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Abstract. We define a pair of non-commutative processes on a per-
turbed Fock space. Both processes have the same univariate distributions
and satisfy a weak form of the polynomial martingale property. The pro-
cesses give two non-equivalent Fock-space realizations of the same classi-
cal Markov process: the two-parameter bi-Poisson processes introduced in
[12], and constructed in [13].
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1. INTRODUCTION

It is known that any probability measure with finite moments has a Fock space
representation, see [1]. On the other hand, while there are many examples, there
is no general construction for the Fock space representation of a classical pro-
cesses (Xt)t­0. The difficulty here consists in selecting a convenient Fock space
H and a suitable mapping (0,∞) → H such that all ordered non-commutative
moments would agree with the corresponding moments of the classical process,
see Definition 3.3. It is natural to expect, and known to experts, that when such a
Fock space representation exists then it is not unique. In this paper we exhibit two
non-equivalent processes on the same Fock space that represent the same classical
bi-Poisson process [13]; for particular values of the parameters these construc-
tions coincide with two non-equivalent Fock space representations of the classical
Markov q-Poisson processes that already appeared in the literature in [2] and [17],
and were in fact suggested to us by these two papers. We were also guided by the
perturbations of the free Fock space in [10] and [11], and by the observation in

∗ The authors would like to thank J. Wysoczański for a discussion that led to the perturbed Fock
space analyzed in this note. This research was partially supported by NSF grant #DMS-0904720
(WB) and Polish National Science Center grant no. DEC-2012/05/B/ST1/00626 (WE).
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[14], Proposition 4.1, that for q = 0 the univariate laws of the bi-Poisson processes
form a semigroup with respect to the c-free convolution of [9]. Our construction
does not enjoy the symmetry of the bi-Poisson processes in classical (commutative)
probability, where (Xt)t>0 and (tX1/t)t>0 represent the same Markov process.

2. NON-COMMUTATIVE PROCESSES

Throughout this paper, parameters |q| < 1 and 1 + ηθ > q+ are fixed (where
q+ = max{q, 0}). For this choice of the parameters, 1 + ηθ[n]q ­ 0 for all n.
(Recall that [n]q =

∑n
j=1 q

j−1.)
The following three-step recurrence

(2.1) xpn(x; t)

= pn+1(x; t) + (θ + tη)[n]qpn(x; t) + t(1 + ηθ[n− 1]q)[n]qpn−1(x; t),

n ­ 0, with p−1 = 0, p0 = 1 was introduced in [12], Example 4.9, in connection
with a regression problem. When ηθ = 0 and t is fixed this recurrence determines
polynomials which are orthogonal with respect to the q-Poisson distribution that
already appeared in non-commutative probability, see [2] and [16]–[18].

Our goal is to construct two different non-commutative processes that corre-
spond to this recurrence. We will then show that these processes fail to be equiva-
lent, but are still classically equivalent (see Definitions 3.1 and 3.3) and they both
have the classical bi-Poisson Markov process of [13] as the classical version.

2.1. Perturbed Fock space. We will be working with the perturbation of the
q-Fock space from [7] which coincides with the perturbation in [10], Section 7,
when q = 0. For a real Hilbert space H = L2

(
(0,∞), ds

)
with the complexifica-

tion Hc := H⊕ iH, the associated perturbed q-Fock space Fq,ηθ(H) is the closure
of ⊕∞

n=0
H⊗nc with respect to the scalar product obtained as the sesquilinear ex-

tension of

⟨g1 ⊗ . . .⊗ gn|h1 ⊗ . . .⊗ hm⟩q

= δm,n

n−1∏
k=1

(1 + ηθ[k − 1]q)
∑

σ∈Sn

q|σ|
n∏

j=1

⟨gj , hσ(j)⟩.

Here, H⊗0c := C1, where 1 is called the vacuum vector, i.e. it is a distinguished
vector of norm one, Sn is the set of all the permutations of {1, . . . , n}, and |σ| :=
card{(i, j) : i < j, σ(i) > σ(j)} is the number of inversions of σ ∈ Sn. The ex-
plicit structure of H is used in (2.7). (This is just a “weighted” version of the q-
Gaussian Fock space of [7].)

