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Abstract. In this note we want to have another look on Schwinger–
Dyson equations for the eigenvalue distributions and the fluctuations of clas-
sical unitarily invariant random matrix models. We are exclusively dealing
with one-matrix models, for which the situation is quite well understood.
Our point is not to add any new results to this, but to have a more alge-
braic point of view on these results and to understand from this perspective
the universality results for fluctuations of these random matrices. We will
also consider corresponding non-commutative or “quantum” random ma-
trix models and contrast the results for fluctuations and Schwinger–Dyson
equations in the quantum case with the findings from the classical case.
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1. NOTATION AND PREREQUISITES

1.1. Free probability theory. For the basic notions and results about free prob-
ability theory we refer to the books [14] and [11]; in particular, we will follow the
latter in regard of the definitions and fundamental results on free cumulants.

1.2. Non-commutative derivatives. In the sequel we will denote by ∂ and D
the non-commutative and the cyclic derivative, respectively; see, for example, [13]
for definitions and basic properties; note that in [13] the cyclic derivative is de-
noted by δ. We will only use these derivatives in the one-variable case; then, the
cyclic derivative D coincides with usual differentiation. On the algebra C⟨x⟩ of
polynomials in one variable x these derivatives are given by

D : C⟨x⟩ → C⟨x⟩
xn 7→ Dxn := nxn−1
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and

∂ : C⟨x⟩ → C⟨x⟩ ⊗ C⟨x⟩

xn 7→ ∂xn :=
n−1∑
k=0

xk ⊗ xn−k−1.

1.3. The Chebyshev polynomials. We will use the Chebyshev polynomials of
first and second kind, for the interval [−2, 2]. The ones orthogonal with respect to
the semicircle (second kind) are denoted by Sn, the ones orthogonal with respect
to the arc-sine distribution (first kind) by Cn; compare [7]. We have

C0(x) = 2, C1(x) = x, C2(x) = x2 − 2, C3(x) = x3 − 3x

and
xCn(x) = Cn+1(x) + Cn−1(x) (n > 1);

and

S0(x) = 1, S1(x) = x, S2(x) = x2 − 1, S3(x) = x3 − 2x

and
xSn(x) = Sn+1(x) + Sn−1(x) (n > 1).

One has, for n ­ 0, the following identities:

DCn = nSn−1, ∂Sn =
n−1∑
k=0

Sk ⊗ Sn−k−1.

Furthermore, Cn = Sn − Sn−2 (those are true for all n ­ 0, if we set S−2(x)
= −1 and S−1(x) = 0) and for n,m ­ 0

SnSm = Sn+m + Sn+m−2 + . . .+ S|n−m|,

CnCm = Cn+m + C|n−m|.

These imply that we have for all n,m ­ 0

(1.1) CnSm =


Sn+m + Sm−n, n ¬ m,

Sn+m, n = m+ 1,

Sn+m − Sn−m−2, n ­ m+ 2.

1.4. Non-commutative probability space of second order. A second order
non-commutative probability space (A, φ1, φ2) consists of a unital algebra A,
a tracial linear functional φ1 : A → C with φ(1) = 1 and a bilinear functional
φ2 : A×A → C, which is symmetric in both arguments, i.e., φ2(a, b) = φ2(b, a)
for all a, b ∈ A, tracial in each of its both arguments and which satisfies φ2(a, 1) =
0 = φ2(1, b) for all a, b ∈ A. Compare [8] for more information.
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2. SCHWINGER–DYSON EQUATIONS
FOR CLASSICAL UNITARILY INVARIANT ENSEMBLES

We will be interested in unitarily invariant random matrices; the most promi-
nent class of random matrices of this type is given by a density of the following
form. We consider Hermitian N×N -random matrices A = (aij)

N
i,j=1 equipped

with the probability measure

(2.1) dµN (A) =
1

ZN
exp{−NTr[P (A)]}dA,

where

dA =
∏

1¬i<j¬N
dRe aij d Im aij

N∏
i=1

daii.

Here, P is a polynomial in one variable, which we will address in the following
as “potential”, and ZN is a normalization constant to make (2.1) into a probability
distribution.

At least formally, it is quite easy to see that the asymptotic eigenvalue distribu-
tion and fluctuations of these ensembles satisfy in the large N -limit the following
so-called Schwinger–Dyson equations (see [4], Chapter 8), also called the method
of equation of motion or the loop equation in [3], Chapter 6. We will ignore all
analytic questions and just work in the algebraic setting; thus we take our non-
commutative probability space A = C⟨x⟩ as the polynomials in one variable x.

