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Abstract. We prove a free analogue of Brillinger’s formula (some-
times called “law of total cumulance”) which expresses classical cumulants
in terms of conditioned cumulants. As expected, the formula is obtained
by replacing the lattice of set partitions by the lattice of noncrossing set
partitions and using and an appropriate notion of noncommutative nested
products. As an application we reprove a characterization of freeness due to
Nica, Shlyakhtenko, and Speicher by Möbius inversion techniques, without
recourse to the Fock space model for free random variables.
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1. INTRODUCTION AND DEFINITIONS

Cumulants describe the combinatorial aspects of independence. Various no-
tions of independence give rise to different kinds of cumulants, see [4] for a gen-
eral approach. In the present paper we concentrate on some aspects of classical and
free cumulants.

1.1. Classical cumulants. Classical cumulants can be introduced essentially in
two different ways, via the Fourier transform or via Möbius inversion on the parti-
tion lattice. For our purposes it will be convenient to use the latter approach. Let us
fix some notation first. Denote by Πn the lattice of set partitions of order n with re-
finement order. For a partition π = {π1, π2, . . . , πp} ∈ Πn let us denote by |π| = p
its size. Let (Ω,A,P) be a probability space with expectation functional E; then
for a finite sequence of random variables X1, X2, . . . , Xn on Ω we define the
partitioned moment functional by

mπ(X1, X2, . . . , Xn) =
∏
j

E
∏
i∈πj

Xi,

and the cumulants by

κπ(X1, X2, . . . , Xn) =
∑

σ∈Πn,σ¬π
mσ(X1, X2, . . . , Xn) µ̃(π, 1̂n),
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where µ̃ is the Möbius function on the partition lattice Πn (see [11]). Both mπ and
κπ are multilinear functionals. For π = 1̂n we shall write κn instead of κ1̂n . Then
κπ also factorizes along the blocks πj of π, namely

κπ(X1, X2, . . . , Xn) =
∏
j

κ|πj |(Xi : i ∈ πj).

The fundamental result of cumulant theory states that mixed cumulants vanish.
That is, if we can divide the random variablesX1, X2, . . . , Xn into two (nonempty)
independent groups, then the cumulant κn(X1, X2, . . . , Xn) vanishes.

An analogous construction can be done for conditional expectations with re-
spect to a sub-σ-algebra F ⊆ A, by defining the partitioned conditional expecta-
tions to be the F-measurable random variables

Eπ(X1, X2, . . . , Xn|F) =
∏
j

E(
∏
i∈πj

Xi|F),

and accordingly the conditioned cumulants to be the F-measurable random vari-
ables

κπ(X1, X2, . . . , Xn|F) =
∑
σ¬π

Eσ(X1, X2, . . . , Xn|F) µ̃(π, 1̂n).

The conditioned cumulants are again multiplicative on blocks and can be used to
detect conditional independence, namely if X1, X2, . . . , Xn can be divided into
two groups which are mutually independent conditionally on F , then the cumu-
lant κn(X1, X2, . . . , Xn) vanishes.

1.2. Free cumulants. In this section we review the noncommutative analogues
of the classical notions of independence and cumulants from the point of view of
Voiculescu’s free probability.

DEFINITION 1.1 (Voiculescu [12]). Let (A, φ) be a noncommutativeB-valued
probability space; i.e.,A is a unital complex algebra, B ⊆ A is a unital subalgebra,
and φ : A → B is a conditional expectation. Subalgebras Ai which contain B are
called free with amalgamation over B if

φ(X1X2 . . . Xn) = 0

whenever Xj ∈ Aij , φ(Xj) = 0 and ij ̸= ij+1 for all j. When B = C, we recover
the definition of freeness.

Freeness with amalgamation is a noncommutative analogue of conditional in-
dependence known from classical probability theory. The corresponding cumulants
are due to Speicher [9] and [10]. Roughly speaking, free cumulants are defined by
replacing the lattice of all partitions in the definition of the classical cumulants by
the lattice of noncrossing partitions. See [4], Proposition 4.17, for an explanation
why noncrossing partitions appear.
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DEFINITION 1.2. A partition π is noncrossing if there is no sequence i < j <
k < l such that i ∼π k and j ∼π l but i ̸∼π j. The noncrossing partitions of order n
form a lattice which we denote by NCn.