We denote by ∥·∥Fq,ηθ(H) the corresponding norm. We denote by H⊗n the
∥·∥Fq,ηθ(H)-closure of the algebraic tensor product H⊗nc so that

Fq,ηθ(H) =
∞
⊕
n=0

H⊗n.
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Let T : H → H be a bounded operator. Define its gauge operator p(T ) on
⊕∞

n=0
H⊗nc by

p(T )1 = 0,

p(T )g1 ⊗ . . .⊗ gn :=
n∑

j=1

qj−1(Tgj)⊗ g1 ⊗ . . .⊗ gj−1 ⊗ gj+1 ⊗ . . .⊗ gn.

We will need the perturbed version of Lemma 1 in [3].

LEMMA 2.1. If T is self-adjoint, then p(T ) is self-adjoint and extends to a
bounded operator on Fq,ηθ(H).

The proof relies on an auxiliary operator

Pq,ηθ =
∞
⊕
n=0

P
(n)
q,ηθ with P

(n)
q,ηθ : H

⊗n
c → H⊗nc .

We define the operator P (n)
q,ηθ by

(2.2) P
(n)
q,ηθ =

n−1∏
k=1

(1 + ηθ[k − 1]q)
∑

σ∈Sn

q|σ|Uσ,

where
Uσg1 ⊗ . . .⊗ gn = gσ(1) ⊗ . . .⊗ gσ(n), σ ∈ Sn.

We can now write the scalar product in terms of P (n)
q,ηθ and the usual scalar product

on the full Fock space as

⟨ζ|ζ ′⟩q,ηθ = ⟨ζ|P
(n)
q,ηθ(ζ

′)⟩0,0 .

REMARK 2.1. The operator Pq,ηθ is positive for all q ∈ (−1, 1) with respect
to the scalar product ⟨·|·⟩0,0. That is, for all ζ ∈ H⊗nc , ⟨ζ|P (n)

q,η,θζ⟩0,0 > 0.

Indeed, recalling the fact that

P (n)
q = P

(n)
q,0 =

∑
σ∈Sn

q|σ|Uσ

is positive definite ([8], Proposition 1) we see that

(2.3) ⟨ζ|P (n)
q,ηθζ⟩0,0 =

n−1∏
k=1

(1 + ηθ[k − 1]q)
⟨
ζ|

∑
σ∈Sn

q|σ|Uσζ
⟩
0,0

> 0.

P r o o f o f L e m m a 2.1. We first prove that if T is self-adjoint then p(T )

is self-adjoint on a dense set ⊕∞
n=0

H⊗nc . Take any ζ, ζ ′ ∈ Hn
c . Operator P (n)

q,ηθ,

restricted to Hn
c , can be written as P (n)

q,ηθ =
∏n−1

k=1(1 + ηθ[k − 1]q)P
(n)
q . The main
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idea of the proof is to apply Proposition 2.2 of [2] which tells us that the adjoint of
p(T ) with respect to the ⟨·|·⟩q,0-inner product is p(T ∗). This gives us

⟨p(T )(ζ)|ζ ′⟩q,ηθ = ⟨p(T )(ζ)|P
(n)
q,ηθ(ζ

′)⟩0,0(2.4)

=
n−1∏
k=1

(1 + ηθ[k − 1]q)⟨p(T )(ζ)|P (n)
q (ζ ′)⟩0,0

=
n−1∏
k=1

(1 + ηθ[k − 1]q)⟨p(T )(ζ)|ζ ′⟩q,0

=
n−1∏
k=1

(1 + ηθ[k − 1]q)⟨ζ|p(T ∗)(ζ ′)⟩q,0

=
n−1∏
k=1

(1 + ηθ[k − 1]q)⟨ζ|P (n)
q p(T ∗)(ζ ′)⟩0,0

= ⟨ζ|p(T ∗)(ζ ′)⟩q,ηθ.(2.5)

Next we show that p(T ) is bounded. We begin by showing that p(T ) is
bounded in F0,0(H). The proof is similar to that of Lemma 1 in Anshelevich [3].
We express the p(T ) as p(T ) = p0(T )p(1), where p0(T )(g1 ⊗ . . . ⊗ gn) =
T (g1)⊗ . . .⊗ T (gn) and 1 is the vacuum vector. Of course, we have ∥p0∥ 6 ∥T∥.
Operator p(1) is bounded and has norm ∥p(1)∥0,0 6 max

(
1, 1/(1 − q)

)
. This

follows by the same method as in [3] (the first part of the proof of Lemma 1).
From the equality stated in (2.4)–(2.5) it is clear that Pq,ηθp(T

