A CHAOTIC DECOMPOSITION FOR GENERALIZED STOCHASTIC PROCESSES WITH INDEPENDENT VALUES

BY
SUMAN DAS (SwANSEA) AND EUGENE LYTVYNOV* (SwANSEA)

Abstract

We extend the result of Nualart and Schoutens on chaotic decomposition of the L^{2}-space of a Lévy process to the case of a generalized stochastic processes with independent values.

2000 AMS Mathematics Subject Classification: Primary: 60H05, 60H40; Secondary: 60B05.

Key words and phrases: Chaotic decomposition, generalized stochastic process, Lévy process.

1. INTRODUCTION

Among all stochastic processes with independent increments, essentially only Brownian motion and Poisson process have a chaotic representation property. The latter property means that, by using multiple stochastic integrals with respect to the centered stochastic process, one can construct a unitary isomorphism between the L^{2}-space of the process and a symmetric Fock space. In the case of a Lévy process, several approaches have been proposed in order to construct a Fock spacetype realization of the corresponding L^{2}-space. In this paper, we will be concerned with the approach of Nualart and Schoutens [9], who constructed a representation of every square integrable functional of a Lévy process in terms of orthogonalized Teugels martingales. Recall that, for a given Lévy process $\left(X_{t}\right)_{t \geqslant 0}$, its k-th order Teugels martingale is defined by centering the power jump process

$$
X_{t}^{(k)}:=\sum_{0<s \leqslant t}\left(\Delta X_{s}\right)^{k}, \quad k \in \mathbb{N} .
$$

For numerous applications of this result, see e.g. [6] and [10]. We also refer to [7] for an extension of this result to the case of a Lévy process taking values in \mathbb{R}^{d}, and

[^0]to [1] and [3] for a Nualart-Schoutens-type decomposition for noncommutative (in particular, free) Lévy processes.

The aim of this note is to extend the Nualart-Schoutens decomposition to the case of a generalized stochastic process with independent values. Consider a standard triple $\mathcal{D} \subset L^{2}\left(\mathbb{R}^{d}, d x\right) \subset \mathcal{D}^{\prime}$, where $\mathcal{D}=C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ is the nuclear space of all smooth, compactly supported functions on \mathbb{R}^{d}, and \mathcal{D}^{\prime} is the dual space of \mathcal{D} with respect to the center space $L^{2}\left(\mathbb{R}^{d}, d x\right)$, see e.g. [2] for detail. For $\omega \in \mathcal{D}^{\prime}$ and $\varphi \in \mathcal{D}$, we denote by $\langle\omega, \varphi\rangle$ the dual pairing of ω and φ. Denote by $\mathcal{C}\left(\mathcal{D}^{\prime}\right)$ the cylinder σ-algebra on \mathcal{D}^{\prime}. A generalized stochastic process is a probability measure μ on $\left(\mathcal{D}^{\prime}, \mathcal{C}\left(\mathcal{D}^{\prime}\right)\right)$. Thus, a generalized stochastic process is a random generalized function $\omega \in \mathcal{D}^{\prime}$. One says that a generalized stochastic process has independent values if for any $\varphi_{1}, \ldots, \varphi_{n} \in \mathcal{D}$ which have mutually disjoint support, the random variables $\left\langle\omega, \varphi_{1}\right\rangle, \ldots,\left\langle\omega, \varphi_{n}\right\rangle$ are independent. So, heuristically, we infer that, for any $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$, the random variables $\omega\left(x_{1}\right), \ldots, \omega\left(x_{n}\right)$ are independent. In the case where $d=1$, one can (at least heuristically) interpret $\omega(t)$ as the time t derivative of a classical stochastic process $X=(X(t))_{t \in \mathbb{R}}$ with independent increments, so that, for $t \geqslant 0, X(t)=\int_{0}^{t} \omega(s) d s$.

If a generalized stochastic process with independent values, μ, has the property that the measure μ remains invariant under each transformation $x \mapsto x+a$ ($a \in \mathbb{R}^{d}$) of the underlying space, then one calls μ a Lévy process (which is, for $d=1$, the time derivative of a classical Lévy process.) So, below, for a certain class of generalized stochastic processes with independent values, we will construct an orthogonal decomposition of the space $L^{2}\left(\mathcal{D}^{\prime}, \mu\right)$, which, in the case of a classical Lévy process, will be exactly the Nualart-Schoutens decomposition from [9]. This paper will also extend the results of [8] for generalized stochastic processes being Lévy processes.

2. PRELIMINARIES

We start by briefly recalling some results from [5]. Assume that, for each $x \in \mathbb{R}^{d}, \sigma(x, d s)$ is a probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. We also assume that, for each $\Delta \in \mathcal{B}(\mathbb{R}), \mathbb{R}^{d} \ni x \mapsto \sigma(x, \Delta)$ is a measurable mapping. Hence, we can define a σ-finite measure $d x \sigma(x, d s)$ on $\left(\mathbb{R}^{d} \times \mathbb{R}, \mathcal{B}\left(\mathbb{R}^{d} \times \mathbb{R}\right)\right)$. Let $\mathcal{B}_{0}\left(\mathbb{R}^{d}\right)$ denote the collection of all sets $\Lambda \in \mathcal{B}\left(\mathbb{R}^{d}\right)$ which are bounded. We will additionally assume that, for each $\Lambda \in \mathcal{B}_{0}\left(\mathbb{R}^{d}\right)$, there exists $C_{\Lambda}>0$ such that

$$
\begin{equation*}
\int_{\mathbb{R}}|s|^{n} \sigma(x, d s) \leqslant C_{\Lambda}^{n} n!, \quad n \in \mathbb{N} \tag{2.1}
\end{equation*}
$$

for all $x \in \Lambda$. We fix the Hilbert space $H=L^{2}\left(\mathbb{R}^{d} \times \mathbb{R}, d x \sigma(x, d s)\right)$. We denote by $\mathcal{F}(H)=\bigoplus_{n=0}^{\infty} H^{\odot n} n$! the symmetric Fock space over H. Here \odot denotes symmetric tensor product. We denote by \mathfrak{D} the subset of $\mathcal{F}(H)$ which consists of all finite vectors $f=\left(f^{(0)}, f^{(1)}, \ldots, f^{(n)}, 0,0, \ldots\right)$, where each $f^{(k)}$ is a symmet-
ric function on $\left(\mathbb{R}^{d} \times \mathbb{R}\right)^{k}$ which is obtained as the symmetrization of a finite sum of functions of the form

$$
g^{(k)}\left(x_{1}, s_{1}, \ldots, x_{k}, s_{k}\right)=\phi\left(x_{1}, \ldots, x_{k}\right) s_{1}^{i_{1}} \ldots s_{k}^{i_{k}}
$$

where $\phi \in \mathcal{D}^{\otimes k}=C_{0}^{\infty}\left(\left(\mathbb{R}^{d}\right)^{k}\right)$ and $i_{1}, \ldots, i_{k} \in \mathbb{Z}_{+}=\{0,1,2, \ldots\}$. For each $\varphi \in \mathcal{D}$, we define an operator $A(\varphi)$ in $\mathcal{F}(H)$ with domain \mathfrak{D} by

$$
\begin{equation*}
A(\varphi):=a^{+}\left(\varphi \otimes m_{0}\right)+a^{-}\left(\varphi \otimes m_{0}\right)+a^{0}\left(\varphi \otimes m_{1}\right) \tag{2.2}
\end{equation*}
$$

Here and below, for $i \in \mathbb{Z}_{+}:=\{0,1,2, \ldots\}$,

$$
\left(\varphi \otimes m_{i}\right)(x, s):=\varphi(x) s^{i}
$$

$a^{+}\left(\varphi \otimes m_{i}\right)$ is the creation operator corresponding to $\varphi \otimes m_{i}$,

$$
a^{+}\left(\varphi \otimes m_{i}\right) f^{(k)}=f^{(k)} \odot\left(\varphi \otimes m_{i}\right), \quad f^{(k)} \in H^{\odot k} ;
$$

