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Abstract. We define a pair of non-commutative processes on a per-
turbed Fock space. Both processes have the same univariate distributions
and satisfy a weak form of the polynomial martingale property. The pro-
cesses give two non-equivalent Fock-space realizations of the same classi-
cal Markov process: the two-parameter bi-Poisson processes introduced in
[12], and constructed in [13].
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1. INTRODUCTION

It is known that any probability measure with finite moments has a Fock space
representation, see [1]. On the other hand, while there are many examples, there
is no general construction for the Fock space representation of a classical pro-
cesses (Xt)¢>0. The difficulty here consists in selecting a convenient Fock space
H and a suitable mapping (0, 00) — H such that all ordered non-commutative
moments would agree with the corresponding moments of the classical process,
see Definition 3.3. It is natural to expect, and known to experts, that when such a
Fock space representation exists then it is not unique. In this paper we exhibit two
non-equivalent processes on the same Fock space that represent the same classical
bi-Poisson process [13]; for particular values of the parameters these construc-
tions coincide with two non-equivalent Fock space representations of the classical
Markov g-Poisson processes that already appeared in the literature in [2] and [17],
and were in fact suggested to us by these two papers. We were also guided by the
perturbations of the free Fock space in [10] and [11], and by the observation in
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[14], Proposition 4.1, that for ¢ = 0 the univariate laws of the bi-Poisson processes
form a semigroup with respect to the c-free convolution of [9]. Our construction
does not enjoy the symmetry of the bi-Poisson processes in classical (commutative)
probability, where (X;):~0 and (£X /;):>0 represent the same Markov process.

2. NON-COMMUTATIVE PROCESSES

Throughout this paper, parameters |q| < 1 and 1 + nf > ¢ are fixed (where
q* = max{q, 0}). For this choice of the parameters, 1 + nf[n], > 0 for all n.
(Recall that [n], = Z?Zl @)

The following three-step recurrence

(2.1) xpp(x;t)
= pn+1(z3t) + (0 + tn)[n]gpn(z;t) + 11+ nb[n — 1]g)[n]gpn—1(2; 1),

n = 0, with p_; = 0, pp = 1 was introduced in [12], Example 4.9, in connection
with a regression problem. When nf = 0 and ¢ is fixed this recurrence determines
polynomials which are orthogonal with respect to the g-Poisson distribution that
already appeared in non-commutative probability, see [2] and [16]-[18].

Our goal is to construct two different non-commutative processes that corre-
spond to this recurrence. We will then show that these processes fail to be equiva-
lent, but are still classically equivalent (see Definitions 3.1 and 3.3) and they both
have the classical bi-Poisson Markov process of [13] as the classical version.

2.1. Perturbed Fock space. We will be working with the perturbation of the
q-Fock space from [7] which coincides with the perturbation in [10], Section 7,
when g = 0. For a real Hilbert space H = Lo ((O, 00), ds) with the complexifica-
tion H,. := H @ iH, the associated perturbed g-Fock space F ,,9(H) is the closure
of @oof H®™ with respect to the scalar product obtained as the sesquilinear ex-

L/n=0"¢
tension of

<91®...®gn|h1®...®hm>q

n—1 n
= Omm [L (L +000k = 1]) > ¢ [T (g5, hog))-
k=1 o€eSy Jj=1

Here, H?O := C1, where 1 is called the vacuum vector, i.e. it is a distinguished
vector of norm one, S, is the set of all the permutations of {1,...,n}, and |o| :=
card{(i,7) : i < j,o(i) > o(j)} is the number of inversions of o € S,,. The ex-
plicit structure of H is used in (2.7). (This is just a “weighted” version of the ¢-
Gaussian Fock space of [7].)