∗) = p(T )∗Pq,ηθ,
where p(T )∗ is taken with respect to the zero-inner product (⟨·|·⟩0,0). This gives us
Pq,ηθp(T

∗)p(T ) = p(T )∗Pq,ηθp(T ) > 0. In particular,

Pq,ηθp(T
∗)p(T )[p(T ∗)p(T )]∗Pq,ηθ 6 ∥p(T ∗)p(T )[p(T ∗)p(T )]∗∥0,0P 2

q,ηθ

or

Pq,ηθp(T
∗)p(T ) 6

√
∥p(T ∗)p(T )[p(T ∗)p(T )]∗∥0,0Pq,ηθ(2.6)

6 ∥p(T ∗)∥0,0∥p(T )∥0,0Pq,ηθ.

If we take ζ ∈ Fq,ηθ(H), we get

⟨p(T )(ζ)|p(T )(ζ)⟩q,ηθ = ⟨ζ|p(T ∗)p(T )(ζ)⟩q,ηθ

= ⟨ζ|Pq,ηθp(T
∗)p(T )(ζ)⟩0,0

(2.6)

6 ∥p(T ∗)∥0,0∥p(T )∥0,0⟨ζ|Pq,ηθ(ζ)⟩0,0
= ∥p(T ∗)∥0,0∥p(T )∥0,0⟨ζ|ζ⟩q,ηθ.

Since ∥T ∗∥ = ∥T∥, we conclude that

∥p(T )∥q,ηθ 6
√
∥p(T ∗)∥0,0∥p(T )∥0,0 6 max

(
1, 1/(1− q)

)
∥T∥. �
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2.2. Operators. Our process will be a linear combination of the usual objects:
the annihilator, creator and two gauge operators.

2.2.1. Annihilators and creators. For h ∈ H, the annihilation operator

ah : Fq,ηθ(H)→ Fq,ηθ(H)

and its adjoint, the creation operator

a∗h : Fq,ηθ(H)→ Fq,ηθ(H),

are the bounded linear extensions of

ah1 := 0,

ahg1 ⊗ . . .⊗ gn

:= (1 + ηθ[n− 1]q)
n∑

j=1

qj−1⟨h, gj⟩g1 ⊗ . . .⊗ gj−1 ⊗ gj+1 ⊗ . . .⊗ gn

and
a∗h1 = h, a∗hg1 ⊗ . . .⊗ gn := h⊗ g1 ⊗ . . .⊗ gn,

where g1, g2, . . . , gn ∈ Hc.

2.2.2. Gauge operator p. We follow [2]. For h∈L∞
(
(0,∞)

)
∩L2

(
(0,∞)

)
⊂

H we define the gauge operator ph as the bounded linear extension of

(2.7) phg1 ⊗ . . .⊗ gn :=
n∑

j=1

qj−1(hgj)⊗ g1 ⊗ . . .⊗ gj−1 ⊗ gj+1 ⊗ . . .⊗ gn,

ph1 = 0.
In the terminology of Lemma 2.1, this operator corresponds to the self-adjoint

operator T : H→ H of multiplication by a bounded function h.

2.2.3. Gauge operator q. For h ∈ H, we define the gauge operator qh as the
bounded linear extension of

qhg1 ⊗ . . .⊗ gn :=
n∑

j=1

qj−1⟨h, gj⟩h⊗ g1 ⊗ . . .⊗ gj−1 ⊗ gj+1 ⊗ . . .⊗ gn,

qh1 = 0.
This is just the operator that in the unperturbed theory is written as a∗hah. In the

terminology of Lemma 2.1, this operator corresponds to the self-adjoint operator
T : H→ H defined by T (f) = ⟨h, f⟩h.
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3. NON-COMMUTATIVE BI-POISSON PROCESSES

In this section we analyze simple but somewhat paradoxical properties of a
pair of two-parameter processes defined on the same Fock space Fq,ηθ(H), and in-
dexed by t ∈ (0,∞). Both processes at time t have the same univariate bi-Poisson
distribution determined by (2.1), and satisfy a weak form of the polynomial mar-
tingale property. Both processes give (non-equivalent) Fock-space realizations of
the same classical Markov process from [13].