Equivalently, noncrossing partitions can also be characterized recursively by
the property that there is at least one block which is an interval and after removing
such a block the remaining partition is still noncrossing. This property will be used
in the definitions below.

In the rest of this paper, we use standard poset notation, cf. [11]. The ζ-
function denotes the order indicator function

ζ(π, ρ) =

{
1, π ¬ ρ,
0, π ̸¬ ρ,

while by µ(π, σ) we will denote the Möbius function on the lattice of noncrossing
partitions, i.e., the unique function satisfying for every π ¬ σ the identity∑

π¬ρ¬σ
ζ(π, ρ)µ(ρ, σ) = δ(π, σ).

DEFINITION 1.3 (Speicher [10]). Define partitioned moment functionals recur-
sively as follows. For a noncrossing partition π ∈ NCn, let πj = {k, k + 1, . . . , l}
be an interval block. Then

φπ(X1, X2, . . . , Xn)

= φπ\{πj}
(
X1, X2, . . . , Xk−1, φ(XkXk+1 . . . Xl)Xl+1, . . . , Xn

)
.

The free or noncrossing cumulants are defined by Möbius inversion on NCn:

Cφπ (X1, X2, . . . , Xn) =
∑
σ¬π

φσ(X1, X2, . . . , Xn)µ(σ, π).

We will also write Cφn for Cφ
1̂n

and it follows that the cumulants are also multi-
plicative on blocks, that is, if πj = {k, k + 1, . . . , l} is an interval block of π of
length m, then

Cφπ (X1, X2, . . . , Xn)

= Cφπ\{πj}
(
X1, X2, . . . , Xk−1, C

φ
m(XkXk+1 . . . Xl)Xl+1, . . . , Xn

)
.

Moreover, the B-module property holds for expectations

φπ(bX1, . . . , Xnb
′) = b φπ(X1, . . . , Xn) b

′,

φπ(X1, . . . , Xk−1, bXk, . . . , Xn) = φπ(X1, . . . , Xk−1b,Xk, . . . , Xn)

for all b, b′ ∈ B, as well as for cumulants:

Cφπ (bX1, . . . , Xnb
′) = bCφπ (X1, . . . , Xn) b

′,

Cφπ (X1, . . . , Xk−1, bXk, . . . , Xn) = Cφπ (X1, . . . , Xk−1b,Xk, . . . , Xn).



330 F. Lehner

Note that for B = C this simply means that

Cφπ (X1, X2, . . . , Xn) =
∏
j

C|πj |(Xi : i ∈ πj).

The starting point of this paper is the following formula for classical cumu-
lants, due to Brillinger [1]:

(1.1) κn(X1, X2, . . . , Xn) =
∑
π∈Πn

κ|π|
(
κ|πj |(Xi : i ∈ πj |B) : j = 1, . . . , |π|

)
,

where for a partition π = {B1, B2, . . . , Bp} ∈ Πn we denote by |π| = p its size.
We establish an analogue of this formula for free cumulants by adapting a

lattice theoretical proof due to Speed [8]. Noncommutativity prevents a direct gen-
eralization of (1.1), therefore we propose nested cumulants as a replacement for
“cumulants of cumulants”. To illustrate this issue we first consider cumulants of
products from an abstract point of view.

2. CUMULANTS OF NESTED PRODUCTS

We want to define cumulants of products, where the products are not taken in
linear order. To do this, we first give a definition and then discuss its connection to
cumulants of products.

DEFINITION 2.1. Let ρ ¬ σ be two noncrossing partitions of order n and
X1, X2, . . . , Xn be noncommutative random variables. Then we define the partial
cumulant

Cρ,σ(X1, X2, . . . , Xn) =
∑

ρ¬π¬σ
φπ(X1, X2, . . . , Xn)µ(π, σ).

Note that in particular for ρ = 0̂n we obtain the usual cumulant C0̂,σ = Cσ,
while for ρ = σ we get the moment Cσ,σ = φσ. For intermediate partitions we get
a generalization of cumulants of products.