We denote by ||| #, q0(e1) the corresponding norm. We denote by H®" the

Il 7, (1) -closure of the algebraic tensor product H®™ so that

quG(H) = @ H®n.
n=0
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Let T : H — H be a bounded operator. Define its gauge operator p(7") on
EBZOZO HE™ by

n
P ®.. 00 =2 ¢ ' (Tg) 0 ®...07¢-187gj+1®...0 gn.
j=1

We will need the perturbed version of Lemma 1 in [3].

LEMMA 2.1. If T is self-adjoint, then p(T) is self-adjoint and extends to a
bounded operator on F no(H).

The proof relies on an auxiliary operator

( (n)
Py = @ qu?e with P, HE™ — HE™.

We define the operator Pq(% by

2.2) P = kH(1+n9 GZ; d°lu,.

where

Usg1 @ ... @ gn = Go(1) @ - @ Go(n)s 0 € Sn.
We can now write the scalar product in terms of Pq(z)@ and the usual scalar product
on the full Fock space as

(€I ) gm0 = (1P (00 -

REMARK 2.1. The operator P, g is positive for all q E ( 1,1) with respect
10 the scalar product {-|-)o 0. That is, for all { € H®™, <(| . 900 0= 0.

Indeed, recalling the fact that

P =P = % 40,
O'ESn

is positive definite ([8], Proposition 1) we see that

n—1

23) (P00 = [T +n0lk = 1) X d7U,¢),
k=1 o€Sn
Proof of Lemma 2.1. We first prove that if 7" is self-adjoint then p(7’)
is self-adjoint on a dense set (5 " HZ™. Take any ¢, ¢’ € H. Operator p! n)9’
restricted to H?, can be written as P( n)9 =11z T+ bk — ]q)Pq(n). The main
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idea of the proof is to apply Proposition 2.2 of [2] which tells us that the adjoint of
p(T") with respect to the (:|-), o-inner product is p(7™). This gives us

@4 (PO )gm = PIT)QIP(Coo
n—1

(1 +n0lk = 1) (P(T)(OIPF ()00

k=1

n—1

T1 0+ 980k = 1) BTl o
_ ::i(l +08lk — 1) (CIp(T*)(¢))g0

n—1

(L + 76k — 1) (P p(T*)(¢ oo

1

k
(2.5) = {CIP(T™) (")) gmo-

Next we show that p(7") is bounded. We begin by showing that p(7’) is
bounded in Fy o(H). The proof is similar to that of Lemma 1 in Anshelevich [3].
We express the p(T') as p(T) = po(T)p(1), where po(T)(g1 @ ... ® gn) =
T(91) ®...®T(gy) and 1 is the vacuum vector. Of course, we have ||po|| < ||7]|.
Operator p(1) is bounded and has norm ||p(1)/[o,0 < max (1,1/(1 — g)). This
follows by the same method as in [3] (the first part of the proof of Lemma 1).
From the equality stated in (2.4)—(2.5) it is clear that P, ,op(T™) = p(T)* Py e,
where p(7')* is taken with respect to the zero-inner product ({:|-)o o). This gives us
Py nop(T7)p(T) = p(T)* Py yep(T) > 0. In particular,

Pyypop(T*)p(T)[p(T")p(T)]" Pypo < Ip(T*)p (1) [p(T")p(1)]*

or

(2.6) P, nop(T

) < /(@)@ p(T)P(T) 0.0 s
Hp(T*) T)HO,Oqu]H

If we take ¢ € F ,9(H), we get

P(M)(OIP(T)(C))gno = (CIP(TT)P(T)(C)) gm0

= (PP (TP oo < 1T 0o
— [T 00D 00 {CIC) g

Since || T*|| = ||T||, we conclude that

ID(D)llg.0 </ I(T*)llo.oIP(T) o

T) <
<

p(T) ||0,0 <<|Pq,n9 (C»0,0

0 < max (1 1/(1 - Q)) 7.
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2.2. Operators. Our process will be a linear combination of the usual objects:
the annihilator, creator and two gauge operators.