$a^{-}\left(\varphi \otimes m_{i}\right)$ is the corresponding annihilation operator,

$$
a^{-}\left(\varphi \otimes m_{i}\right) f^{(k)}=k \int_{\mathbb{R}^{d} \times \mathbb{R}} d y \sigma(y, d u) \varphi(y) u^{i} f^{(k)}(y, u, \cdot) ;
$$

and $a^{0}\left(\varphi \otimes m_{i}\right)$ is the neutral operator corresponding to $\varphi \otimes m_{i}$,

$$
\begin{aligned}
\left(a^{0}\left(\varphi \otimes m_{i}\right) f^{(k)}\right) & \left(x_{1}, s_{1}, \ldots, x_{k}, s_{k}\right) \\
& =\left(\varphi\left(x_{1}\right) s_{1}^{i}+\ldots+\varphi\left(x_{k}\right) s_{k}^{i}\right) f^{(k)}\left(x_{1}, s_{1}, \ldots, x_{k}, s_{k}\right)
\end{aligned}
$$

Note that $A(\varphi)$ maps \mathfrak{D} into itself, and it is a symmetric operator in $\mathcal{F}(H)$.
THEOREM 2.1. For each $\varphi \in \mathcal{D}$, the operator $A(\varphi)$ is essentially self-adjoint on \mathfrak{D}. Furthermore, there exists a unique probability measure μ on \mathcal{D}^{\prime} such that the linear operator $I: \mathcal{F}(H) \rightarrow L^{2}\left(\mathcal{D}^{\prime}, \mu\right)$ given through $I \Omega=1, \Omega$ being the vacuum vector $(1,0,0, \ldots)$, and

$$
I\left(A\left(\varphi_{1}\right) \ldots A\left(\varphi_{n}\right) \Omega\right)=\left\langle\omega, \varphi_{1}\right\rangle \ldots\left\langle\omega, \varphi_{n}\right\rangle
$$

is a unitary operator. The Fourier transform of the measure μ is given by

$$
\begin{align*}
\int_{\mathcal{D}^{\prime}} e^{i\langle\varphi, \omega\rangle} \mu(d \omega)= & \exp \left[-\frac{1}{2} \int_{\mathbb{R}^{d}} d x \sigma(x,\{0\}) \varphi(x)^{2}\right. \tag{2.3}\\
& \left.+\int_{\mathbb{R}^{d}} d x \int_{\mathbb{R}^{*}} \sigma(x, d s) \frac{1}{s^{2}}\left(e^{i \varphi(x) s}-i \varphi(x) s-1\right)\right]
\end{align*}
$$

where $\mathbb{R}^{*}:=\mathbb{R} \backslash\{0\}$. In particular, μ is a generalized stochastic process with independent values.

Note that, if the measure $\sigma(d s)=\sigma(x, d s)$ is the same for all $x \in \mathbb{R}^{d}$, then μ is a Lévy process.

3. AN ORTHOGONAL DECOMPOSITION OF A FOCK SPACE

We will now discuss an orthogonal decomposition of a general symmetric Fock space. This decomposition generalizes the well-known basis of occupation numbers in the Fock space, see e.g. [2].

In this section, we will denote by H any real separable Hilbert space. Let $\left(H_{k}\right)_{k=0}^{\infty}$ be a sequence of closed subspaces of H such that $H=\bigoplus_{k=0}^{\infty} H_{k}$. Let $n \geqslant 2$. Then clearly

$$
\begin{align*}
H^{\otimes n} & =\left(\bigoplus_{k_{1}=0}^{\infty} H_{k_{1}}\right) \otimes\left(\bigoplus_{k_{2}=0}^{\infty} H_{k_{2}}\right) \otimes \ldots \otimes\left(\bigoplus_{k_{n}=0}^{\infty} H_{k_{n}}\right) \tag{3.1}\\
& =\bigoplus_{\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n}} H_{k_{1}} \otimes H_{k_{2}} \otimes \ldots \otimes H_{k_{n}}
\end{align*}
$$

Denote by Sym_{n} the orthogonal projection of $H^{\otimes n}$ onto $H^{\odot n}$. Recall that, for any $f_{1}, f_{2}, \ldots, f_{n} \in H$,

$$
\begin{equation*}
f_{1} \odot \ldots \odot f_{n}=\operatorname{Sym}_{n} f_{1} \otimes \ldots \otimes f_{n}=\frac{1}{n!} \sum_{\sigma \in S_{n}} f_{\sigma(1)} \otimes \ldots \otimes f_{\sigma(n)} \tag{3.2}
\end{equation*}
$$

(Here, S_{n} denotes the symmetric group of order n.) For each $\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ $\in \mathbb{Z}_{+}^{n}$, let us assume that $H_{k_{1}} \odot H_{k_{2}} \odot \ldots \odot H_{k_{n}}$ denote the Hilbert space $\operatorname{Sym}_{n}\left(H_{k_{1}} \otimes H_{k_{2}} \otimes \ldots \otimes H_{k_{n}}\right)$, i.e., the space of all Sym_{n}-projections of elements of $H_{k_{1}} \otimes H_{k_{2}} \otimes \ldots \otimes H_{k_{n}}$.

Assume that $\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n}$ and $\left(l_{1}, l_{2}, \ldots, l_{n}\right) \in \mathbb{Z}_{+}^{n}$ are such that there exists a permutation $\sigma \in S_{n}$ such that

$$
\begin{equation*}
\left(k_{1}, k_{2}, \ldots, k_{n}\right)=\left(l_{\sigma(1)}, l_{\sigma(2)}, \ldots, l_{\sigma(n)}\right) \tag{3.3}
\end{equation*}
$$

Then

$$
\begin{equation*}
H_{k_{1}} \odot H_{k_{2}} \odot \ldots \odot H_{k_{n}}=H_{l_{1}} \odot H_{l_{2}} \odot \ldots \odot H_{l_{n}} \tag{3.4}
\end{equation*}
$$

Indeed, take any $f_{1} \in H_{l_{1}}, f_{2} \in H_{l_{2}}, \ldots, f_{n} \in H_{l_{n}}$. Then

$$
\begin{equation*}
f_{1} \odot f_{2} \odot \ldots \odot f_{n}=f_{\sigma(1)} \odot f_{\sigma(2)} \odot \ldots \odot f_{\sigma(n)} \tag{3.5}
\end{equation*}
$$

We have $f_{\sigma(i)} \in H_{l_{\sigma(i)}}=H_{k_{i}}$. Therefore, the vector in (3.5) belongs to $H_{k_{1}} \odot$ $H_{k_{2}} \odot \ldots \odot H_{k_{n}}$. Since the set of all vectors of the form $f_{1} \odot f_{2} \odot \ldots \odot f_{n}$ with $f_{i} \in H_{l_{i}}$ is total in $H_{l_{1}} \odot H_{l_{2}} \odot \ldots \odot H_{l_{n}}$, we conclude that

$$
H_{l_{1}} \odot H_{l_{2}} \odot \ldots \odot H_{l_{n}} \subset H_{k_{1}} \odot H_{k_{2}} \odot \ldots \odot H_{k_{n}} .
$$

By inverting the argument, we obtain the inverse conclusion, and so formula (3.4) holds.