DEFINITION 2.2. Let ρ = {ρ1, ρ2, . . . , ρr} and σ = {σ1, σ2, . . . , σs} be two
set partitions such that ρ ¬ σ. Here the blocks are numbered according to their
minimal elements. Then every block of ρ is contained in some block of σ and
by collapsing the blocks of ρ we can define σ/ρ = {σ̂1, . . . , σ̂s} to be the unique
partition of the set {1, 2, . . . , r} such that σi =

∪
j∈σ̂i ρj for every i.

REMARK 2.1. When ρ is an interval partition, say ρ={ρ1, ρ2, . . . , ρr},where
ρ1 = {1, 2, . . . , n1}, ρ2={n1+1, 2, . . . , n2}, . . . , ρr={nr−1+1, 2, . . . , nr = n},
and σ is noncrossing, then σ/ρ is noncrossing as well, and the partial cumulant
coincides with the cumulant of the products

Cρ,σ(X1, X2, . . . , Xn)

= Cσ/ρ(X1X2 . . . Xn1 , Xn1+1 . . . Xn2 , . . . , Xnr−1+1 . . . Xn).
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There is a formula for cumulants of products in terms of simple cumulants,
which is due to Leonov and Shiryaev in the classical case [5] and to Speicher and
Krawczyk in the free case [2]. It immediately generalizes to the partial cumulants
(cf. [7], Proposition 10.11).

PROPOSITION 2.1. For partitions ρ ¬ σ we have

Cρ,σ(X1, X2, . . . , Xn) =
∑
τ

τ∨ρ=σ

Cτ (X1, X2, . . . , Xn).

P r o o f. It follows that

Cρ,σ =
∑
π

φπ(X1, X2, . . . , Xn) ζ(ρ, π)µ(π, σ)

=
∑
π

∑
τ

Cτ (X1, X2, . . . , Xn) ζ(τ, π) ζ(ρ, π)µ(π, σ)

=
∑
τ

Cτ (X1, X2, . . . , Xn)
∑
π

ζ(τ ∨ ρ, π)µ(π, σ)

=
∑
τ

Cτ (X1, X2, . . . , Xn) δ(τ ∨ ρ, σ). �

REMARK 2.2. The procedure presented in this section can also be carried
out for classical cumulants, i.e., on the full partition lattice. However, because of
commutativity it simply leads to a rearrangement of cumulants of products, namely

κρ,σ(X1, X2, . . . , Xn) = κσ/ρ
(∏
i∈b
Xi : b ∈ ρ

)
.

3. CONDITIONED FREE CUMULANTS

Suppose we are given algebras C ⊆ B ⊆ A and conditional expectationsA ψ−→
B φ−→ C. We identify φ with φ ◦ ψ : A → C and wish to express the C-valued cu-
mulants Cφ in terms of the B-valued cumulants Cψ. The next definition is rather
formal and should be read with the examples following it at hand.

DEFINITION 3.1. We define a partitioned moment function φ of the parti-
tioned cumulants Cψπ , namely for σ ­ π we define φσ ◦ Cψπ (X1, X2, . . . , Xn)
recursively as follows. Let σj = {k + 1, . . . , l} be an interval block of σ and
π|σj = {πi1 , πi2 , . . . , πim} be the blocks of π which are contained in σj . Then
we put

φσ ◦ ψπ(X1, X2, . . . , Xn) = φσ\{σj} ◦ ψπ\π|σj
(
X1, X2, . . . , Xk,

φ
(
ψπ|σj (Xk+1, . . . , Xl)

)
Xl+1, Xl+2, . . . , Xn

)
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and

φσ ◦ Cψπ (X1, X2, . . . , Xn) =
∑
τ¬π

φσ ◦ ψτ (X1, X2, . . . , Xn)µ(τ, π).

By multiplicativity we have

φσ ◦ Cψπ (X1, X2, . . . , Xn) = φσ\{σj} ◦ C
ψ
π\π|σj

(
X1, X2, . . . , Xk,

φ
(
Cψπ|σj

(Xk+1, . . . , Xl)
)
Xl+1, Xl+2, . . . , Xn

)
.