2.2.1. Annihilators and creators. For h € H, the annihilation operator
ap, : Fopo(H) — Fgno(H)
and its adjoint, the creation operator
ay, : Famo(H) — Fgno(H),
are the bounded linear extensions of

apl =0,

n
=1 +nln—1]y) > q371<h7gj>91 R...QYG-1X3Gj+1 ¥ ...Q gn

and
apl="h, a1 ®.. Qg =h@g®...0gn,

where g1, g2, ..., 9n € H..

2.2.2. Gauge operator p. We follow [2]. For h € Lo ((0,00)) NL2((0,00)) C
H we define the gauge operator p;, as the bounded linear extension of

n

27 Phg1®.. . Qgni=2 ¢ (hg;)) O ® ... g1 ® gj4+1 D ... D g,
j=1

ph]. = 0.
In the terminology of Lemma 2.1, this operator corresponds to the self-adjoint
operator 1" : HH — H of multiplication by a bounded function h.

2.2.3. Gauge operator q. For h € H, we define the gauge operator qj as the
bounded linear extension of

n
A1 ® ... g = > ¢ Hhg)h®g ®...0gj-1®gj+1 D ...® gn,
j=1

th = 0.

This is just the operator that in the unperturbed theory is written as aj ay. In the
terminology of Lemma 2.1, this operator corresponds to the self-adjoint operator
T : H — H defined by T'(f) = (h, f)h.
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3. NON-COMMUTATIVE BI-POISSON PROCESSES

In this section we analyze simple but somewhat paradoxical properties of a
pair of two-parameter processes defined on the same Fock space F ,9(H), and in-
dexed by t € (0, 00). Both processes at time ¢ have the same univariate bi-Poisson
distribution determined by (2.1), and satisfy a weak form of the polynomial mar-
tingale property. Both processes give (non-equivalent) Fock-space realizations of
the same classical Markov process from [13].

We will define our processes in terms of the auxiliary self-adjoint bounded
linear operator Z,, ¢(f) on Fy ,9(H), which for f € Lo ((0,00)) N L2 ((0,00)) is
given as

(3.1) Z,o(f) =ay +aj+mnqy+ 0py.

PROPOSITION 3.1. Z, ¢(f) is a bounded self-adjoint operator, and vacuum
1 is a cyclic and separating vector for the algebra generated by {Z( f:fe€

Loo((0,00)) N La((0,00)) }.

Proof. (Compare [3], Propositions 2 and 4.) By Lemma 2.1, it is clear that
Z, 6(f) is a bounded self-adjoint operator.

Let Ay, ¢ be the algebra of operators on F,9(H) generated by {Z(f) :
f € Lo ((0,00)) N L2((0,00))} (no closure!). Recall that 1 is a separating vec-
tor if for any A € A, , ¢ we have the implication A1 =0 = A = 0. Let H' =
Loo((0,00)) N Lz ((0,00)) and we define a Wick map

o0
W EB H®" — Agno

n=0

as
W(fo®fi®...0 fn) = Zyo(fo)W(f1i®...® fn)

— (L +nok — 1]q) i qi_1<f0‘fi>W(f1 R.0fir1®fir1®...® fn)
i=1
-1 Zn: ¢ HlIW(fo@[A®...®fi1® fiy1®...® fn)
i=1

9y qi71W((f0fi) AR..fir1®fi+1®...® fn)
i=1
with the extra condition W (f) = Z, ¢(f) and W (1) = 1. It is obvious that
WHi®.fhi)l=(R...8 fn.

Since H' is a dense subspace of H, we conclude that the Wick map W extends lin-
early to F o (H). It is clear that the Wick map W (f; ® ... ® f,) is a polynomial
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in variables Z, ¢(f), f € H'. Induction on n shows that
(3.2) Zpo(f1) - Zno(fn) =W([1®...® fu) + W((),

where ¢ € @?;01 H'®". So we have A = W (¢), where ¢ € (5, H®"™ for every
Ac Aypno If A1 =0,then W (¢)1 = ¢ = 0,and so A = 0. Thus 1 is a separating
vector for Ay, 9.