We will define our processes in terms of the auxiliary self-adjoint bounded
linear operator Zη,θ(f) on Fq,ηθ(H), which for f ∈ L∞

(
(0,∞)

)
∩ L2

(
(0,∞)

)
is

given as

(3.1) Zη,θ(f) = af + a∗f + ηqf + θpf .

PROPOSITION 3.1. Zη,θ(f) is a bounded self-adjoint operator, and vacuum
1 is a cyclic and separating vector for the algebra generated by

{
Z(f) : f ∈

L∞
(
(0,∞)

)
∩ L2

(
(0,∞)

)}
.

P r o o f. (Compare [3], Propositions 2 and 4.) By Lemma 2.1, it is clear that
Zη,θ(f) is a bounded self-adjoint operator.

Let Aq,η,θ be the algebra of operators on Fq,ηθ(H) generated by
{
Z(f) :

f ∈ L∞
(
(0,∞)

)
∩ L2

(
(0,∞)

)}
(no closure!). Recall that 1 is a separating vec-

tor if for any A ∈ Aq,η,θ we have the implication A1 = 0 ⇒ A = 0. Let H′ =
L∞

(
(0,∞)

)
∩ L2

(
(0,∞)

)
and we define a Wick map

W :
∞
⊕
n=0

H′⊗n → Aq,η,θ

as

W (f0 ⊗ f1 ⊗ . . .⊗ fn) = Zη,θ(f0)W (f1 ⊗ . . .⊗ fn)

− (1 + ηθ[k − 1]q)
n∑

i=1

qi−1⟨f0|fi⟩W (f1 ⊗ . . .⊗ fi−1 ⊗ fi+1 ⊗ . . .⊗ fn)

− η
n∑

i=1

qi−1⟨f0|fi⟩W (f0 ⊗ f1 ⊗ . . .⊗ fi−1 ⊗ fi+1 ⊗ . . .⊗ fn)

− θ
n∑

i=1

qi−1W
(
(f0fi)⊗ f1 ⊗ . . .⊗ fi−1 ⊗ fi+1 ⊗ . . .⊗ fn

)
with the extra condition W (f) = Zη,θ(f) and W (1) = 1. It is obvious that

W (f1 ⊗ . . .⊗ fn)1 = f1 ⊗ . . .⊗ fn.

Since H′ is a dense subspace of H, we conclude that the Wick map W extends lin-
early to Fq,ηθ(H). It is clear that the Wick map W (f1 ⊗ . . .⊗ fn) is a polynomial
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in variables Zη,θ(f), f ∈ H′. Induction on n shows that

(3.2) Zη,θ(f1) . . . Zη,θ(fn) = W (f1 ⊗ . . .⊗ fn) +W (ζ),

where ζ ∈⊕n−1
i=0

H′⊗i. So we have A = W (ϕ), where ϕ ∈⊕∞
n=0

H⊗n for every
A ∈ Aq,η,θ. If A1 = 0, then W (ϕ)1 = ϕ = 0, and so A = 0. Thus 1 is a separating
vector for Aq,η,θ.

Recall that the vacuum vector 1 is cyclic for an algebra of bounded operators
Aq,η,θ on a Hilbert space Fq,ηθ(H), if {T1 : T ∈ Aq,η,θ} is a dense subspace of
Fq,ηθ(H). By definition,

(3.3) Zη,θ(f1) . . . Zη,θ(fn)(1) = f1 ⊗ . . .⊗ fn + ζ,

where ζ ∈⊕n−1
i=0

H′⊗i.Aq,η,θ is the algebra generated by Zη,θ(f), so it follows by
induction that the set B = {T1 : T is a polynomial of Zη,θ(f), f ∈ H′} is equal to
⊕∞

i=0
H′⊗i. The set B is dense in Fq,ηθ(H) because H′ is dense in H with respect

to ∥ · ∥2 (obviously, B ⊂ {T1 : T ∈ Aq,η,θ}). �

Let Aq,η,θ be the algebra generated by Zη,θ(f) from the above proof. We de-
fine the expectation state τ : Aq,η,θ → C on this algebra by setting

τ(U) := ⟨U1,1⟩

for any polynomial U ∈ Aq,η,θ.
For fixed {0, 1}-valued f , the random variable Zη,θ(f) has the bi-Poisson

distribution in the following sense.