If no permutation $\sigma \in S_{n}$ exists which satisfies (3.3), then

$$
\begin{equation*}
H_{k_{1}} \odot H_{k_{2}} \odot \ldots \odot H_{k_{n}} \perp H_{l_{1}} \odot H_{l_{2}} \odot \ldots \odot H_{l_{n}} \tag{3.6}
\end{equation*}
$$

Indeed, take any $f_{i} \in H_{k_{i}}, g_{i} \in H_{l_{i}}, i=1,2, \ldots, n$. Then, since Sym_{n} is an orthogonal projection,

$$
\begin{aligned}
\left(f_{1} \odot f_{2} \odot \ldots \odot\right. & \left.f_{n}, g_{1} \odot g_{2} \odot \ldots \odot g_{n}\right)_{H \odot n} \\
& =\left(\operatorname{Sym}_{n}\left(f_{1} \otimes f_{2} \otimes \ldots \otimes f_{n}\right), g_{1} \otimes g_{2} \otimes \ldots \otimes g_{n}\right)_{H} \otimes n \\
& =\frac{1}{n!} \sum_{\sigma \in S_{n}} \prod_{i=1}^{n}\left(f_{\sigma(i)}, g_{i}\right)_{H}=\frac{1}{n!} \sum_{\sigma \in S_{n}} \prod_{i=1}^{n}\left(f_{i}, g_{\sigma(i)}\right)_{H}=0 .
\end{aligned}
$$

Since the vectors of the form $f_{1} \odot f_{2} \odot \ldots \odot f_{n}$ with $f_{i} \in H_{k_{i}}$ and $g_{1} \odot g_{2} \odot \ldots$ $\odot g_{n}$ with $g_{i} \in H_{l_{i}}$ form a total set in $H_{k_{1}} \odot H_{k_{2}} \odot \ldots \odot H_{k_{n}}$ and $H_{l_{1}} \odot H_{l_{2}} \odot \ldots$ $\odot H_{l_{n}}$, respectively, we get (3.6).

By (3.1), the closed linear span of the spaces $H_{k_{1}} \odot H_{k_{2}} \odot \ldots \odot H_{k_{n}}$ with $\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n}$ coincides with $H^{\odot n}$. Hence, by (3.4) and (3.6), we get the orthogonal decomposition

$$
\begin{equation*}
H^{\odot n}=\bigoplus_{\alpha \in \mathbb{Z}_{+, 0}^{\infty},|\alpha|=n} H_{0}^{\odot \alpha_{0}} \odot H_{1}^{\odot \alpha_{1}} \odot H_{2}^{\odot \alpha_{2}} \odot \ldots \tag{3.7}
\end{equation*}
$$

Here $\mathbb{Z}_{+, 0}^{\infty}$ denotes the set of indices $\alpha=\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots\right)$ such that all $\alpha_{i} \in \mathbb{Z}_{+}$ and $|\alpha|:=\alpha_{0}+\alpha_{1}+\alpha_{2}+\ldots<\infty$. Hence, by (3.7), we get the following

Lemma 3.1. We have the orthogonal decomposition of the symmetric Fock space $\mathcal{F}(H)=\bigoplus_{n=0}^{\infty} H^{\odot n} n!$, i.e.,

$$
\begin{equation*}
\mathcal{F}(H)=\bigoplus_{\alpha \in \mathbb{Z}_{+, 0}^{\infty}}\left(H_{0}^{\odot \alpha_{0}} \odot H_{1}^{\odot \alpha_{1}} \odot H_{2}^{\odot \alpha_{2}} \ldots\right)|\alpha|!. \tag{3.8}
\end{equation*}
$$

Next, we have
LEmmA 3.2. Let $\alpha \in \mathbb{Z}_{+, 0}^{\infty}$. Then

$$
\begin{align*}
\operatorname{Sym}_{|\alpha|}:\left(H_{0}^{\odot \alpha_{0}} \otimes H_{1}^{\odot \alpha_{1}} \otimes\right. & \left.H_{2}^{\odot \alpha_{2}} \otimes \ldots\right) \alpha_{0}!\alpha_{1}!\alpha_{2}!\ldots \tag{3.9}\\
& \rightarrow\left(H_{0}^{\odot \alpha_{0}} \odot H_{1}^{\odot \alpha_{1}} \odot H_{2}^{\odot \alpha_{2}} \odot \ldots\right)|\alpha|!
\end{align*}
$$

is a unitary operator.
Proof. We start the proof with the following well-known observation. Let $k, l \geqslant 1, n:=k+l$. Then $\operatorname{Sym}_{n}=\operatorname{Sym}_{n}\left(\operatorname{Sym}_{k} \otimes \operatorname{Sym}_{l}\right)$. Hence, for any $\alpha \in$
$\mathbb{Z}_{+, 0}^{\infty},|\alpha|=n$, we get $\operatorname{Sym}_{n}=\operatorname{Sym}_{n}\left(\operatorname{Sym}_{\alpha_{0}} \otimes \operatorname{Sym}_{\alpha_{1}} \otimes \operatorname{Sym}_{\alpha_{2}} \otimes \ldots\right)$. Therefore, we have the following equality of subspaces of $H^{\otimes n}$:

$$
\begin{aligned}
& H_{0}^{\odot \alpha_{0}} \odot H_{1}^{\odot \alpha_{1}} \odot H_{2}^{\odot \alpha_{2}} \odot \ldots \\
= & \operatorname{Sym}_{n}\left(H_{0}^{\otimes \alpha_{0}} \otimes H_{1}^{\otimes \alpha_{1}} \otimes H_{2}^{\otimes \alpha_{2}} \otimes \ldots\right) \\
= & \operatorname{Sym}_{n}\left(\operatorname{Sym}_{\alpha_{0}} \otimes \operatorname{Sym}_{\alpha_{1}} \otimes \operatorname{Sym}_{\alpha_{2}} \otimes \ldots\right)\left(H_{0}^{\otimes \alpha_{0}} \otimes H_{1}^{\otimes \alpha_{1}} \otimes H_{2}^{\otimes \alpha_{2}} \otimes \ldots\right) \\
= & \operatorname{Sym}_{n}\left(H_{0}^{\odot \alpha_{0}} \otimes H_{1}^{\odot \alpha_{1}} \otimes H_{2}^{\odot \alpha_{2}} \otimes \ldots\right) .
\end{aligned}
$$

This shows that the image of the operator Sym_{n} in (3.9) is the whole space $H_{0}^{\odot \alpha_{0}} \odot$ $H_{1}^{\odot \alpha_{1}} \odot H_{2}^{\odot \alpha_{2}} \odot \ldots n!$. Hence, we only need to prove that this operator is an isometry.

Fix any $f_{i}, g_{i} \in H_{i}$ with $i \in \mathbb{Z}_{+}$, and any $\alpha \in \mathbb{Z}_{+, 0}^{\infty}$. Then, by (3.2),

$$
\begin{aligned}
& \left(\operatorname{Sym}_{n}\left(f_{0}^{\otimes \alpha_{0}} \otimes f_{1}^{\otimes \alpha_{1}} \otimes f_{2}^{\otimes \alpha_{2}} \otimes \ldots\right), \operatorname{Sym}_{n}\left(g_{0}^{\otimes \alpha_{0}} \otimes g_{1}^{\otimes \alpha_{1}} \otimes g_{2}^{\otimes \alpha_{2}} \otimes \ldots\right)\right)_{H \odot n} \\
= & \left(\operatorname{Sym}_{n}\left(f_{0}^{\otimes \alpha_{0}} \otimes f_{1}^{\otimes \alpha_{1}} \otimes f_{2}^{\otimes \alpha_{2}} \otimes \ldots\right), g_{0}^{\otimes \alpha_{0}} \otimes g_{1}^{\otimes \alpha_{1}} \otimes g_{2}^{\otimes \alpha_{2}} \otimes \ldots\right)_{H}^{\otimes n} \\
= & \frac{1}{n!} \sum_{\sigma_{0} \in S_{\alpha_{0}}}\left(f_{0}, g_{0}\right)_{H_{0}}^{\alpha_{0}} \cdot \sum_{\sigma_{1} \in S_{\alpha_{1}}}\left(f_{1}, g_{1}\right)_{H_{1}}^{\alpha_{1}} \ldots \\
= & \frac{1}{n!}\left(f_{0}^{\otimes \alpha_{0}}, g_{0}^{\otimes \alpha_{0}}\right)_{H_{0}^{\odot \alpha_{0}}} \alpha_{0}!\left(f_{1}^{\otimes \alpha_{1}}, g_{1}^{\otimes \alpha_{1}}\right)_{H_{1}^{\odot \alpha_{1}} \alpha_{1}!\ldots}=\frac{1}{n!}\left(f_{0}^{\otimes \alpha_{0}} \otimes f_{1}^{\otimes \alpha_{1}} \otimes \ldots, g_{0}^{\otimes \alpha_{0}} \otimes g_{1}^{\otimes \alpha_{1}} \otimes \ldots\right)_{H_{0}^{\odot \alpha_{0}} \otimes H_{1}^{\odot \alpha_{1}} \otimes \ldots} \alpha_{0}!\alpha_{1}!\ldots
\end{aligned}
$$

Since the set of all vectors of the form $f_{i}^{\otimes \alpha_{i}}$ with $f_{i} \in H_{i}$ is a total subset of $H_{i}^{\odot \alpha_{i}}$, we conclude that the operator in (3.9) is indeed an isometry.

