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Abstract. We propose new data driven score rank tests for univariate
symmetry about an unknown center. We construct test statistics, state as-
sumptions and define estimators of nuisance parameters. We prove that the
test statistics are asymptotically distribution-free under the null hypothesis.
Using simulations, we verify these asymptotic results for finite samples and
show that, under the assumptions and when they are somewhat violated, the
size of the test is stable when changing the null distribution. We also com-
pare the empirical behaviour of the new tests with those proposed in the
literature. We show that for families of distributions commonly applied to
model asymmetry the new tests overcome their competitors on average and
for most individual alternatives.
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1. INTRODUCTION

The symmetry or asymmetry of the distribution of data about some center is
important for appropriate interpretation of observed phenomena, for correct iden-
tification of models and for the validity of some statistical procedures (see, e.g.,
Ekström and Jammalamadaka [6] or Fernandes et al. [8] for more discussion). If a
center of symmetry is known, many good tests have been constructed and investi-
gated. For an up-to-date overview of them the reader is referred to Inglot et al. [17].
However, the more realistic case of when the center of symmetry is unknown leads
to a far more difficult problem (cf. Lehmann and Romano [22]). Although it has
been investigated by many authors, it still has no satisfactory solution. The recent
constructions of Cabilio and Masaro [3], Mira [23], Holgerson [14], Zheng and
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Gastwirth [29], Ekström and Jammalamadaka [6] and [7], or Ghosh [12] do not
provide significant progress in comparison with the classical ones of Gupta [13],
Gastwirth [11], Doksum et al. [5], Randles et al. [25] or Bhattacharya et al. [1].
Many of them exploit some coefficients of skewness, the most simple one being
the difference between the sample mean and sample median. Even constructions
which are asymptotically distribution-free are not able to keep a stable significance
level for finite sample sizes. Also, robustness of an estimator of the median in a
diverse set of null distributions is hard to obtain.

In this paper we propose new asymptotically distribution-free tests combin-
ing the general method of effective score tests and the method of model selection.
Some attempt in this direction was made in Inglot et al. [18], where the good empir-
ical behaviour of such a construction was shown. In Section 2 we state the problem,
define a model, make assumptions and construct effective score statistics, as well
as establish their asymptotic distribution under the null hypothesis. In Section 3
we specify estimators of all the nuisance parameters and quantities appearing in
the test statistics for which the assumptions stated in Section 2 are fulfilled. In Sec-
tion 4 we report the results of a simulation study. We compare the empirical be-
haviour of the new tests mainly with the test of Cabilio and Masaro [3], which
seems to be one of the best solutions in the literature. To see how much loss in
power is caused by the estimation of the median, we also compare them with the
test of Modarres and Gastwirth [24] and with the data driven test of Inglot et al.
[17], both designed for the case of the known center of symmetry. Some conclu-
sions and an example of real data analysis are given in Section 5. All proofs are
postponed until Section 6.

2. DATA DRIVEN SCORE STATISTICS

Let X1, . . . , Xn be i.i.d. real random variables with an unknown median µ,
a continuous distribution function F (x− µ) and density f(x− µ), where F (0) =
1/2. We are going to test

H0 : F (x) = 1− F (−x), x ∈ R,

i.e., to test the symmetry of F about zero (or, equivalently, symmetry of the distri-
bution of Xi about µ).

Furthermore, denote byFs(x) =
1
2

(
F (x)+ 1−F (−x)

)
the distribution func-

tion of the symmetric part of F and by Fa = F − Fs the distribution function of
the antisymmetric part (signed measure) of F . Then H0 is equivalent to testing
whether F = Fs. Transform the shifted data X1 − µ, . . . ,Xn − µ into the unit in-
terval using Fs to obtain U1, . . . , Un with Ui = Fs(Xi − µ), i = 1, . . . , n. Since
F is absolutely continuous with respect to its symmetric part Fs, the transformed
data Ui have the distribution function

F ◦ F−1s (t) = t+ Fa ◦ F−1s (t) = t+A(t), t ∈ [0, 1],



Univariate symmetry tests 319

whereA = Fa ◦ F−1s is an absolutely continuous function, symmetric with respect
to t = 1/2. Equivalently, they have a density function on [0, 1] of the form

p(t) = 1 + a(t),

where a(t) is the antisymmetric, with respect to t = 1/2, derivative of A(t). So,
H0 is equivalent to testing whether a = 0. Observe that |a(t)| ¬ 1 a.s. and contains
all the information about the asymmetry of F .

Let d(n) be a nondecreasing sequence of natural numbers. Consider the nested
sequence {Gk; 1 6 k 6 d(n)} of exponential families given by the densities

(2.1) gk(x, ϑ, µ, fs) = ck(ϑ) exp
{ k∑

j=1

ϑjψj

(
Fs(x− µ)

)}
fs(x− µ),

where ψ1, ψ2, . . . denotes an orthonormal system of bounded functions on [0, 1],
antisymmetric with respect to 1/2, ϑ = (ϑ1, ϑ2, . . . , ϑk)

T ∈ Rk is a vector of pa-
rameters, yT stands for the transposition of the vector y, and ck(ϑ) is the normal-
izing constant.