PROPOSITION 3.2. If f2 = f, then the distribution of Zη,θ(f) is the orthogo-
nality measure of polynomials {Qn : n ­ 0} defined by the three-step recurrence

(3.4) xQn(x)−Qn+1(x)

= (θ + η∥f∥2)[n]qQn(x) + (1 + ηθ[n− 1]q)∥f∥2[n]qQn−1(x),

n ­ 0, Q−1 = 0, Q0 = 1.

P r o o f. Since Zη,θ(f)1 = f , we see that τ
(
Zη,θ(f)

)
= 0 and the covariance

is of the form
τ
(
Zη,θ(f)Zη,θ(g)

)
= ⟨g, f⟩.

We need to verify that for n ̸= m we have

τ
(
Qm

(
Zη,θ(f)

)
Qn

(
Zη,θ(f)

))
= 0.

To see this, we verify by induction that

(3.5) Qn

(
Zη,θ(f)

)
1 = f⊗n, n ­ 0,
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with the interpretation f⊗0 = 1. Indeed, since Zη,θ(f)1 = f , formula (3.5) holds
for n = 0, 1. Suppose that (3.5) holds for some n ­ 1. From (3.4) and the induction
assumption we see that

Qn+1

(
Zη,θ(f)

)
1

= Zη,θ(f)f
⊗n − (θ + η∥f∥2)[n]qf⊗n − (1 + ηθ[n− 1]q)∥f∥2[n]qf⊗n−1.

Using (3.1) it is easy to see that

Zη,θ(f)f
⊗n = a∗ff

⊗n + ηqff
⊗n + θpff

⊗n + aff
⊗n

= f⊗n+1 + η∥f∥2[n]qf⊗n + θ[n]qf
⊗n + (1 + ηθ[n− 1]q)∥f∥2[n]qf⊗n−1.

Thus Qn+1

(
Zη,θ(f)

)
1 = f⊗n+1 and (3.5) follows. �

We will be interested in two closely related non-commutative stochastic pro-
cesses, indexed by t > 0 and derived from Z by taking appropriate {0, 1}-valued
functions f . Let

(3.6) X(t) = Zη,θ(1(0,t)),

(3.7) Y(t) = tZθ,η(1(0,1/t)).

Since the parameters q, η, θ are fixed throughout, in our notation we suppress the
dependence of X,Y on these parameters. Note that in (3.7) the parameters η, θ are
switched.

We remark that when η = 0, process X(t) becomes the centered version of the
q-Poisson process as defined in [2], Definition 6.15, and Y(t) is the time-transform
of the centered q-Poisson process introduced in [17]. (That is,

(
tY(1/t)

)
t>0

is the
centered version of the q-Poisson process from [17].) Similarly, when θ = 0, Y(t)
is the time-transform of the centered q-Poisson process from [2], Definition 6.15,
and process X(t) becomes the centered q-Poisson process as defined in [17], and
is closely related to the construction in [18].

It is clear that both processes have the same covariance structure: τ
(
X(t)

)
=

τ
(
Y(t)

)
= 0, and τ

(
X(t)X(s)

)
= τ

(
Y(t)Y(s)

)
= min{t, s}. From Proposi-

tion 3.2 it follows that both processes also have the same orthogonal polynomi-
als given by (2.1). Indeed, pm

(
Y(t), t

)
1 = tm1⊗m(0,1/t). Thus their one-dimensional

distributions are equal.
We are interested in the question of equivalence of processes X and Y. We

introduce several related moments-based notions of equivalence, and we show that
processes X and Y are equivalent only in the weakest sense: they both have the
same classical versions.

DEFINITION 3.1. Processes X1, X2 are equivalent if for every finite choice
t1, . . . , tk ∈ (0,∞)

τ
(
X1(t1) . . .X1(tk)

)
= τ

(
X2(t1) . . .X2(tk)

)
, k = 1, 2, . . .
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For an example of equivalent processes, see [6], Theorem 6.2. Belavkin [5]
advocates the following concept of weak equivalence.

DEFINITION 3.2. Processes X1, X2 are weakly equivalent if for every finite
choice of ordered numbers s1 ­ . . . ­ sm > 0 and sm < t1 ¬ . . . ¬ tk

τ
(
X1(s1) . . .X1(sm)X1(t1) . . .X1(tk)

)
= τ

(
X2(s1) . . .X2(sm)X2(t1) . . .X2(tk)

)
, m, k = 1, 2, . . .

The weakest version of the concept of equivalence of non-commutative pro-
cesses relies on time-ordered moments, compare [7], Definition 4.1.