We define the symmetrization operator
(3.10) \quad Sym : $\bigoplus_{\alpha \in \mathbb{Z}_{+, 0}^{\infty}}\left(H_{0}^{\odot \alpha_{0}} \otimes H_{1}^{\odot \alpha_{1}} \otimes H_{2}^{\odot \alpha_{2}} \otimes \ldots\right) \alpha_{0}!\alpha_{1}!\alpha_{2}!\ldots \rightarrow \mathcal{F}(H)$
so that the restriction of Sym to each space

$$
\left(H_{0}^{\odot \alpha_{0}} \otimes H_{1}^{\odot \alpha_{1}} \otimes H_{2}^{\odot \alpha_{2}} \otimes \ldots\right) \alpha_{0}!\alpha_{1}!\alpha_{2}!\ldots
$$

is equal to $\mathrm{Sym}_{|\alpha|}$. By Lemmas 3.1 and 3.2, we get
Lemma 3.3. The symmetrization operator Sym is a unitary operator.
REMARK 3.1. Let us assume that each Hilbert space H_{k} is one-dimensional and in each H_{k} we fix a vector $e_{k} \in H_{k}$ such that $\left\|e_{k}\right\|=1$. Thus, $\left(e_{k}\right)_{k=0}^{\infty}$ is an orthonormal basis of H. By Lemma 3.3, the set of the vectors

$$
\left(\left(\alpha_{0}!\alpha_{1}!\alpha_{2}!\ldots\right)^{-1 / 2} e_{0}^{\otimes \alpha_{0}} \odot e_{1}^{\otimes \alpha_{1}} \odot e_{2}^{\otimes \alpha_{2}} \odot \ldots\right)_{\alpha \in \mathbb{Z}_{+, 0}^{\infty}}
$$

is an orthonormal basis of $\mathcal{F}(H)$. This basis is called a basis of occupation numbers.

4. AN ORTHOGONAL DECOMPOSITION OF $L^{2}\left(\mathcal{D}^{\prime}, \mu\right)$

We want to apply the general result about the orthogonal decomposition of the Fock space to the case of $\mathcal{F}(H)$, where $H=L^{2}\left(\mathbb{R}^{d} \times \mathbb{R}, d x \sigma(x, d s)\right)$. We note that, by (2.1), for each $x \in \mathbb{R}^{d}$, the set of polynomials is dense in $L^{2}(\mathbb{R}, \sigma(x, d s))$. We denote by $\left(q^{(n)}(x, s)\right)_{n \geqslant 0}$ the sequence of monic polynomials which are orthogonal with respect to the measure $\sigma(x, d s)$. These polynomials satisfy the following recursive formula:

$$
\begin{align*}
& s q^{(n)}(x, s)=q^{(n+1)}(x, s)+b_{n}(x) q^{(n)}(x, s)+a_{n}(x) q^{(n-1)}(x, s), \quad n \geqslant 1 \tag{4.1}\\
& s q^{(0)}(x, s)=q^{(1)}(x, s)+b_{0}(x)
\end{align*}
$$

with some $b_{n}(x) \in \mathbb{R}$ and $a_{n}(x)>0$. (Note that if the support of $\sigma(x, d s)$ consists of $k<\infty$ points, then, for $n \geqslant k$, we set $q^{(n)}(x, s)=0, a_{n}(x)=0$ with $b_{n}(x) \in \mathbb{R}$ being arbitrary.)

From now on, we will assume that the following condition is satisfied:
(A) For each $n \in \mathbb{N}$, the function $a_{n}(x)$ from (4.1) is locally bounded on \mathbb{R}^{d}, i.e., for each $\Lambda \in \mathcal{B}_{0}\left(\mathbb{R}^{d}\right), \sup _{x \in \Lambda} a_{n}(x)<\infty$.

Denote by \mathfrak{L} the linear space of all functions on $\mathbb{R}^{d} \times \mathbb{R}$ which have the form

$$
\begin{equation*}
f(x, s)=\sum_{k=0}^{n} a_{k}(x) q^{(k)}(x, s) \tag{4.2}
\end{equation*}
$$

where $n \in \mathbb{N}, a_{k} \in \mathcal{D}, k=0,1, \ldots, n$.
Lemma 4.1. The space \mathfrak{L} is densely embedded into H.
Proof. Let $f(x, s)=a(x) q^{(k)}(x, s)$, where $a \in \mathcal{D}$. Let us show that $f \in H$. Put $\Lambda:=\operatorname{supp}(a)$. We have, for some $C>0$,

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} \int_{\mathbb{R}} d x \sigma(x, d s) f(x, s)^{2} \leqslant C \int_{\Lambda} d x \int_{\mathbb{R}} \sigma(x, d s) q^{(k)}(x, s)^{2} \tag{4.3}
\end{equation*}
$$

If $k=0$, then $q^{(0)}(x, s)=1$, and the right-hand side of (4.3) is evidently finite. By the theory of orthogonal polynomials (see e.g. [4])

$$
\begin{equation*}
\int_{\mathbb{R}} \sigma(x, d s) q^{(k)}(x, s)^{2}=a_{1}(x) a_{2}(x) \ldots a_{k}(x), \quad k \geqslant 1 . \tag{4.4}
\end{equation*}
$$

Hence we continue (4.3) and obtain

$$
\int_{\mathbb{R}^{d}} \int_{\mathbb{R}} d x \sigma(x, d s) f(x, s)^{2} \leqslant C \int_{\Lambda} d x a_{1}(x) a_{2}(x) \ldots a_{k}(x)<\infty
$$

by (A). Thus, $\mathfrak{L} \subset H$.

We now have to show that \mathfrak{L} is a dense subset of H. Let $g \in H$ be such that $(g, f)_{H}=0$ for all $f \in \mathfrak{L}$. Hence for any $a \in \mathcal{D}$ and $k \geqslant 0$

$$
\int_{\mathbb{R}^{d}} d x \int_{\mathbb{R}} \sigma(x, d s) g(x, s) a(x) q^{(k)}(x, s)=0
$$

Fix any compact set Λ in \mathbb{R}^{d} and let $a \in \mathcal{D}$ be such that the support of a is a subset of Λ. Then,

$$
\int_{\mathbb{R}^{d}} d x a(x)\left(\int_{\mathbb{R}} \sigma(x, d s) g(x, s) q^{(k)}(x, s)\right)=0
$$

Hence

$$
\begin{equation*}
\int_{\Lambda} d x a(x)\left(\int_{\mathbb{R}} \sigma(x, d s) g(x, s) q^{(k)}(x, s)\right)=0 \tag{4.5}
\end{equation*}
$$

We state that the function

$$
\Lambda \ni x \mapsto \int_{\mathbb{R}} \sigma(x, d s) g(x, s) q^{(k)}(x, s)
$$

belongs to $L^{2}(\Lambda, d x)$. Indeed, if $k=0$, then $q^{(0)}(x, s)=1$, and this statement evidently follows from Cauchy's inequality. Assume that $k \geqslant 1$. Then, by Cauchy's inequality, (4.3), and condition (A),

$$
\begin{aligned}
\int_{\Lambda} d x\left(\int_{\mathbb{R}} \sigma(x, d s)\right. & \left.g(x, s) q^{(k)}(x, s)\right)^{2} \\
& \leqslant \int_{\Lambda} d x \int_{\mathbb{R}} \sigma\left(x, d s_{1}\right) g\left(x, s_{1}\right)^{2} \int_{\mathbb{R}} \sigma\left(x, d s_{2}\right) q^{(k)}\left(x, s_{2}\right)^{2} \\
& =\int_{\Lambda} d x \int_{\mathbb{R}} \sigma(x, d s) g(x, s)^{2} a_{1}(x) a_{2}(x) \ldots a_{k}(x) \\
& \leqslant\left(\prod_{i=1}^{k} \sup _{x \in \Lambda} a_{i}(x)\right) \int_{\Lambda} d x \int_{\mathbb{R}} \sigma(x, d s) g(x, s)^{2}<\infty
\end{aligned}
$$