DEFINITION 2.1. Let (C⟨x⟩, φ1, φ2) be a non-commutative probability space
of second order and V ∈ C⟨x⟩ a polynomial in x. We put ξ := DV (x) ∈ C⟨x⟩.
We say that φ1 satisfies the first order Schwinger–Dyson equations for the potential
V if we have for all p(x) ∈ C⟨x⟩

(2.2) φ1

(
ξp(x)

)
= φ1 ⊗ φ1

(
∂p(x)

)
(i.e., ξ is the conjugate variable for x). If we have in addition for all p(x), q(x) ∈
C⟨x⟩

(2.3) φ2

(
ξp(x), q(x)

)
= φ2

(
[φ1 ⊗ id + id⊗ φ1]

(
∂p(x)

)
, q(x)

)
+ φ1

(
p(x)Dq(x)

)
,

then (φ1, φ2) satisfies the second order Schwinger–Dyson equations.

Corresponding analogues exist also for the case of several matrices, but since
we have nothing substantial to say about the multivariate case we will stick in the
following to the one-matrix case. Existence and uniqueness of the solution of these
equations (under positivity requirements for φ1) are well-studied in the one-matrix
case, and are one of the main problems in random matrix theory for the case of
several variables; for some positive results in the latter case see [5].
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We will in the following ignore the uniqueness question and present a solution
to the Schwinger–Dyson equations for the one-matrix case.

THEOREM 2.1. For a given V ∈ C⟨x⟩, we decompose DV with respect to the
Chebyshev polynomials of the first kind:

ξ = DV (x) =
∑
n­0

αnCn(x).

Assume that we have normalized V in such a way that α0 = 0 and α1 = 1. We
define on C⟨x⟩ a φ1 by

φ1

(
Sn(x)

)
:= αn+1 (n ­ 0)

(note that we need φ1(1) = α1 = 1 for this) and a φ2 by

φ2

(
Cn(x), Cm(x)

)
:= nδnm (n,m ­ 0).

Then φ1 and φ2 satisfy the first and second order Schwinger–Dyson equations for
the potential V .

The prescriptions above provide well-defined and unique φ1 and φ2, because
both {Sn | n ­ 0} and {Cn | n ­ 0} are linear bases of C⟨x⟩.

Note also the crucial fact that φ2 does not depend on V . Actually, our defini-
tion of φ2 is in essence just a reformulation of the universality of the asymptotic
fluctuations for the random matrix ensemble given by (2.1). In the physical liter-
ature this observation goes at least back to Politzer [12], culminating in the paper
of Ambjørn et al. [1], whereas a proof on the mathematical level of rigour is due
to Johansson [6]. The above theorem arouse out of our attempts to understand this
universality result. Actually, it can (and should) also be seen as a streamlined alge-
braic proof of this universality result.

Our original motivation in this context was to look for multivariate versions of
this result. As will be seen from the following proof, the result relies crucially on
various algebraic properties of the Chebyshev polynomials, for which no multivari-
ate version exists. Thus it should be clear that the universality result is a genuine
one-dimensional phenomenon. Actually, in [8] we have shown, by using the ma-
chinery of second order freeness, that for one of the most canonical families of
several random matrices the fluctuations depend indeed on the potential V .

P r o o f. Consider the first order. We have to show that

φ1

(
ξp(x)

)
= φ1 ⊗ φ1

(
∂p(x)

)
for all p(x) ∈ C⟨x⟩. By linearity, it suffices to treat the cases p(x) = Sm(x) for all
m ­ 0. So fix such an m. Thus we have to show∑

n­0
αnφ1

(
Cn(x)Sm(x)

)
= φ1 ⊗ φ1

(
∂Sm(x)

)
.
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For the left-hand side we have∑
n

αnφ1(CnSm) =
∑
n¬m

αn

(
φ1(Sn+m) + φ1(Sm−n)

)
+ αm+1φ(S2m+1)

+
∑

n­m+2

αn

(
φ1(Sn+m)− φ1(Sn−m−2)

)
=

∑
n¬m

αn(αn+m+1 + αm−n+1) + αm+1α2m+2

+
∑

n­m+2

αn(αn+m+1 − αn−m−1)

=
∑
n

αnαn+m+1 −
∑

n­m+2

αnαn−m−1 +
∑
n¬m

αnαm−n+1.

But the first two sums cancel as the summation in n starts at n = 1 (since α0 = 0),
and thus we remain with exactly the same as in

φ1 ⊗ φ1

(
∂Sm(x)

)
=

m−1∑
k=0

φ1(Sk)φ1(Sm−k−1) =
m−1∑
k=0

αk+1αm−k.