Recall that the vacuum vector 1 is cyclic for an algebra of bounded operators
Aqgn.0 on a Hilbert space Fy o(H), if {T1: T € Ay, ¢} is a dense subspace of
Fqno(H). By definition,

(3.3) Zpo(f1) - Zno(fn)Q)=f1®...® fn+(,

where ¢ € @?;01 H'®. A, is the algebra generated by Z, o(f), so it follows by
induction that the set B = {T'1 : T is a polynomial of Z, 4(f), f € H'} is equal to
@ZO H'®*. The set B is dense in F, ;o (H) because H' is dense in H with respect
to || - [|2 (obviously, B C {T1:T € Ay yp}). =

Let A, ,, ¢ be the algebra generated by Z,, ¢(f) from the above proof. We de-
fine the expectation state 7 : A, ¢ — C on this algebra by setting

7(U) := (U1,1)

for any polynomial U € A, o.
For fixed {0, 1}-valued f, the random variable Z, 4(f) has the bi-Poisson
distribution in the following sense.

PROPOSITION 3.2. If f? = f, then the distribution of Z, () is the orthogo-
nality measure of polynomials {Qy, : n > 0} defined by the three-step recurrence

G4 2Qn(r) — Qny1(z)
= (0 + nll£1I*) [7)qQn (@) + (1 +n6[n — )| 7 [7]4@n—1 (),
TL}O,Q_lz(),Q():l.

Proof. Since Z,(f)1 = f, we see that 7(Z, ¢(f)) = 0 and the covariance
is of the form

7(Zno(£)Zno(9)) = (9, ).
We need to verify that for n # m we have

(Qn (2 (1)@n(Zao(1)) =0

To see this, we verify by induction that

(3.5) Qn(Znp(f))1 =", n>0,
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with the interpretation f®° = 1. Indeed, since Z, ¢(f)1 = f, formula (3.5) holds
for n = 0, 1. Suppose that (3.5) holds for some n > 1. From (3.4) and the induction
assumption we see that

Qn+1(Zy0(f))1
= Zno()) 2" = 0+l FIP)ngfZ" = (L+nb[n — )| FI*[n]efE"

Using (3.1) it is easy to see that
Zoo(f) 5" = aG " +nqp fo" + Opp fO" +ap fo"
= Ll 1Pl O + 0lnlo O 4 (L4 n8ln — 1) | FIPP[r)e S
Thus Qn+1(Zye(f))1 = f&" ! and (3.5) follows. =

We will be interested in two closely related non-commutative stochastic pro-
cesses, indexed by ¢ > 0 and derived from Z by taking appropriate {0, 1}-valued
functions f. Let

(3.6) X(t) = Zyo(Lo.s),

(3.7) Y (t) = tZg,(1(0,1/1))-

Since the parameters ¢, 7, 0 are fixed throughout, in our notation we suppress the
dependence of X, Y on these parameters. Note that in (3.7) the parameters 7, 6 are
switched.

We remark that when 1 = 0, process X (¢) becomes the centered version of the
g-Poisson process as defined in [2], Definition 6.15, and Y (¢) is the time-transform
of the centered g-Poisson process introduced in [17]. (That is, (Y (1/t)),, is the
centered version of the g-Poisson process from [17].) Similarly, when 6 = 0, Y (¢)
is the time-transform of the centered g-Poisson process from [2], Definition 6.15,
and process X (t) becomes the centered g-Poisson process as defined in [17], and
is closely related to the construction in [18].

It is clear that both processes have the same covariance structure: T(X(t)) =
7(Y(t)) = 0, and 7(X(t)X(s)) = 7(Y(¢)Y(s)) = min{¢, s}. From Proposi-
tion 3.2 it follows that both processes also have the same orthogonal polynomi-
als given by (2.1). Indeed, p, (Y (£), 1)1 = tml%ﬁ s1)- Thus their one-dimensional
distributions are equal.