Since the set of all functions $a \in \mathcal{D}$ with support in Λ is dense in $L^{2}(\Lambda, d x)$, we therefore conclude from (4.5) that, for $d x$-a.a. $x \in \Lambda$,

$$
\begin{equation*}
\int_{\mathbb{R}} \sigma(x, d s) g(x, s) q^{(k)}(x, s)=0 \quad \text { for all } k \geqslant 0 \tag{4.6}
\end{equation*}
$$

Since $g \in H$, we infer that, for $d x$-a.a. $x \in \mathbb{R}^{d}, g(x, \cdot) \in L^{2}(\mathbb{R}, \sigma(x, d s))$. Since $\left\{q^{(k)}(x, \cdot)\right\}_{k=0}^{\infty}$ form an orthogonal basis in $L^{2}(\mathbb{R}, \sigma(x, d s))$, we conclude from (4.6) that, for $d x$-a.a. $x \in \mathbb{R}^{d}, g(x, s)=0$ for $\sigma(x, d s)$-a.a. $s \in \mathbb{R}$. From here, we easily conclude that $g=0$ as an element of H. Hence \mathfrak{L} is indeed dense in H.

For each $n \in \mathbb{Z}_{+}$, we define

$$
\mathfrak{L}_{n}:=\left\{g_{n}(x, s)=f(x) q^{(n)}(x, s) \mid f \in \mathcal{D}\right\} .
$$

We have $\mathfrak{L}_{n} \subset \mathfrak{L}$, and so the linear span of the \mathfrak{L}_{n} spaces coincides with \mathfrak{L}. For any $g_{n}(x, s)=f_{n}(x) q^{(n)}(x, s) \in \mathfrak{L}_{n}$ and $g_{m}(x, s)=f_{m}(x) q^{(m)}(x, s) \in \mathfrak{L}_{m}$, $n, m \in \mathbb{Z}_{+}$, we have

$$
\begin{align*}
\left(g_{n}, g_{m}\right)_{H} & =\int_{\mathbb{R}^{d} \times \mathbb{R}} g_{n}(x, s) g_{m}(x, s) d x \sigma(x, d s) \tag{4.7}\\
& =\int_{\mathbb{R}^{d}} f_{n}(x) f_{m}(x)\left(\int_{\mathbb{R}} q^{(n)}(x, s) q^{(m)}(x, s) \sigma(x, d s)\right) d x .
\end{align*}
$$

Hence, if $n \neq m$, then

$$
\left(g_{n}, g_{m}\right)_{H}=0,
$$

which implies that the linear spaces $\left\{\mathfrak{L}_{n}\right\}_{n=0}^{\infty}$ are mutually orthogonal in H. Denote by H_{n} the closure of \mathfrak{L}_{n} in H. Then, by Lemma 4.1, $H=\bigoplus_{n=0}^{\infty} H_{n}$.

By (4.7), setting $n=m$, we get

$$
\begin{equation*}
\left\|g_{n}\right\|_{H_{n}}^{2}=\int_{\mathbb{R}^{d}} f_{n}^{2}(x)\left(\int_{\mathbb{R}} q^{(n)}(x, s)^{2} \sigma(x, d s)\right) d x=\int_{\mathbb{R}^{d}} f_{n}^{2}(x) \rho_{n}(d x), \tag{4.8}
\end{equation*}
$$

where

$$
\rho_{n}(d x)=\left(\int_{\mathbb{R}} q^{(n)}(x, s)^{2} \sigma(x, d s)\right) d x
$$

is a measure on $\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right)$. Consider a linear operator

$$
\mathcal{D} \ni f_{n} \mapsto\left(J_{n} f_{n}\right)(x, s):=f_{n}(x) q^{(n)}(x, s) \in \mathfrak{L}_{n} .
$$

The image of J_{n} is clearly the whole \mathfrak{L}_{n}. Now, \mathfrak{L}_{n} is dense in H_{n}, while \mathcal{D} is evidently dense in $L^{2}\left(\mathbb{R}^{d}, \rho_{n}(d x)\right)$. By (4.8), for each $f_{n} \in \mathcal{D}$,

$$
\left\|J_{n} f_{n}\right\|_{H_{n}}=\left\|f_{n}\right\|_{L^{2}\left(\mathbb{R}^{d}, \rho_{n}(d x)\right)} .
$$

Therefore, we can extend the operator J_{n} by continuity to a unitary operator

$$
\begin{equation*}
J_{n}: L^{2}\left(\mathbb{R}^{d}, \rho_{n}(d x)\right) \rightarrow H_{n} . \tag{4.9}
\end{equation*}
$$

In particular,

$$
H_{n}=\left\{f_{n}(x) q^{(n)}(x, s) \mid f_{n} \in L^{2}\left(\mathbb{R}^{d}, \rho_{n}(d x)\right)\right\} .
$$

Therefore, for each $k \geqslant 2$,

$$
\begin{aligned}
H_{n}^{\otimes k}= & \left\{f_{n}^{(k)}\left(x_{1}, \ldots, x_{k}\right) q^{(n)}\left(x_{1}, s_{1}\right) \ldots q^{(n)}\left(x_{k}, s_{k}\right) \mid\right. \\
& \left.f_{n}^{(k)} \in L^{2}\left(\mathbb{R}^{d}, \rho_{n}(d x)\right)^{\otimes k}=L^{2}\left(\left(\mathbb{R}^{d}\right)^{k}, \rho_{n}\left(d x_{1}\right) \ldots \rho_{n}\left(d x_{k}\right)\right)\right\} .
\end{aligned}
$$

Since the operator J_{n} in (4.9) is unitary, we infer that the operator

$$
J_{n}^{\otimes k}: L^{2}\left(\mathbb{R}^{d}, \rho_{n}(d x)\right)^{\otimes k} \rightarrow H_{n}^{\otimes k}
$$

is also unitary. The restriction of $J_{n}^{\otimes k}$ to $L^{2}\left(\mathbb{R}^{d}, \rho_{n}(d x)\right)^{\odot k}$ is a unitary operator

$$
\begin{equation*}
J_{n}^{\otimes k}: L^{2}\left(\mathbb{R}^{d}, \rho_{n}(d x)\right)^{\odot k} \rightarrow H_{n}^{\odot k} . \tag{4.10}
\end{equation*}
$$

Indeed, take any $f_{n} \in L^{2}\left(\mathbb{R}^{d}, \rho_{n}(d x)\right)$. Then $f_{n}^{\otimes k} \in L^{2}\left(\mathbb{R}^{d}, \rho_{n}(d x)\right)^{\odot k}$ and the set of all such vectors is total in $L^{2}\left(\mathbb{R}^{d}, \rho_{n}(d x)\right)^{\odot k}$. Now, by the definition of $J_{n}^{\otimes k}$, we get

$$
J_{n}^{\otimes k} f_{n}^{\otimes k}=\left(J_{n} f_{n}\right)^{\otimes k} \in H_{n}^{\odot k},
$$

and furthermore the set of all vectors of the form $\left(J_{n} f_{n}\right)^{\otimes k}$ is total in $H_{n}^{\odot k}$. Hence, the statement follows.