Now consider the second order. For this we have to show that

φ2

(
ξp(x), q(x)

)
= φ2

(
[φ1 ⊗ id + id⊗ φ1]

(
∂p(x)

)
, q(x)

)
+ φ1

(
p(x) ·Dq(x)

)
for all p and q. Again, by linearity, it is enough to show this for p = Cm and
q = Ck, for arbitrary m, k ­ 0. Thus we have to show

(2.4)
∑
n­0

αnφ2(CnCm, Ck)

= φ2

(
[φ1 ⊗ id + id⊗ φ1](∂Cm), Ck

)
+ φ1(CmkSk−1).

We have (note that we set S−2 = −1 and S−1 = 0)

∂Cm = ∂(Sm − Sm−2)

=
m−1∑
l=0

Sl ⊗ Sm−l−1 −
m−3∑
l=0

Sl ⊗ Sm−2−l−1

=
m−1∑
l=0

Sl ⊗ C̃m−l−1,

where C̃r = Cr for r ­ 1 and C̃0 = 1 = S0. Thus we have

φ1 ⊗ id(∂Cm) =
m−1∑
l=0

φ1(Sl)C̃m−l−1 =
m−1∑
l=0

αl+1C̃m−l−1.
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Hence

(2.5) φ2

(
[φ1 ⊗ id + id⊗ φ1](∂Cm), Ck

)
= 2

m−1∑
l=0

αl+1φ2(C̃m−l−1, Ck) =

{
2αm−kk, k ¬ m,

0, k > m.

Next, using the formula (1.1) for CmSk−1 we have

φ1(CmkSk−1) =


αm+k + αk−m, m ¬ k − 1,

αm+k, m = k,

αm+k − αm−k, m > k.

If we add this to the right-hand side of (2.5) we see that the right-hand side of (2.4)
is k(αm+k + α|m−k|). Finally, let us check the left-hand side of (2.4):

∑
n­0

αnφ2(CmCn, Ck) =
∑
n­1

αn{φ2(Cm+n, Ck) + φ2(C|m−n|, Ck)}

=

{
k(αm+k + αk−m), m < k,

k(αm+k + αm−k), m ­ k,

= k(αm+k + α|m−k|).

Thus both sides of (2.4) equal k(αm+k + α|m−k|) as claimed. �

3. QUANTUM MATRIX MODELS

Now we want to consider non-commutative (or “quantum”) analogues of our
classical random matrix models; i.e., we consider matrices where the entries are not
commutative random variables, but in general non-commutative ones. We want to
address the question about fluctuations in such a context.

The essential property of the classical ensemble (2.1) is the invariance under
unitary conjugation, i.e., the joint distribution of the entries of A = (aij)

N
i,j=1 does

not change if we go over to the conjugated matrix B := UAU∗ for any N ×N uni-
tary matrix U . We will now look on analogues of this for quantum N ×N matrices
A = (aij)

N
i,j=1 (where the entries aij come from some non-commutative probabil-

ity space (A, φ)), but where we ask not just for invariance under conjugation by
classical unitary matrices, but – in line with the idea that one should also replace
classical symmetries by corresponding quantum symmetries in a non-commutative
context – for the stronger corresponding invariance under the action of the quan-
tum unitary group U+

N . By [2], a big class of such invariant matrices are given by
the requirement that A is free from MN (C). Another characterization of this is
as follows: the matrix A is R-cyclic (in the sense of [10]) and the non-vanishing
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cumulants of its entries depend only on the length of the cumulant. A way to con-
struct such quantum random matrices is by compressing some random variable a
with free matrix units; compare Lecture 14 in [11].

Recall that a matrix A = (aij)
N
i,j=1 ∈ MN (A) is R-cyclic if for every n we

have κn(ai(1)j(1), . . . , ai(n)j(n)) = 0 unless j(1) = i(2), . . . , j(n) = i(1) (see [11],
Lecture 20). Suppose we have a family of matrices {A1, . . . , As}, where we write
Ak = (a

(k)
ij )Ni,j=1. The family is R-cyclic if for every n and for every r(1), . . . , r(n)

we have κn(a
(r(1))
i(1)j(1), . . . , a

(r(n))
i(n)j(n)) = 0 unless j(1) = i(2), . . . , j(n) = i(1). In

[10], Theorem 4.3, it was shown that matrices from the algebra generated by an
R-cyclic family are themselves R-cyclic (see also [11], Exercise 20.23).