DEFINITION 3.3. Processes X1, X2 are classically equivalent if for every
finite choice of real numbers 0 < t1 ¬ t2 ¬ . . . ¬ tk

(3.8) τ
(
X1(t1) . . .X1(tk)

)
= τ

(
X2(t1) . . .X2(tk)

)
, k = 1, 2, . . .

Recall that a classical version of the process X(t) is a classical stochastic
process (Xt) that is classically equivalent to X(t), i.e.

τ
(
X(t1) . . .X(tk)

)
= E(Xt1 . . . Xtk) for all t1 ¬ . . . ¬ tk ∈ (0,∞),

cf. [7], Theorem 4.4, and [4], Corollary A1 (c).
First we show that, generically, processes X and Y are not (weakly) equivalent.

PROPOSITION 3.3. Processes X(t) and Y(t) are equivalent if and only if
η = θ = 0.

P r o o f. A calculation shows that

X(t)X(s)1 = (t ∧ s)1+ θ1(0,t∧s) + (t ∧ s)η1(0,t) + 1(0,t) ⊗ 1(0,s),

and, recalling that η, θ are swapped in (3.7), we have

Y(t)Y(s)1 = (t ∧ s)1+ tsη1(0,1/t∧1/s) + (t ∧ s)θ1(0,1/t) + st1(0,1/t) ⊗ 1(0,1/s).

Since X(t),Y(t) are self-adjoint and different tensor powers are orthogonal, we
have

τ
(
X(t)X(s)X(t)

)
= ⟨1(0,s), θ1(0,t∧s) + (t ∧ s)η1(0,t)⟩

and

τ
(
Y(t)Y(s)Y(t)

)
= ⟨t1(0,1/t), tsη1(0,1/t∧1/s) + (t ∧ s)θ1(0,1/t)⟩.

Fix 0 < t1 ¬ t2. The above formulas give

(3.9) τ
(
X(t2)X(t1)X(t2)

)
= θt1 + ηt21
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and

(3.10) τ
(
Y(t2)Y(t1)Y(t2)

)
= ηt1t2 + θt2.

Thus the moments cannot be equal for all 0 < t1 ¬ t2 unless η = θ = 0.
On the other hand, if η = θ = 0, then τ

(
X(t)X(s)

)
= τ

(
Y(t)Y(s)

)
, so the

joint moments τ
(
X(t1) . . .X(tk)

)
and τ

(
Y(t1) . . .Y(tk)

)
are given by the same

combinatorial expression for all t1, . . . , tk ­ 0, see [15], Corollary 2.1. Thus in
this case the processes are equivalent. �

PROPOSITION 3.4. Processes X(t) and Y(t) are classically equivalent. More-
over, the recurrence (2.1) defines the classical martingale polynomials: if t1 ¬
t2 ¬ . . . ¬ tk ¬ u, then

(3.11) τ
(
X(t1) . . .X(tk)pm

(
X(u);u

))
= τ

(
X(t1) . . .X(tk)pm

(
X(tk); tk

))
and

(3.12) τ
(
Y(t1) . . .Y(tk)pm

(
Y(u);u

))
= τ

(
Y(t1) . . .Y(tk)pm

(
Y(tk); tk

))
.

P r o o f. Write ft = 1(0,t), gt = 1(0,1/t). Fix t1, t2, . . . , tk ∈ (0, u]. Induction
on k shows that X(tk)X(tk−1) . . .X(t1)1 is given by a unique linear combination

∑
S={s1,...,sr}⊂{t1,...,tk}

αSfs1 ⊗ fs2 ⊗ . . .⊗ fsr .

Indeed, each of the operators af ,a∗f ,pf ,qf preserves this form.
If u ­ t ­ max{t1, . . . , tk} then ⟨fu, fs⟩ = ⟨ft, fs⟩ for all s ∈ {t1, . . . , tk}.

Therefore,

⟨f⊗mu , fs1 ⊗ fs2 ⊗ . . .⊗ fsr⟩ = ⟨f⊗mt , fs1 ⊗ fs2 ⊗ . . .⊗ fsr⟩,

which implies (3.11).
Similarly, Y(tk)Y(tk−1) . . .Y(t1)1 is given by a unique linear combination

∑
S={s1,...,sr}⊂{t1,...,tk}

αSgs1 ⊗ gs2 ⊗ . . .⊗ gsr .