For any $f_{n}^{(k)} \in L^{2}\left(\mathbb{R}^{d}, \rho_{n}(d x)\right)^{\otimes k}$,

$$
\left(J_{n}^{\otimes k} f_{n}^{(k)}\right)\left(x_{1}, s_{1}, \ldots, x_{k}, s_{k}\right)=f_{n}^{(k)}\left(x_{1}, \ldots, x_{k}\right) q^{(n)}\left(x_{1}, s_{1}\right) \ldots q^{(n)}\left(x_{k}, s_{k}\right) .
$$

Hence, the unitary operator (4.10) acts as follows:

$$
\begin{aligned}
& L^{2}\left(\mathbb{R}^{d}, \rho_{n}(d x)\right)^{\odot k} \ni f_{n}^{(k)}\left(x_{1}, \ldots, x_{k}\right) \\
\mapsto & \left(J_{n}^{\otimes k} f_{n}^{(k)}\right)\left(x_{1}, s_{1}, \ldots, x_{k}, s_{k}\right)=f_{n}^{(k)}\left(x_{1}, \ldots, x_{k}\right) q^{(n)}\left(x_{1}, s_{1}\right) \ldots q^{(n)}\left(x_{k}, s_{k}\right) .
\end{aligned}
$$

Thus, each function $g_{n}^{(k)} \in H_{n}^{\odot k}$ has a representation

$$
g_{n}^{(k)}\left(x_{1}, s_{1}, \ldots, x_{k}, s_{k}\right)=f_{n}^{(k)}\left(x_{1}, \ldots, x_{k}\right) q^{(n)}\left(x_{1}, s_{1}\right) \ldots q^{(n)}\left(x_{k}, s_{k}\right),
$$

where $f_{n}^{(k)} \in L^{2}\left(\mathbb{R}^{d}, \rho_{n}(d x)\right)^{\odot k}$ and $\left\|g_{n}^{(k)}\right\|_{H_{n}^{\odot k}}=\left\|f_{n}^{(k)}\right\|_{\left.L^{2}\left(\mathbb{R}^{d}, \rho_{n}(d x)\right)\right)^{\circ k}}$.
For each $\alpha \in \mathbb{Z}_{+, 0}^{\infty}$, we consider the Hilbert space

$$
\begin{equation*}
L_{\alpha}^{2}\left(\left(\mathbb{R}^{d}\right)^{|\alpha|}\right):=L^{2}\left(\mathbb{R}^{d}, \rho_{0}(d x)\right)^{\odot \alpha_{0}} \otimes L^{2}\left(\mathbb{R}^{d}, \rho_{1}(d x)\right)^{\odot \alpha_{1}} \otimes \ldots \tag{4.11}
\end{equation*}
$$

We now define a unitary operator

$$
J_{\alpha}: L_{\alpha}^{2}\left(\left(\mathbb{R}^{d}\right)^{|\alpha|}\right) \rightarrow H_{0}^{\odot \alpha_{0}} \otimes H_{1}^{\odot \alpha_{1}} \otimes \ldots,
$$

where

$$
J_{\alpha}=J_{0}^{\otimes \alpha_{0}} \otimes J_{1}^{\otimes \alpha_{1}} \otimes \ldots
$$

We evidently have, for each $f_{\alpha} \in L_{\alpha}^{2}\left(\left(\mathbb{R}^{d}\right)^{|\alpha|}\right)$,

$$
\begin{aligned}
&\left(J_{\alpha} f_{\alpha}\right)\left(x_{1}, s_{1}, x_{2}, s_{2}, \ldots, x_{|\alpha|}, s_{|\alpha|}\right) \\
&= f_{\alpha}\left(x_{1}, x_{2}, \ldots, x_{|\alpha|}\right) q^{(0)}\left(x_{1}, s_{1}\right) \ldots q^{(0)}\left(x_{\alpha_{0}}, s_{\alpha_{0}}\right) \\
& \quad \times q^{(1)}\left(x_{\alpha_{0}+1}, s_{\alpha_{0}+1}\right) \ldots q^{(1)}\left(x_{\alpha_{0}+\alpha_{1}}, s_{\alpha_{0}+\alpha_{1}}\right) \ldots
\end{aligned}
$$

For each $\alpha \in \mathbb{Z}_{+, 0}^{\infty}$, we define a Hilbert space

$$
\mathcal{G}_{\alpha}:=L_{\alpha}^{2}\left(\left(\mathbb{R}^{d}\right)^{|\alpha|}\right) \alpha_{0}!\alpha_{1}!\ldots
$$

The J_{α} is evidently a unitary operator

$$
J_{\alpha}: \mathcal{G}_{\alpha} \rightarrow\left(H_{0}^{\odot \alpha_{0}} \otimes H_{1}^{\odot \alpha_{1}} \otimes \ldots\right) \alpha_{0}!\alpha_{1}!\ldots
$$

Put $\mathcal{G}:=\bigoplus_{\alpha \in \mathbb{Z}_{+, 0}^{\infty}} \mathcal{G}_{\alpha}$. Hence, we can construct a unitary operator

$$
J: \mathcal{G} \rightarrow \bigoplus_{\alpha \in \mathbb{Z}_{+, 0}^{\infty}}\left(H_{0}^{\odot \alpha_{0}} \otimes H_{1}^{\odot \alpha_{1}} \otimes \ldots\right) \alpha_{0}!\alpha_{1}!\ldots
$$

by setting $J:=\bigoplus_{\alpha \in \mathbb{Z}_{+, 0}^{\infty}} J_{\alpha}$. By Lemma 3.3, we get a unitary operator $\mathcal{R}: \mathcal{G} \rightarrow$ $\mathcal{F}(H)$ by setting $\mathcal{R}:=\operatorname{Sym} J$. Thus, by Theorem 2.1, we get

THEOREM 4.1. Let condition (A) be satisfied. We have a unitary isomorphism $\mathcal{K}: \mathcal{G} \rightarrow L^{2}\left(\mathcal{D}^{\prime}, \mu\right)$ given by $\mathcal{K}:=I \mathcal{R}$, where the unitary operator $I: \mathcal{F}(H) \rightarrow$ $L^{2}\left(\mathcal{D}^{\prime}, \mu\right)$ is from Theorem 2.1.

5. THE UNITARY ISOMORPHISM \mathcal{K} THROUGH MULTIPLE STOCHASTIC INTEGRALS

We will now give an interpretation of the unitary isomorphism \mathcal{K} in terms of multiple stochastic integrals. We will only present a sketch of the proof, omitting some technical details.

Let us recall the operators $A(\varphi)$ in $\mathcal{F}(H)$ defined by (2.2). Now, for each $k \in \mathbb{N}$, we define operators

$$
\begin{equation*}
A^{(k)}(\varphi):=a^{+}\left(\varphi \otimes m_{k-1}\right)+a^{0}\left(\varphi \otimes m_{k}\right)+a^{-}\left(\varphi \otimes m_{k-1}\right) . \tag{5.1}
\end{equation*}
$$

In particular, $A^{(1)}(\varphi)=A(\varphi)$. The operator $A^{(k)}(\varphi)$ being symmetric, we denote by $A^{(k)}(\varphi)^{\sim}$ the closure of $A^{(k)}(\varphi)$. For each $k \in \mathbb{N}$ and $\varphi \in \mathcal{D}$, we define $Y^{(k-1)}(\varphi):=I\left(\varphi \otimes m_{k-1}\right)$. It can be shown that, for each $k \in \mathbb{N}, I A^{(k)}(\varphi)^{\sim} I^{-1}$ is the operator of multiplication by the function $Y^{(k-1)}$.