So let us in the following fix a selfadjoint random variable a and denote by
κn := κn(a, . . . , a) the free cumulants of a. Then, for each N ∈ N, we define a
quantum random matrix A = (aij)

N
i,j=1 by prescribing the free cumulants of the

entries as follows: the cyclic cumulants of the matrix entries are given by

(3.1) κn(ai(1)i(2), . . . , ai(n)i(1)) =
1

Nn−1κn(a, . . . , a),

all other cumulants being zero.
We are interested in calculating, for N →∞, cumulants of traces of powers

of A. Fix n ­ 1 and k(1), . . . , k(n) ­ 1. Let k = k(1) + . . .+ k(n). We have

(3.2) κn
(
Tr(Ak(1)), . . . ,Tr(Ak(n))

)
=

N∑
i(1),...,i(k)=1

κn(ai(1)i(2) . . . ai(k1)i(1), ai(k1+1)i(k1+2) . . . ai(k1+k2)i(k1+1), . . . ,

ai(k1+...+kn−1+1)i(k1+...+kn−1+2) . . . ai(k1+...+kn)i(k1+...+kn−1+1)).

Now since A is R-cyclic, the family {Ak(1), . . . , Ak(n)} is an R-cyclic family;
so we know that only cyclic cumulants in these powers are different from zero.
This means that in the sum above only terms with i(1) = i(k1 + 1) = . . . =
i(k1 + . . .+ kn−1 + 1) can be different from zero.

Next we use the formula for cumulants with products as entries (see [11],
Lecture 11) and write

κn(ai(1)i(2) . . . ai(k1)i(1), ai(k1+1)i(k1+2) . . . ai(k1+k2)i(k1+1), . . . ,

ai(k1+...+kn−1+1)i(k1+...+kn−1+2) . . . ai(k1+...+kn)i(k1+...+kn−1+1))

as
∑
π

κπ(ai(1)i(2), . . . , ai(k1)i(1), . . . ,

ai(k1+...+kn−1+1)i(k1+...+kn−1+2), . . . , ai(k1+...+kn)i(k1+...+kn−1+1)),
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where the sum runs over all π ∈ NC
(
k(1) + . . .+ k(n)

)
which have the property

that they connect the blocks of

τ =
{(
1, . . . , k(1)

)
, . . . ,

(
k(1) + . . .+ k(n− 1) + 1, . . . , k(1) + . . .+ k(n)

)}
.

In the language of [11], Definition 9.15, this means that π ∨ τ = 1k.
For such a π to make a non-zero contribution some relations on the indices

must be satisfied. Let us work out what this means. Recall that there is an em-
bedding of NC(k) into Sk the symmetric group on [k]; namely, put the elements
of the blocks of π ∈ NC(k) in increasing order and regard them as the cycles of
permutation (see, e.g., [11], Remark 23.24).

Suppose (j1, . . . , jr) is a block of π; then the corresponding factor of κπ is

κr(ai(j1)i(j1+1), . . . , ai(jr)i(jr+1)).

In order for this cumulant to be different from zero we must have

i(j1 + 1) = i(j2), i(j2 + 1) = i(j3), . . . , i(jr + 1) = i(j1).

Let γ ∈ Sk be the permutation with the single cycle (1, . . . , k). Then our relation
on i can be expressed as

i(jk) = i(jk−1 + 1) = i
(
γ(jk−1)

)
= i

(
γ
(
π−1(jk)

))
or as i = i ◦ γπ−1. An important fact of the embedding of NC(k) into Sk is that
the Kreweras complement of π, K(π) = π−1γ. What we have here is the ‘other’
Kreweras complement γπ−1 which is the conjugation of K(π) by γ (see [11],
Exercise 9.23 (1)).

Thus in order for

(3.3) κπ(ai(1)i(2), . . . , ai(k1)i(1), . . . , ai(k1+...+kn−1+1)i(k1+...+kn−1+2), . . . ,

ai(k1+...+kn)i(k1+...+kn−1+1)) ̸= 0

we must have that i is constant on the cycles of γπ−1. This is true for any π ∈
NC(k). Let us now consider what happens when we add the condition π ∨ τ = 1k.
According to Lemma 14 in [9], π ∨ τ = 1k if and only if each point of the set
{k(1), k(1) + k(2), . . . , k(1) + . . . + k(n)} lies in a different block of K(π); af-
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Figure 1. In this example k(1) = 4, k(2) = 2, k(3) = 3, and k(4) = 4.
The partition π = {(1, 10, 13)(2, 4, 5, 9)(3)(6)(7, 8)(11, 12)}; the ‘other’

Kreweras complement of π is γπ−1 = {(1)(2, 10)(3, 4)(5)(6, 7, 9)(8)(11, 13)(12)}.
Note that since π ∨ τ = 113, each of the points of {1, 5, 7, 10} is in a separate block of γπ−1.

