ ¬ ∣∣ ∑
n1

γan∫
γbn

q(u) du/u
∣∣

+
∣∣ ∑
n1

log (1 + rn)g(γbn)
∣∣+ ∣∣ ∑

n1

1+rn∫
1

(
g(γbn s)− g(γbn)

)
ds/s

∣∣.
The first summand in (4.4) is bounded by (4.3) and the second one is bounded by
Lemma 3.3 since∫

[0,∞)

|g′(s)| ds ¬
a∫
0

|g′(s)| ds+
∫

[a,∞)

(
|D′2(s)|+

∣∣(D2
1(s)

)′∣∣) ds <∞

due to (2.8), (1.3), Lemma 3.2 and the fact that for any fixed a > 0

a∫
0

|g′(s)| ds ¬ (C + 2)
a∫
0

s f ′′(s) ds <∞.

Let us evaluate the last summand in (4.4). Obviously,

∣∣ ∑
n1

1+rn∫
1

(
g(γbn s)− g(γbn)

)
ds/s

∣∣¬C ∑
n1

|rn|√
g(γbn)

∣∣ γan∫
γbn

|g′(s)| ds
∣∣√g(γbn)

¬ C
( ∑

n1

(
rn

γan∫
γbn

|g′(s)| ds
)2
/g(γbn)

)1/2
τb(γ)

provided C = supn1 | log (1 + rn)/rn|.
This, along with Lemma 3.2 and (2.10), implies (3.4).
Thus, Theorems 2.3 and 2.4 are completely proved. �

The verification of the fact that (2.8) with j = 2 follows from R can be realized
like the proofs of Remarks 2.2 and 2.3 (j = 2).

Finally, let us prove the Remarks.
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P r o o f o f R e m a r k 2.1. For any positive x, set a1 = x b1 and let an =
bn, n  2. Then by (3.1), provided mb(γ) = r,

P(Sa < r)

P(Sb < r)
=

I(x b1 γ)

I(b1 γ)

(
1 + o(1)

)
as r → 0+,

and Remark 2.1 follows from Feller [2], Chapter XIII, Section 8, the Theorem. �

P r o o f o f R e m a r k 2.2. Observe, first of all, that R implies

(4.5) F (1/·) ∈ Rα.

Set

I0(s) =
u0∫
0

e−su dF (u), A0 =
u0∫
0

F (u) e−su du, κ(s) = 1− I0(s)/I(s).

We have

s I ′0(s)/I0(s)− sI ′(s)/I(s) = s
(
log

(
1− κ(s)

))′
= −s κ′(s)

∑
k0

κk(s).

Since (4.5) yields (1.4) and the fact that I(s) and I0(s) ∈ Rα, simple calcula-
tions show that the integrability at infinity of the derivative of sI ′(s)/I(s) is equiv-
alent to that of s I ′0(s)/I0(s). Next, I0(s) = F (u0) exp(−su0) + sA0 and, there-
fore, we have s I ′0(s)/I0(s) = T (s)

(
1−F (u0) exp(−su0)/I0(s)

)
, where T (s) =

I ′0(s)/A0(s). Now,

(4.6) T ′(s) =
I ′′0 (s)

A0(s)
− I ′0(s)A

′
0(s)

A2
0(s)

=
I ′′0 (s)

A0(s)
− −I

′
0(s)

A0(s)
· A1(s)

A0(s)

=

u0∫
0

uH(u)F (u) e−su du

A0
−

u0∫
0

uF (u) e−su du

A0

u0∫
0

H(u)F (u) e−su du

A0

provided H(u) = u
(
logF (u)

)′.
Let a random variable Y , defined at (0, u0), have the distribution

t∫
0

F (u) e−su du/
u0∫
0

F (u) e−su du, 0 < t < u0.

Then (4.6) together with R implies that for all s large enough the function T ′(s) =
EY H(Y ) − EY EH(Y ) does not change the sign by the second Chebyshev in-
equality (Petrov [9], Chapter I, Section 2, Theorem 1). Hence (see also (4.5)) T ′(s)
is absolutely integrable at infinity, and I follows. �
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P r o o f o f R e m a r k 2.3. The assertion for j = 1 is a special case of R.
Let now j = 2. Set F̂ (t) =

∫ t

0
F (u) du, Ĩ(s) =

∫∞
0

F̂ (u) e−su du. Then we have
I(s) = s2 Ĩ(s), and

D′2(s) =
(
I ′′(s)/Ĩ(s)

)′
= −

(
EY H̃(Y )−EY EH̃(Y )

)
,

where H̃(u) = u2 F ′(u)/F̂ (u) and a positive random variable Y has the distribu-
tion function

t∫
0

F̂ (u) e−su du/Ĩ(s), t > 0.

Hence D′2(s)  0 provided H̃(·) does not increase. Next,

H̃(t) = H(t)/
1∫
0

F (ut)

F (t)
du, where H(t) = t F ′(t)/F (t).

But the function F (ut)/F (t) = exp
(
−
∫ 1

u
H(tx) dx/x

)
does not decrease on

(0,∞) if H(t) does not increase. Thus, H̃(·) does not increase, and the required
result follows. �

P r o o f o f R e m a r k 2.4. Let us just check that (2.11) and (2.8) imply(2.9).
We have for v(s) = D′1(s), setting ρ̄N = supnN ρn,

∑
nN

ρn
∣∣ γan∫
γbn

v(s) ds
∣∣ = ∑

nN
ρn

γMn∫
γmn

v(s) ds ¬ ρ̄N
∑
nN

γMn∫
γMn+k

v(s) ds

= ρ̄N
∑
nN

( γMn∫
γMn+1

v(s) ds+ . . .+
γMn+k−1∫
γMn+k

v(s) ds
)

= ρ̄N
( γMN∫

0

v(s) ds+ . . .+
γMN+k−1∫

0

v(s) ds
)
¬ ρ̄N k

∞∫
0

v(s) ds.

Letting N to infinity slowly enough and taking into account that by virtue of (1.4)

∑
n<N

ρn
∣∣ γan∫
γbn

v(s) ds
∣∣→ 0 as γ →∞,

we obtain the claim of Remark 2.4. �
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