Fix k between 1 and d(n) and assume that the density f belongs to Gk. Then
H0 reduces to the parametric hypothesis H ′0 : ϑ = 0 in the presence of nuisance
parameters µ and fs. In the sequel, we shall denote a null distribution by Pµfs .

Our basic assumptions are as follows:

(A1) fs is absolutely continuous with finite Fisher information

J = Jfs =
∫
R

(
f ′s(x)

)2
fs(x)

dx;

(A2) f ′s/fs is linearly independent of ψ1

(
Fs(·)

)
, ψ2

(
Fs(·)

)
, . . .

Under the above assumptions we have the following proposition.

PROPOSITION 2.1. For every 1 6 k 6 d(n), under (A1) and (A2), the den-
sities gk are differentiable in quadratic mean at ϑ = 0 for any µ and any fs with
respect to three parameters of the model Gk, and the effective score vector has the
form

(2.2) ℓ∗(x) = Ψ
(
Fs(x− µ)

)
+
v

J

f ′s
fs

(x− µ) a.e.,

where v = −
∫
RΨ

(
Fs(x)

)
f ′s(x)dx is a column matrix depending only on fs and

Ψ(t) =
(
ψ1(t), . . . , ψk(t)

)T .

Note that v consists of the Fourier coefficients of −f ′s/fs with respect to
Ψ ◦ Fs under P0fs . Proposition 2.1 can be proved by a standard argument (see
Inglot and Janic [16]), so here we omit its proof. Some remarks are also given in
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Section 6 below. A typical example of the system ψ1, ψ2, . . ., which we shall ap-
ply below, is the sequence b1, b3, . . . of the odd Legendre polynomials on the unit
interval (cf. Sansone [26]).

By the orthonormality of Ψ, the covariance matrix of ℓ∗ under Pµfs takes the
form I∗ = Ik − J−1vvT , where Ik denotes the unit (k × k) matrix.

In consequence, the effective score statistic for testing H ′0 is given by the for-
mula

(2.3) Wk =

(
1√
n

n∑
i=1

ℓ∗(Xi)

)T

I−1∗

(
1√
n

n∑
i=1

ℓ∗(Xi)

)
.

Obviously, due to the classical multivariate central limit theorem the statistic Wk

converges in distribution, under H0, to the chi-square distribution with k degrees
of freedom. Note that I−1∗ = Ik + v(J − vT v)−1vT . By (A2) and the Bessel in-
equality, J − vT v is positive and nonincreasing in k.

The statistic Wk given in (2.3) depends on unknown nuisance parameters. To
apply it to testing H0, we have to estimate the parameters µ, Fs, f

′
s/fs, v and J

appearing in it. We make natural assumptions on the estimators of these quantities.

(A3) Let µ̂ be a
√
n-consistent estimator of µ (under Pµfs), i.e., such that for

every ε > 0 and each fs there exists a positive constant M satisfying the
condition Pµfs(

√
n|µ̂− µ| >M) < ε for sufficiently large n.

Let Z = (X1 − µ, . . . ,Xn − µ, µ−X1, . . . , µ−Xn) denote the pooled sam-
ple. Then the empirical distribution function Fns of Z is an estimator of Fs.

(A4) Let f ′s/fs be an estimator of f ′s/fs based on Z, which is an odd function
and satisfies∫

R

(
f ′s
fs

(x)− f ′s
fs

(x)

)2

fs(x) dx
Pµfs−→ 0 as n→∞.

(A5) Let v and J be consistent (under Pµfs) estimators of v and J , respectively,
based on Z.

Let µ̂d be a discretization of µ̂ (see, e.g., Bickel et al. [2], p. 44). Since µ is
unknown, the estimators Fns, f ′s/fs, v and J introduced above cannot be applied
directly. So, denote by Ẑ = (X1 − µ̂d, . . . , Xn − µ̂d, µ̂d −X1, . . . , µ̂d −Xn) the
estimated pooled sample Z. Then we may apply the empirical distribution function
F̂ns of Ẑ as an estimator of Fs. Next, let us put

N1 = {1, . . . , ⌊n/2⌋, n+ 1, . . . , ⌊(3n)/2⌋} and N2 = {1, . . . , 2n} \ N1.

If f ′s/fs is an estimator of f ′s/fs satisfying (A4), then consider the two estimators
of this score function obtained when replacing Z by one of the two parts of Ẑ and
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denoted by (
f̂ ′s
fs

)
j

when based on {Ẑi; i ∈ Nj}, j = 1, 2.