We are interested in the question of equivalence of processes X and Y. We
introduce several related moments-based notions of equivalence, and we show that
processes X and Y are equivalent only in the weakest sense: they both have the
same classical versions.

DEFINITION 3.1. Processes X, Xg are equivalent if for every finite choice
t1,...,tk € (0,00)

T(Xi(t1) ... Xa(te)) = 7(Xo(t1) ... Xa(ty)), k=1,2,...
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For an example of equivalent processes, see [6], Theorem 6.2. Belavkin [5]
advocates the following concept of weak equivalence.

DEFINITION 3.2. Processes X1, Xy are weakly equivalent if for every finite
choice of ordered numbers s;1 > ... > s, > 0and s, <t; < ... <t

T(X1 (51) . Xl(Sm)Xl (tl) .. Xl(tk))
= T(Xg(sl) e XQ(Sm)XQ(tl) e Xg(tk)), m, k= 1, 2, e

The weakest version of the concept of equivalence of non-commutative pro-
cesses relies on time-ordered moments, compare [7], Definition 4.1.

DEFINITION 3.3. Processes X1, Xo are classically equivalent if for every
finite choice of real numbers 0 < ] <9 < ... <

(3.8)  T(Xi(t)... Xi(ty)) =7(Xa(tr) ... Xo(tr)), k=1,2,...

Recall that a classical version of the process X(t) is a classical stochastic
process (X) that is classically equivalent to X (¢), i.e.

T(X(t1) ... X(tr)) = E(Xy, ... Xy,,)  forallty <... <ty € (0,00),

cf. [7], Theorem 4.4, and [4], Corollary A1 (c).
First we show that, generically, processes X and Y are not (weakly) equivalent.

PROPOSITION 3.3. Processes X(t) and Y (t) are equivalent if and only if
n=460=0.

Proof. A calculation shows that
X(#)X(s)L = (tAs)1+ 01 ips) + (EAS)NL 04 + L0 @ L(0,6),
and, recalling that 7), 6 are swapped in (3.7), we have
Y ()Y (s)1 = (tAs)L+tsnligintss) + (EA8)0L 0170 + 510,170 @ L(0,1/s)-

Since X(t), Y (t) are self-adjoint and different tensor powers are orthogonal, we
have

T(X(6)X(5)X(t) = (L(0,6) OL0,ns) + (E A $)nL(0,))
and
(Y ()Y (s)Y (£)) = (t10,1/0), tsnL0,1/en1/s5) + (E A )01 (0.1/8))-

Fix 0 < t; < t2. The above formulas give

(3.9) (X (t2)X(t1)X(t2)) = 0t1 + nt]
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and
(3.10) T(Y(tg)Y(tﬂY(tg)) = nt1ts + Oto.

Thus the moments cannot be equal for all 0 < ¢ < ¢t unless n = 6 = 0.

On the other hand, if n = 6 = 0, then 7(X(t)X(s)) = 7(Y(¢)Y(s)), so the
joint moments 7(X(¢1) ... X(t)) and 7(Y (¢1) ... Y (t)) are given by the same
combinatorial expression for all ¢1,...,%; > 0, see [15], Corollary 2.1. Thus in
this case the processes are equivalent. m

PROPOSITION 3.4. Processes X (t) and Y (t) are classically equivalent. More-
over, the recurrence (2.1) defines the classical martingale polynomials: if t; <
to < ... <t < u,then

G 7(X(t) . X () (X ()i w)) = 7(X(t1) - X(te)p (X(t1)i 1))
and
(3.12) T(Y(tl) Y () p (Y (w); u)) - T(Y(tl) Y (t)pm (Y (1); tk)).

Proof. Write ft = 1(07”, gt = 1(071/,5). Fix t1,t2,...,1k € (O, u] Induction
on k shows that X (¢5)X (tx—1) ... X(t1)1 is given by a unique linear combination

> 05 fsy @ for @ ... fs,.