If u ­ t ­ max{t1, . . . , tk} then the identity u⟨gu, gs⟩ = 1 = t⟨gt, gs⟩ for all s ∈
{t1, . . . , tk} now gives

um⟨g⊗mu , gs1 ⊗ gs2 ⊗ . . .⊗ gsr⟩ = tm⟨g⊗mt , gs1 ⊗ gs2 ⊗ . . .⊗ gsr⟩,

which implies (3.12).
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Since for each fixed t > 0 random variables X(t) and Y(t) are bounded and
their one-dimensional distributions coincide, the classical equivalence of X(t) and
Y(t) follows from (3.11) and (3.12) by induction as follows. Suppose that we have
m different values t1 < t2 < . . . < tm each repeated n1, . . . , nm times, so that the
definition (3.8) takes the form

τ
(
X(t1)

n1 . . .X(tm)nm
)
= τ

(
Y(t1)

n1 . . .Y(tm)nm
)
.

From (3.11) and (3.12) we see that for a polynomials pr(x; , tm+1) determined
from (2.1) it follows that

τ
(
X(t1)

n1 . . .X(tm)nmpr
(
X(tm+1); tm+1

))
reduces to the expectation of the polynomial in X(t1), . . . ,X(tm). Thus

τ
(
X(t1)

n1 . . .X(tm)nmpr
(
X(tm+1); tm+1

))
= τ

(
Y(t1)

n1 . . .Y(tm)nmpr
(
Y(tm+1); tm+1

))
,

which by linearity implies

τ
(
X(t1)

n1 . . .X(tm)nmX(tm+1)
r
)
= τ

(
Y(t1)

n1 . . .Y(tm)nmY(tm+1)
r
)
.

This completes the induction step. �

Anshelevich [3], Proposition 25, points out that, generically, q-Lévy processes
do not have normal tracial states. Since our process generalizes the q-Poisson pro-
cess, it is not surprising that τ is not tracial.

COROLLARY 3.1. If η2 + θ2 > 0, then τ : Aq,η,θ → C is not tracial.

P r o o f. The tracial property and Proposition 3.4 imply that for t1 < t2

τ
(
X(t2)X(t1)X(t2)

)
= τ

(
X(t1)X(t2)

2
)

= τ
(
X(t1)

(
p2
(
X(t2); t2

)
+ (θ + tη)p1

(
X(t2); t2

)
+ tp0

(
X(t2); t2

)))
= τ

(
X(t1)

(
p2
(
X(t1); t1

)
+ (θ + tη)p1

(
X(t1); t1

)
+ tp0

(
X(t1); t1

)))
= τ

(
Y(t1)

(
p2
(
Y(t1); t1

)
+ (θ + tη)p1

(
Y(t1); t1

)
+ tp0

(
Y(t1); t1

)))
= τ

(
Y(t2)Y(t1)Y(t2)

)
.

From the proof of Proposition 3.3 (see (3.9) and (3.10)), we know that this cannot
hold for all t1 < t2 unless η = θ = 0. �
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In [13] the authors construct a (classical) Markov process (Xt)t>0, which they
call the bi-Poisson process, such that polynomials {pn(x; t) : n ­ 0} are the or-
thogonal martingale polynomials for (Xt). Proposition 3.4 implies the following.

COROLLARY 3.2. The classical bi-Poisson process (Xt)t>0 is the classical
version of X and of Y.

P r o o f. The univariate distributions and moments of Xt, X(t) and Y(t)
agree since pn(x; t) are orthogonal polynomials for all three processes.

By the polynomial martingale property and the Markov property the classical
process satisfies

E
(
Xt1 . . . Xtkpm(Xu;u)

)
= E

(
Xt1 . . . XtkE

(
pm(Xu;u)|Xtk

))
= E

(
Xt1 . . . Xtkpm(Xtk ; tk)

)
.

Thus the multivariate distributions agree. �

We remark that part of Corollary 3.2 that refers to process X is not new, as
this result follows from a more general statement (cf. [4], Corollary A.3 (c)).
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[1] L. Accardi and M. Bożejko, Interacting Fock spaces and Gaussianization of probability
measures, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1 (4) (1998), pp. 663–670.

[2] M. Anshelevich, Partition-dependent stochastic measures and q-deformed cumulants, Doc.
Math. 6 (2001), pp. 343–384 (electronic).
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