Suppose, for a moment, that the measures $\sigma(x, d s)$ do not depend on $x \in \mathbb{R}^{d}$. For a fixed $\varphi \in \mathcal{D}$, let us orthogonalize in $L^{2}\left(\mathcal{D}^{\prime}, \mu\right)$ the functions $\left(Y^{(k)}(\varphi)\right)_{k=0}^{\infty}$. This is of course equivalent to the orthogonalization of the monomials $\left(s^{k}\right)_{k=0}^{\infty}$ in $L^{2}(\mathbb{R}, \sigma)$. Denote by $\left(q^{(k)}\right)_{k=0}^{\infty}$ the system of monic orthogonal polynomials with respect to the measure σ. Let us put $\left(\varphi \otimes q^{(k)}\right)(x, s):=\varphi(x) q^{(k)}(s)$. Thus, the random variables

$$
Z^{(k)}(\varphi):=I\left(\varphi \otimes q^{(k)}\right), \quad k \in \mathbb{Z}_{+},
$$

appear as a result of the orthogonalization of $\left(Y^{(k)}(\varphi)\right)_{k=0}^{\infty}$. Since $q^{(0)}(s)=1$, we have

$$
Z^{(0)}(\varphi)=Y^{(0)}(\varphi)=\langle\cdot, \varphi\rangle .
$$

For each $k \geqslant 1$, we have a representation of $q^{(k)}(s)$ as follows:

$$
q^{(k)}(s)=\sum_{i=0}^{k} b_{i}^{(k)} s^{i}
$$

Thus,

$$
Z^{(k)}(\varphi)=I\left(\varphi \otimes q^{(k)}\right)=\sum_{i=0}^{k} b_{i}^{(k)} I\left(\varphi \otimes m_{i}\right)=\sum_{i=0}^{k} b_{i}^{(k)} Y^{(i)}(\varphi)
$$

Hence, under I^{-1}, the image of the operator of multiplication by $Z^{(k)}(\varphi)$ is the operator

$$
\begin{aligned}
R^{(k)}(\varphi): & =\sum_{i=0}^{k} b_{i}^{(k)}\left(a^{+}\left(\varphi \otimes m_{i}\right)+a^{-}\left(\varphi \otimes m_{i}\right)+a^{0}\left(\varphi \otimes m_{i+1}\right)\right) \\
& =a^{+}\left(\varphi \otimes q^{(k)}\right)+a^{-}\left(\varphi \otimes q^{(k)}\right)+a^{0}\left(\varphi \otimes \rho^{(k)}\right)
\end{aligned}
$$

where $\rho^{(k)}(s):=s q^{(k)}(s)$.
Let us now consider the general case, i.e., the case where the measure $\sigma(x, d s)$ does depend on $x \in \mathbb{R}^{d}$. We are using the monic polynomials $\left(q^{(k)}(x, \cdot)\right)_{k=0}^{\infty}$ which are orthogonal with respect to the measure $\sigma(x, d s)$. We have

$$
q^{(k)}(x, s)=\sum_{i=0}^{k} b_{i}^{(k)}(x) s^{i}
$$

We define

$$
Z^{(k)}(\varphi):=I\left(\varphi q^{(k)}\right)=\sum_{i=0}^{k} Y^{(i)}\left(\varphi b_{i}^{(k)}\right)
$$

where $\left(\varphi q^{(k)}\right)(x, s):=\varphi(x) q^{(k)}(x, s)$. Hence, under I^{-1}, the image of the operator of multiplication by $Z^{(k)}(\varphi)$ is the operator

$$
\begin{aligned}
R^{(k)}(\varphi):= & \sum_{i=0}^{k}\left(a^{+}\left(\left(\varphi b_{i}^{(k)}\right) \otimes m_{i}\right)+a^{-}\left(\left(\varphi b_{i}^{(k)}\right) \otimes m_{i}\right)+a^{0}\left(\left(\varphi b_{i}^{(k)}\right) \otimes m_{i+1}\right)\right) \\
= & a^{+}\left(\left(\varphi \sum_{i=0}^{k} b_{i}^{(k)}\right) \otimes m_{i}\right)+a^{-}\left(\left(\varphi \sum_{i=0}^{k} b_{i}^{(k)}\right) \otimes m_{i}\right) \\
& +a^{0}\left(\left(\varphi \sum_{i=0}^{k} b_{i}^{(k)}\right) \otimes m_{i+1}\right) \\
= & a^{+}\left(\varphi q^{(k)}\right)+a^{-}\left(\varphi q^{(k)}\right)+a^{0}\left(\varphi \rho^{(k)}\right)
\end{aligned}
$$

where $\rho^{(k)}(x, s):=s q^{(k)}(x, s)$.

It is not hard to see that the above definitions and formulas can be easily extended to the case where the function $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is just measurable, bounded, and has compact support. In particular, for each $\Delta \in \mathcal{B}_{0}\left(\mathbb{R}^{d}\right)$, we will use the operators $Z^{(k)}(\Delta):=Z^{(k)}\left(\chi_{\Delta}\right)$.

We will now introduce a multiple Wiener-Itô integral with respect to $Z^{(k)}$'s. So, we fix any $\alpha \in \mathbb{Z}_{+, 0}^{\infty},|\alpha|=n, n \in \mathbb{N}$. Take any $\Delta_{1}, \ldots, \Delta_{n} \in \mathcal{B}_{0}\left(\mathbb{R}^{d}\right)$, mutually disjoint. Then we define

$$
\begin{aligned}
& \quad \int_{\Delta_{1} \times \Delta_{2} \times \ldots \times \Delta_{n}} d Z^{(0)}\left(x_{1}\right) \ldots d Z^{(0)}\left(x_{\alpha_{0}}\right) d Z^{(1)}\left(x_{\alpha_{0}+1}\right) \ldots d Z^{(1)}\left(x_{\alpha_{0}+\alpha_{1}}\right) \\
& \quad \times d Z^{(2)}\left(x_{\alpha_{0}+\alpha_{1}+1}\right) \ldots \\
& =\int_{\left(\mathbb{R}^{d}\right)^{n}} \chi_{\Delta_{1}}\left(x_{1}\right) \chi_{\Delta_{2}}\left(x_{2}\right) \ldots \chi_{\Delta_{n}}\left(x_{n}\right) d Z^{(0)}\left(x_{1}\right) \ldots d Z^{(0)}\left(x_{\alpha_{0}}\right) \\
& \quad \times d Z^{(1)}\left(x_{\alpha_{0}+1}\right) \ldots d Z^{(1)}\left(x_{\alpha_{0}+\alpha_{1}}\right) d Z^{(2)}\left(x_{\alpha_{0}+\alpha_{1}+1}\right) \ldots \\
& :=Z^{(0)}\left(\Delta_{1}\right) \ldots Z^{(0)}\left(\Delta_{\alpha_{0}}\right) Z^{(1)}\left(\Delta_{\alpha_{0}+1}\right) \ldots Z^{(1)}\left(\Delta_{\alpha_{0}+\alpha_{1}}\right) Z^{(2)}\left(\Delta_{\alpha_{0}+\alpha_{1}+1}\right) \ldots
\end{aligned}
$$

Using the fact that the sets $\Delta_{1}, \ldots, \Delta_{n}$ are mutually disjoint, we get