Moreover, the Möbius inversion principle and the invariance φ = φ ◦ ψ imply a
generalized moment-cumulant formula

φσ(X1, X2, . . . , Xn) =
∑
π¬σ

φσ ◦ Cψπ (X1, X2, . . . , Xn).

Now we apply the cumulant construction in each block of σ to define “cumulants
of cumulants” or nested cumulants:

Cφσ ◦ Cψπ (X1, X2, . . . , Xn) =
∑

π¬ρ¬σ
φρ ◦ Cψπ (X1, X2, . . . , Xn)µ(ρ, σ).

In total this means that

Cφσ ◦Cψπ (X1, X2, . . . , Xn)=
∑
τ¬π

∑
π¬ρ¬σ

φρ ◦ψτ (X1, X2, . . . , Xn)µ(ρ, σ)µ(τ, π).

This function is multiplicative on the blocks and we have by Möbius inversion

φσ ◦ Cψπ (X1, X2, . . . , Xn) =
∑

π¬ρ¬σ
Cφρ ◦ Cψπ (X1, X2, . . . , Xn).

EXAMPLE 3.1. Again, if ρ is an interval partition as in Remark 2.1, then we
get the analogous formula

(3.1) Cφσ ◦ Cψρ (X1, X2, . . . , Xn) = Cφσ/ρ
(
Cn1(X1, X2, . . . , Xn1),

Cn2−n1(Xn1+1, . . . , Xn2), . . . , Cnr−nr−1(Xnr−1+1 . . . Xn)
)
.

EXAMPLE 3.2. If ρ is not an interval partition then the nested cumulant
becomes more complicated. As an example consider π = and σ =

. Then

ψπ(X1, X2, . . . , X8) = ψ
(
X1X2 ψ(X3X4)ψ(X5X6)X7X8

)
,

φσ ◦ ψπ(X1, X2, . . . , X8) = φ
(
ψ
(
X1X2 φ

(
ψ(X3X4)ψ(X5X6)

)
X7X8

))
,
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φσ ◦ Cψπ (X1, X2, . . . , X8)

= φ
(
Cψ4

(
X1, X2, φ

(
Cψ2 (X3, X4)C

ψ
2 (X5, X6)

)
X7, X8

))
,

Cφσ ◦ Cψπ (X1, X2, . . . , X8)

= φ
(
Cψ4

(
X1, X2, C

φ
2

(
Cψ2 (X3, X4), C

ψ
2 (X5, X6)

)
X7, X8

))
.

EXAMPLE 3.3. The previous examples might give the impression that the
conditioned cumulants can always be expressed in terms of the ψ-cumulants. The
following is a nontrivial example which shows that this is not the case:

Cφ3 ◦ C (X1, X2, X3) = φ ◦ Cψ (X1, X2, X3)µ( , )

+ φ ◦ C (X1, X2, X3)µ( , )

= φ
(
Cψ (X1, X2, X3)

)
− φ

(
Cψ (X1, X2, X3)

)
= φ

(
Cψ2

(
X1, ψ(X2)X3

))
− φ

(
Cψ2

(
X1, φ(X2)X3

))
= φ

(
Cψ2

(
X1,

(
ψ(X2)− φ(X2)

)
X3

))
.

EXAMPLE 3.4. Here is an example exhibiting some partial commutativity.
Let (A, φ) and (B, ψ) be two noncommutative probability spaces. For the sake of
simplicity assume that both φ and ψ are C-valued expectations. Consider the inclu-
sions C ⊆ B ≃ I ⊗ B ⊆ A⊗ B and the corresponding expectations φ̃ = φ⊗ id :
A⊗B → B and ψ : B → C. Note that ifAi are free subalgebras of a noncommu-
tative probability space, thenAi ⊗B are free with amalgamation over B inA⊗B.
Then for any sequence of simple tensors a1 ⊗ b1, a2 ⊗ b2, . . . , an ⊗ bn the nested
expectations and cumulants as defined above are

ψσ ◦ φ̃π(a1⊗ b1, a2 ⊗ b2, . . . , an ⊗ bn) = φσ(a1, a2, . . . , an)ψπ(b1, b2, . . . , bn),

ψσ ◦ Cφ̃π (a1⊗ b1, a2 ⊗ b2, . . . , an ⊗ bn) = φσ(a1, a2, . . . , an)C
ψ
π (b1, b2, . . . , bn),

Cψσ ◦ Cφ̃π (a1⊗ b1, a2 ⊗ b2, . . . , an ⊗ bn) = Cφσ (a1, a2, . . . , an)C
ψ
π (b1, b2, . . . , bn).