There are d = #(γπ−1) − n + 1 = 5 degrees of freedom in i(1), . . . , i(13), namely
i(1) = i(2) = i(5) = i(6) = i(7) = i(9) = i(10), i(3) = i(4), i(11) = i(13), i(8), and i(12);

i.e. we join the blocks of γπ−1 containing a bold number and the rest remain as they are.

ter conjugation by γ this condition becomes that each point of {1, k(1) + 1, . . . ,
k(1) + . . . + k(n − 1) + 1} is in a separate cycle of γπ−1. Now recall that we
had earlier observed that R-cyclicity forced us to have i(1) = i(k1 + 1) = . . . =
i(k1 + . . .+ kn−1 + 1) in order for the corresponding term of (3.2) to be different
from zero.

Let us summarize our calculation. In order for (3.3) to hold we require:
i is constant on the cycles of γπ−1; each point of {1, k(1) + 1, . . . , k(1) +
. . .+ k(n− 1) + 1} is in a separate cycle of γπ−1; and i is constant on the union
of the cycles of γπ−1 containing the points of {1, k(1) + 1, . . . , k(1) + . . . +
k(n − 1) + 1}. This leaves #(γπ−1) − n + 1 cycles on which we can arbitrar-
ily choose values of i (recall that #(γπ−1) denotes the number of cycles of γπ−1).
Thus the number of choices for i is Nd, where d = #(γπ−1) − n + 1. (See Fig-
ure 1.) So if we sum for a fixed such π over all free indices (each choice of them
will give the same contribution, because the cyclic cumulants of the aij do not de-
pend on the actual choice of the indices) then we get altogether for such a π the
contribution

Nd
∏
V ∈π

κ|V |

N |V |−1
= Nd+#(π)−|V1|−...−|V#(π)|

∏
V ∈π

κ|V |

= Nd+#(π)−kκπ(a, . . . , a)

= N−n+2κπ(a, . . . , a),
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where d+#(π)− k = #(γπ−1) +#(π)−n− k+1 = −n+2 because #(π) +
#(γπ−1) = k + 1 (see [11], Exercise 9.23).

But carrying out the sum over the π is now the same as calculating cumulants
of powers of a. So finally we get the simple result

(3.4) κn
(
Tr(Ak(1)), . . . ,Tr(Ak(n))

)
= N−n+2κn(a

k(1), . . . , ak(n)).

One should note that, compared to the case of classical random matrices, there are
no subleading orders. Thus the limit N →∞ does not produce any new feature and
contains essentially the same information as the random variable a, i.e., the case
N = 1. In this sense, these quantum random matrices are less interesting from the
point of view of fluctuations than their classical counterparts. Still, let us elaborate
a bit on what happens with respect to fluctuations.

First, it is clear from (3.4) that all cumulants of higher order than two go to
zero, and thus each centered trace of a power of A goes to a semicircular element.
The covariance between two such traces of powers is (actually for any N ) given by

κ2
(
Tr(Ap),Tr(Aq)

)
= κ2(a

p, aq).

Since those fluctuations depend on the distribution of a, we do not have universality
for the fluctuations in the quantum case.

Let us finally also check whether there is some kind of analogue of the Schwin-
ger–Dyson equations. We put

φ1

(
p(x)

)
:= lim

N→∞
κ1

(
Tr
(
p(A)

))
= κ1

(
p(a)

)
= φ

(
p(a)

)
and

φ2

(
p(x), q(x)

)
:= lim

N→∞
κ2

(
Tr
(
p(A)

)
,Tr

(
q(A)

))
= κ2

(
p(a), q(a)

)
.

Since φ1 captures just the information about the distribution of a, the first
order equation is nothing else but the definition of the conjugate variable ξ for a,
namely for this we just have the equation

φ1

(
ξp(x)

)
= φ

(
ξp(a)

)
= φ⊗ φ

(
∂p(a)

)
= φ1 ⊗ φ1

(
∂p(x)

)
.

For the second order we have

φ2

(
ξp(x), q(x)

)
= κ2

(
ξp(a), q(a)

)
,

which yields, by using again the formula for free cumulants with products as argu-
ments, the following kind of linear analogue of (2.3):

(3.5) φ2

(
ξp(x), q(x)

)
= φ2

(
φ⊗ id

(
∂p(x)

)
, q(x)

)
+ φ1 ⊗ φ1

(
p(x)⊗ 1 · ∂q(x)

)
.
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