$$
\begin{aligned}
I^{-1} & \left(Z^{(0)}\left(\Delta_{1}\right) \ldots Z^{(0)}\left(\Delta_{\alpha_{0}}\right) Z^{(1)}\left(\Delta_{\alpha_{0}+1}\right) \ldots Z^{(1)}\left(\Delta_{\alpha_{0}+\alpha_{1}}\right) Z^{(2)}\left(\Delta_{\alpha_{0}+\alpha_{1}+1}\right) \ldots\right) \\
= & R^{(0)}\left(\chi_{\Delta_{1}}\right) \ldots R^{(0)}\left(\chi_{\Delta_{\alpha_{0}}}\right) R^{(1)}\left(\chi_{\Delta_{\alpha_{0}+1}}\right) \ldots R^{(1)}\left(\chi_{\Delta_{\alpha_{0}+\alpha_{1}}}\right) R^{(2)}\left(\chi_{\Delta_{\alpha_{0}+\alpha_{1}+1}}\right) \ldots \\
= & a^{+}\left(\chi_{\Delta_{1}} q^{(0)}\right) \ldots a^{+}\left(\chi_{\Delta_{\alpha_{0}}} q^{(0)}\right) a^{+}\left(\chi_{\Delta_{\alpha_{0}+1}} q^{(1)}\right) \ldots a^{+}\left(\chi_{\Delta_{\alpha_{0}+\alpha_{1}}} q^{(1)}\right) \\
& \times a^{+}\left(\chi_{\Delta_{\alpha_{0}+\alpha_{1}+1}} q^{(2)}\right) \ldots \Omega \\
= & \left(\chi_{\Delta_{1}} q^{(0)}\right) \odot \ldots \odot\left(\chi_{\Delta_{\alpha_{0}}} q^{(0)}\right) \odot\left(\chi_{\Delta_{\alpha_{0}+1}} q^{(1)}\right) \odot \ldots \odot\left(\chi_{\Delta_{\alpha_{0}+\alpha_{1}}} q^{(1)}\right) \\
& \odot\left(\chi_{\Delta_{\alpha_{0}+\alpha_{1}+1}} q^{(2)}\right) \odot \ldots \\
= & \operatorname{Sym}_{n}\left(\left[\left(\chi_{\Delta_{1}} q^{(0)}\right) \odot \ldots \odot\left(\chi_{\Delta_{\alpha_{0}}} q^{(0)}\right)\right]\right. \\
& \left.\otimes\left[\left(\chi_{\Delta_{\alpha_{0}+1}} q^{(1)}\right) \odot \ldots \odot\left(\chi_{\Delta_{\alpha_{0}+\alpha_{1}}} q^{(1)}\right)\right] \otimes \ldots\right) \\
= & \operatorname{Sym}_{n}\left(\left[\left(\chi_{\Delta_{1}} \odot \ldots \odot \chi_{\Delta_{\alpha_{0}}}\right)\left(x_{1}, \ldots, x_{\alpha_{0}}\right) q^{(0)}\left(x_{1}, s_{1}\right) \ldots q^{(0)}\left(x_{\alpha_{0}}, s_{\alpha_{0}}\right)\right]\right. \\
& \otimes\left[\left(\chi_{\Delta_{\alpha_{0}+1}} \odot \ldots \odot \chi_{\Delta_{\alpha_{0}+\alpha_{1}}}\right)\left(x_{\alpha_{0}+1}, \ldots, x_{\alpha_{0}+\alpha_{1}}\right) q^{(1)}\left(x_{\alpha_{0}+1}, s_{\alpha_{0}+1}\right)\right. \\
& \left.\left.\ldots q^{(1)}\left(x_{\alpha_{0}+\alpha_{1}}, s_{\alpha_{0}+\alpha_{1}}\right)\right] \otimes \ldots\right) \\
= & \mathcal{R}\left(\left(\chi_{\Delta_{1}} \odot \ldots \odot \chi_{\Delta_{\alpha_{0}}}\right) \otimes\left(\chi_{\Delta_{\alpha_{0}+1}} \odot \ldots \odot \chi_{\Delta_{\alpha_{0}+\alpha_{1}}}\right) \otimes \ldots\right) .
\end{aligned}
$$

Hence

$$
\begin{gathered}
Z^{(0)}\left(\Delta_{1}\right) \ldots Z^{(0)}\left(\Delta_{\alpha_{0}}\right) Z^{(1)}\left(\Delta_{\alpha_{0}+1}\right) \ldots Z^{(1)}\left(\Delta_{\alpha_{0}+\alpha_{1}}\right) Z^{(2)}\left(\Delta_{\alpha_{0}+\alpha_{1}+1}\right) \ldots \\
\quad=\mathcal{K}\left(\left(\chi_{\Delta_{1}} \odot \ldots \odot \chi_{\Delta_{\alpha_{0}}}\right) \otimes\left(\chi_{\Delta_{\alpha_{0}+1}} \odot \ldots \odot \chi_{\Delta_{\alpha_{0}+\alpha_{1}}}\right) \otimes \ldots\right)
\end{gathered}
$$

The set of all vectors of the form

$$
\left(\left(\chi_{\Delta_{1}} \odot \ldots \odot \chi_{\Delta_{\alpha_{0}}}\right) \otimes\left(\chi_{\Delta_{\alpha_{0}+1}} \odot \ldots \odot \chi_{\Delta_{\alpha_{0}+\alpha_{1}}}\right) \otimes \ldots\right)
$$

is total in \mathcal{G}_{α}. Therefore, by linearity and continuity, we can extend the definition of the multiple Winner-Itô integral to the whole space \mathcal{G}_{α}. Thus, we get, for each $f_{\alpha} \in \mathcal{G}_{\alpha}$,

$$
\begin{aligned}
& \int_{\left(\mathbb{R}^{d}\right)^{|\alpha|}} f_{\alpha}\left(x_{1}, \ldots, x_{|\alpha|}\right) d Z^{(0)}\left(x_{1}\right) \ldots d Z^{(0)}\left(x_{\alpha_{0}}\right) d Z^{(1)}\left(x_{\alpha_{0}+1}\right) \ldots d Z^{(1)}\left(x_{\alpha_{0}+\alpha_{1}}\right) \\
& \times d Z^{(2)}\left(x_{\alpha_{0}+\alpha_{1}+1}\right) \ldots=\mathcal{K} f_{\alpha}
\end{aligned}
$$

Thus, we have the following theorem.
THEOREM 5.1. The unitary isomorphism $\mathcal{K}: \mathcal{G} \rightarrow L^{2}\left(\mathcal{D}^{\prime}, \mu\right)$ from Theorem 4.1 is given by

$$
\begin{aligned}
\mathcal{G}= & \bigoplus_{\alpha \in \mathbb{Z}_{+, 0}^{\infty}} \mathcal{G}_{\alpha} \ni\left(f_{\alpha}\right)_{\alpha \in \mathbb{Z}_{+, 0}^{\infty}}=f \mapsto \mathcal{K} f \\
= & \sum_{\alpha \in \mathbb{Z}_{+, 0}^{\infty}} \int_{\left(\mathbb{R}^{d}\right)^{|\alpha|}} f_{\alpha}\left(x_{1}, \ldots, x_{|\alpha|}\right) d Z^{(0)}\left(x_{1}\right) \ldots d Z^{(0)}\left(x_{\alpha_{0}}\right) \\
& \times d Z^{(1)}\left(x_{\alpha_{0}+1}\right) \ldots d Z^{(1)}\left(x_{\alpha_{0}+\alpha_{1}}\right) d Z^{(2)}\left(x_{\alpha_{0}+\alpha_{1}+1}\right) \ldots
\end{aligned}
$$

Acknowledgments. E.L. acknowledges the financial support of the Polish National Science Centre, grant no. Dec-2012/05/B/ST1/00626. The authors are grateful to the anonymous referee for many useful suggestions.

REFERENCES

[1] M. Anshelevich, q-Lévy processes, J. Reine Angew. Math. 576 (2004), pp. 81-207.
[2] Y. M. Berezansky and Y. G. Kondratiev, Spectral Methods in Infinite-Dimensional Analysis. Vol. 1, Kluwer Academic Publishers, Dordrecht 1995.
[3] M. Bożejko and E. Lytvynov, Meixner class of non-commutative generalized stochastic processes with freely independent values. I. A characterization, Comm. Math. Phys. 292 (2009), pp. 99-129.
[4] T. S. Chihara, An Introduction to Orthogonal Polynomials, Math. Appl., Vol. 13, Gordon and Breach Science Publishers, New York-London-Paris 1978.
[5] S. Das, Orthogonal Decompositions for Generalized Stochastic Processes with Independent Values, PhD thesis, Swansea 2013.
[6] G. Di Nunno, B. Øksendal, and F. Proske, Malliavin Calculus for Lévy Processes with Applications to Finance, Universitext, Springer, Berlin 2009.
[7] J. Lin, Chaotic and predictable representations for multidimensional Lévy processes, arXiv preprint, 2011.
[8] E. Lytvynov, Orthogonal decompositions for Lévy processes with an application to the gamma, Pascal, and Meixner processes, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6 (2003), pp. 73-102.
[9] D. Nualart and W. Schoutens, Chaotic and predictable representations for Lévy processes, Stochastic Process. Appl. 90 (2000), pp. 109-122.
[10] W. Schoutens, Stochastic Processes and Orthogonal Polynomials, Lecture Notes in Statist., Vol. 146, Springer, New York 2000.

Swansea University
Department of Mathematics
Singleton Park, Swansea, SA2 8PP, U.K.
E-mail: 380535@swansea.ac.uk
Swansea University
Department of Mathematics
Singleton Park, Swansea, SA2 8PP, U.K.
E-mail: e.lytvynov@swansea.ac.uk

Received on 29.3.2013;
revised version on 1.10.2013

[^0]: * E.L. acknowledges the financial support of the Polish National Science Centre, grant no. 2012/05/B/ST1/00626, and of the SFB 701 "Spectral structures and topological methods in mathematics", Bielefeld University.