S={s1,..,8r }C{t1,.- st}

Indeed, each of the operators ay, a’}, Py, qy preserves this form.
If u>t > max{ty,..., tx} then (fy, fs) = (ft, fs) forall s € {t1,...,tx}.
Therefore,

<f§m7f81®f52®--~®f5r>:< Ez)mafa ®f52®---®fs7->7

which implies (3.11).
Similarly, Y (%)Y (tx—1) ... Y (1)1 is given by a unique linear combination

Z a50s, ®952®-..®gsr.
S:{Sl7"'787"}C{t17"'7tk}

If u >t > max{ty,...,tx} then the identity u(gy,, gs) = 1 = t{g¢, gs) forall s €
{t1,...,t;} now gives

U™(GE™, oy @ Gy @ ... D gs,) = 1"GE™ goy @ Goy D ... D g5, ),

which implies (3.12).
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Since for each fixed ¢ > 0 random variables X (¢) and Y (¢) are bounded and
their one-dimensional distributions coincide, the classical equivalence of X (¢) and
Y (t) follows from (3.11) and (3.12) by induction as follows. Suppose that we have
m different values t; < t2 < ... < t,, each repeated n1, ..., n,, times, so that the
definition (3.8) takes the form

(X ()™ . X (b)) = 7(Y ()™ .Y (£)™).

From (3.11) and (3.12) we see that for a polynomials p,(z;,t;+1) determined
from (2.1) it follows that

(X" - X ()" (Kl tm1): i)

reduces to the expectation of the polynomial in X (1), ..., X (¢, ). Thus

T<X(t1)m X)) " pr (X(tm+1)§tm+1)>
= (Y ()™ Y ()" e (Y (b)),
which by linearity implies
T(X ()™ . X ()" X (1)) = 7(Y(E1)™ . Y ()" Y (tmg1)").
This completes the induction step. =

Anshelevich [3], Proposition 25, points out that, generically, g-Lévy processes
do not have normal tracial states. Since our process generalizes the g-Poisson pro-
cess, it is not surprising that 7 is not tracial.

COROLLARY 3.1. Ifn? + 62 > 0, then 7 : Ay, 9 — C is not tracial.

Proof. The tracial property and Proposition 3.4 imply that for {; < ¢

T(X(t2)X(t1)X(t2)) = 7(X(t1)X(t2)?)

(
= 7(X(t1) (2 (X(t2); £2) + (0 + t)p1 (X(t2)i t2) + to (X (t2):12) )
- ( (t <p2(X )it1) + (6 + tn)p (X(tl);tl)+tp0(X(t1);t1)>)
- ( (pQ(Y tr) + (0 + tn)p (Y(tl);tl)—I—tpo(Y(tl);tl)))
=7(Y(t2)Y (t1)Y(t2)).

From the proof of Proposition 3.3 (see (3.9) and (3.10)), we know that this cannot
hold for all t; < to unlessn =6 =0. =
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In [13] the authors construct a (classical) Markov process (X¢)¢~0, which they
call the bi-Poisson process, such that polynomials {p,(x;t) : n > 0} are the or-
thogonal martingale polynomials for (X;). Proposition 3.4 implies the following.

COROLLARY 3.2. The classical bi-Poisson process (Xy)io is the classical
version of X and of Y.

Proof. The univariate distributions and moments of X;, X(¢) and Y (¢)
agree since py, (x;t) are orthogonal polynomials for all three processes.

By the polynomial martingale property and the Markov property the classical
process satisfies

E(Xy, .. Xoypm(Xuiu)) = E(th Xy B (o (X u)\th))

Thus the multivariate distributions agree. m

We remark that part of Corollary 3.2 that refers to process X is not new, as
this result follows from a more general statement (cf. [4], Corollary A.3 (c)).
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