REMARK 3.1. Note that if we apply this definition with classical instead of
free cumulants, the analogue of (3.1) holds for arbitrary partitions. Indeed, de-
note by EF and κF the conditional expectations and cumulants with respect to
a σ-subfield F of the given probability space. Then we define for a pair of set
partitions σ ­ π the partitioned expectations and cumulants as before, replacing
noncrossing partitions by arbitrary partitions and obtain

Eσ ◦EF (X1, X2, . . . , Xn) =
∏
c∈σ

E
∏
b∈π
b⊆c

E
[∏
i∈b
Xi|F

]
,
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Eσ ◦κF (X1, X2, . . . , Xn) =
∑
τ¬π

Eσ ◦EFτ (X1, X2, . . . , Xn)µ(τ, π)

=
∏
c∈σ

E
∏
b∈π
b⊆c

κF (Xi : i ∈ b),

κσ ◦ κFπ (X1, X2, . . . , Xn) = κσ/ρ
(
κF|b|(Xi : i ∈ b) : b ∈ π

)
,

where σ/ρ is the partition obtained from σ by collapsing each block of π to a sin-
gleton as defined in Section 2, which implies that the intervals [π, σ] and [0̂m, σ/ρ]
are isomorphic as posets.

Here is now the analogue of Brillinger’s formula (1.1) for free cumulants. As
expected, noncrossing partitions appear, but we also have to take care of noncom-
mutativity.

THEOREM 3.1. We have

Cφn (X1, X2, . . . , Xn) =
∑

σ∈NCn

Cφn ◦ Cψσ (X1, X2, . . . , Xn).

P r o o f. The proof given in [8] can be repeated literally after replacing the
lattice Πn by its sublattice NCn:

Cφn (X1, X2, . . . , Xn) =
∑

π∈NCn

φπ(X1, X2, . . . , Xn)µ(π, 1̂n)

=
∑

π∈NCn

∑
σ¬π

∑
σ¬ρ¬π

Cφρ ◦ Cψσ (X1, X2, . . . , Xn)µ(π, 1̂n)

=
∑

π∈NCn

∑
ρ∈NCn

∑
σ∈NCn

Cφρ ◦ Cψσ (X1, X2, . . . , Xn) ζ(σ, ρ) ζ(ρ, π)µ(π, 1̂n)

=
∑

ρ∈NCn

∑
σ¬ρ

Cφρ ◦ Cψσ (X1, X2, . . . , Xn) δ(ρ, 1̂n). �

4. AN APPLICATION

As an application we reprove a characterization of freeness from [6]. To illus-
trate our approach, let us first give a proof of a more or less trivial formula from
the latter paper.

PROPOSITION 4.1 (Nica et al. [6], Theorem 3.1). Let C ⊆ B ⊆ A and ψ :
A → B, φ : A → C be as before. If the ψ-valued cumulants of X1, X2, . . . , Xn

satisfy
Cψk (Xi1c1, Xi2c2, . . . , Xik−1

ck−1, Xik) ∈ C
for all choices of indices i1, i2, . . . , ik and elements c1, . . . , ck−1 ∈ C, then actually

Cψk (Xi1c1, Xi2c2, . . . , Xik−1
ck−1, Xik)=C

φ
k (Xi1c1, Xi2c2, . . . , Xik−1

ck−1, Xik).
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P r o o f. By Theorem 3.1 we can expand the φ-cumulant in terms of the
ψ-cumulants:

Cφn (Xi1c1, Xi2c2, . . . , Xik−1
ck−1, Xik)

=
∑
π

Cφn ◦ Cψπ (Xi1c1, Xi2c2, . . . , Xik−1
ck−1, Xik).

Now, by definition,

Cφn ◦ Cψπ (Xi1c1, Xi2c2, . . . , Xik−1
ck−1, Xik)

=
∑
σ­π

φσ ◦ Cψπ (Xi1c1, Xi2c2, . . . , Xik−1
ck−1, Xik)µ(σ, 1̂n)

and, by assumption,

φσ ◦ Cψπ (Xi1c1, Xi2c2, . . . , Xik−1
ck−1, Xik)

= Cψπ (Xi1c1, Xi2c2, . . . , Xik−1
ck−1, Xik)

for all σ ­ π and
∑

σ­π µ(σ, 1̂n) = 0 unless π = 1̂n. Therefore, only the sum-
mand corresponding to π = 1̂n is nonzero. �

For the final application we need to recall the basic properties of the Kreweras
complement.

DEFINITION 4.1 (Kreweras [3]). Given two set partitions π and σ of the same
order n, we denote by π∪̃σ their interweaved union, i.e., the partition of order 2n
obtained by arranging alternatingly the points of π and σ.

The Kreweras complement of a partition π ∈ NCn is defined as the unique
maximal partition σ ∈ NCn such that π∪̃σ is noncrossing.

The Kreweras complement is in fact an anti-automorphism of NCn, which
immediately implies the following proposition. Let us, however, give another proof
here by constructing an explicit bijection to which we will refer later.

PROPOSITION 4.2. Let π ∈ NCn. Then the intervals [π, 1̂n] and [0,K(π)]
are anti-isomorphic via the Kreweras complement.

P r o o f. Draw π and all the points of K(π) between the points of π. Every
σ ­ π is obtained from π by connecting some of its blocks. To every possible con-
nection there corresponds a unique connection of two points of K(π), as follows.
There are two possible relative positions of two blocks of π:

1. · · · · · ·` ` ×̀ ` ` ` ×̀
2. · · · · · ·` ` ×̀ ` ` ` ` ×̀ ` ` ` `
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In both cases, connecting the two blocks of π corresponds to connecting the points
marked with × in the Kreweras complement. �

The Kreweras naturally appears in the incidence algebra convolution product
which implements multiplicative free convolution on the level of cumulants.

PROPOSITION 4.3 (Nica and Speicher [7]). Let (A, ψ) be a B-valued proba-
bility space, and a1, a2, . . . , an and b1, b2, . . . , bn be random variables free over B.
Then the cumulants of the product are

Cψn (a1b1, a2b2, . . . , anbn) =
∑

π∈NCn

Cψ
π∪̃K(π)

(a1, b2, a2, b2, . . . , an, bn).

With these preparations we are able to provide an alternative proof of the fol-
lowing theorem.

THEOREM 4.1 (Nica et al. [6], Theorem 3.6). Let C ⊆ B ⊆ A, ψ : A → B,
and φ : A → C be as before. Let C ⊆ N ⊆ A be another subalgebra and assume
in addition that φ : B → C is faithful. Then N is free from B over C if and only if
for all finite sequences Xi ∈ N and for all bi ∈ B the identity

(4.1) Cψn (X1b1, X2b2, . . . , Xn−1bn−1, Xn)

= φ
(
Cψn

(
X1φ(b1), X2φ(b2), . . . , Xn−1φ(bn−1), Xn

))
holds. By Proposition 4.1 this is equivalent to the statement that for all finite se-
quences Xi ∈ N and for all bi ∈ B we have

(4.2) Cψn (X1b1, X2b2, . . . , Xn−1bn−1, Xn)

= Cφn
(
X1φ(b1), X2φ(b2), . . . , Xn−1φ(bn−1), Xn

)
.

P r o o f. Assume the factorization formula holds. Let X1, X2, . . . , Xn ∈ N ,
b0, b1, . . . , bn ∈ B be such that φ(Xi) = 0 and φ(bi) = 0 (or b0 = 1 or bn = 1
is also allowed). We must show that φ(b0X1b1X2 . . . Xnbn) = 0. To this end we
expand the expectation into ψ-cumulants,

φ(b0X1b1 . . . Xnbn) = φ
(
ψ(b0X1b1 . . . Xnbn)

)
=

∑
π∈NCn

φ
(
Cψπ (b0X1b1, X2b2, . . . , Xnbn)

)
,

and Cψπ (b0X1b1, X2b2, . . . , Xnbn) = 0 for each π because each π has a block
which is an interval, say of length m, starting at some k and the corresponding
cumulant contributes the factor

Cψm(Xkbk, Xk+1bk+1, . . . , Xl) = φ
(
Cψm

(
Xkφ(bk), Xk+1φ(bk+1), . . . , Xl

))
,
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which vanishes: if m ­ 2, then there is a factor φ(bk) = 0, and if m = 1, then the
term is simply Cψ1 (Xk) = φ

(
Cψ1 (Xk)

)
= φ(Xk) = 0. Note that we did not need

faithfulness of φ for this implication.
For the converse we could use the same argument as in [6], where a reference

algebra N ′ is constructed which is also free from B over C and which satisfies
the cumulant factorization condition and has the same distribution as N . It then
follows that N satisfies the cumulant factorization condition as well.

Alternatively, here is a sketch of a direct proof using conditioned cumulants.
By faithfulness it suffices to prove that for all finite sequences of random vari-
ables Xi ∈ N and bi ∈ B we have the identity

φ
(
Cψn (X1b1, X2b2, . . . , Xn−1bn−1, Xn)bn

)
= φ

(
Cψn

(
X1φ(b1), X2φ(b2), . . . , Xn−1φ(bn−1), Xn

)
bn

)
,

and, moreover, this is equal to

Cφn
(
X1φ(b1), X2φ(b2), . . . , Xn−1φ(bn−1), Xnφ(bn)

)
.

Now, let us proceed by induction and compare the following two formulae for
Cφn (X1b1, X2b2, . . . , Xnbn). On the one hand, by freeness we may apply the for-
mula for multiplicative convolution from Proposition 4.3 and obtain

Cφn (X1b1, X2b2, . . . , Xnbn)

=
∑

π∈NCn

Cφ
π∪̃K(π)

(X1, b1, X2, b2, . . . , Xn, bn)

=Cφ
1̂n∪̃0̂n

(X1, b1, X2, b2, . . . , Xn, bn)︸ ︷︷ ︸
Cφn

(
X1φ(b1), . . . , Xnφ(bn)

) +
∑
π<1̂n

Cφ
π∪̃K(π)

(X1, b1, X2, b2, . . . , Xn, bn),

and on the other hand, using Brillinger’s formula from Theorem 3.1, we have

Cφn (X1b1, X2b2, . . . , Xnbn)

=
∑

π∈NCn

Cφn ◦ Cψπ (X1b1, X2b2, . . . , Xnbn)

= φ
(
Cψn (X1b1, X2b2, . . . , Xnbn)

)
+

∑
π<1̂n

Cφn ◦ Cψπ (X1b1, X2b2, . . . , Xnbn).

Comparing the two expressions, it suffices to prove inductively for π < 1̂n the
identity

(4.3) Cφn ◦ Cψπ (X1b1, X2b2, . . . , Xnbn)=C
φ
π∪̃K(π)

(X1, b1, X2, b2, . . . , Xn, bn).
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Indeed,

Cφn ◦Cψπ (X1b1, X2b2, . . . , Xnbn) =
∑
ρ­π

φρ◦Cψπ (X1b1, X2b2, . . . , Xnbn)µ(ρ, 1̂n)

and some bi’s are replaced by φ(bi), namely those, which are inside a block of π,
which means that they are singletons in K(π). By induction hypothesis we obtain

Cφn ◦Cψπ (X1b1, X2b2, . . . , Xnbn) =
∑
ρ­π

φρ◦Cφπ (X1b̃1, X2b̃2, . . . , Xnb̃n)µ(ρ, 1̂n),

where

b̃i =

{
φ(bi) if i is a singleton of K(π),

bi otherwise,

“otherwise” meaning that i is right next to an end point of a block of π, i.e., it is
marked with × in the proof of Proposition 4.2. It is now easy to see that this is
equal to

Cφ
π∪̃K(π)

(X1, b1, X2, b2, . . . , Xn, bn)

=
∑

σ¬K(π)

Cφπ ∪̃φσ(X1, b1, X2, b2, . . . , Xn, bn)µ
(
σ,K(π)

)
,

where Cφπ ∪̃φσ denotes the interweaved product of the cumulant Cφπ with the par-
titioned expectation φσ. �
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