Then we get two estimators of ℓ∗ of the form

(2.4) ℓ̂∗j = Ψ
(
F̂ns(· − µ̂d)

)
+
v̂

Ĵ

(
f̂ ′s
fs

)
j

(· − µ̂d), j = 1, 2,

where v̂, Ĵ are based on Ẑ and satisfy (A5) when replacing Ẑ by Z.
Now, set

(2.5) Î−1∗ = Ik + v̂(Ĵ − v̂T v̂)−1v̂T ,

which is an estimator of I−1∗ ,

(2.6) ℓ̂∗ =
1√
n

( ⌊n/2⌋∑
i=1

ℓ̂∗2(Xi) +
n∑

i=⌊n/2⌋+1

ℓ̂∗1(Xi)
)

and the corresponding estimated score statistic

(2.7) Ŵk = ℓ̂∗
T
Î−1∗ ℓ̂∗

for testingH ′0 in the family Gk. We take the specific form (2.6) of the estimator of ℓ∗

in order to prove (2.10), which guarantees that Ŵk is asymptotically distribution-
free (cf. Theorem 2.1 below).

It is well known that the choice of k is crucial to the behaviour of a test based
on a score statistic. So, to adapt this choice to the data we apply a Schwarz type
selection rule (cf. Schwarz [28] or, e.g., Inglot et al. [17])

(2.8) S = min{1 6 k 6 d(n) : Ŵk − k log n = max
16j6d(n)

(Ŵj − j log n)}.

As an alternative to S, we take the less conservative selection rule L, which
was introduced in Inglot and Janic [15] and applied to testing symmetry in Inglot et
al. [17]. We recall its definition adapted to our present need. Let 1 6 D < d(n) be
a fixed number not depending on n, and let δn be a small positive number. Define
the thresholds cjn, j = 1, . . . , D, to be the solutions of the equations

1− Φ(cjn) =
1

2

(
δnD

−1
(
d(n)
j

)−1)1/j

,

where Φ denotes the standard normal distribution function. Next, consider the stan-
dardized vector L = (Î−1∗ )1/2ℓ̂∗ for k = d(n), with Î−1∗ and ℓ̂∗ defined in (2.5) and
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(2.6), and order the squares of its components from the smallest to the largest, ob-
taining L2(1), . . . ,L

2
(d(n)), and consider the event

En = {L2(d(n)) > c21n} ∪ . . . ∪ {L2(d(n)−D+1) > c2Dn}.

Then define the data dependent penalty

π(j, n) = j log n · 1Ec
n
+ 2j · 1En ,

where 1En denotes the indicator of the set En, and Ec
n denotes the complement of

En, and define the corresponding selection rule L:

(2.9) L = min
{
1 ¬ k ¬ d(n) : Ŵk − π(k, n) = max

16j6d(n)

(
Ŵj − π(j, n)

)}
.

Taking into account all the above considerations, we can apply ŴS and ŴL =

ŴL(D, δn) as statistics of upper-tailed data driven tests for testing H0.
The asymptotic behaviour of ŴS and ŴL is a consequence of the following

basic proposition proved in Section 6.

PROPOSITION 2.2. Under (A1), (A2) and for any estimators of µ, f ′s/fs, v
and J such that (A3)–(A5) are fulfilled we have

(2.10) ℓ̂∗ −
1√
n

n∑
i=1

ℓ∗(Xi)
Pµfs−→ 0 as n→∞,

where ℓ̂∗ is defined by (2.4) and (2.6), while ℓ∗ is given in (2.2).

Observe that the consistency of the estimators v̂ and Ĵ has already been shown

in the proof of Proposition 2.2. Hence, Î−1∗ , given in (2.5), is a consistent estima-
tor of I−1∗ . Now, the properties of weak convergence and (2.10) imply the main
asymptotic result for Ŵk.

THEOREM 2.1. Under H0 and (A1)–(A5) the following holds:

Ŵk
D→ χ2

k,

where Ŵk is defined in (2.7) and χ2
k denotes a random variable from the chi-square

distribution with k degrees of freedom.

COROLLARY 2.1. Suppose d(n) is a bounded sequence and (A1)–(A5) are
fulfilled. Then under H0 it follows that

(2.11) Pµfs(S = 1)→ 1 and ŴS
D→ χ2

1 as n→∞.

If, in addition, δn → 0 is such that log(1/δn) = o(n), then

(2.12) Pµfs(L = S)→ 1 and ŴL
D→ χ2

1 as n→∞.
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P r o o f. For (2.11) it is enough to see that for k > 1 we have Pµfs(S = k) 6
Pµfs(Ŵk > log n), which tends to zero by Theorem 2.1. Using an analogous ar-
gument to that in the proof of Theorem 3.1 in Inglot et al. [17] and boundedness
of d(n) we see that c2Dn →∞ and Pµfs(En) 6 2d(n)Pµfs(Ŵd(n) > c2Dn), which,
again by Theorem 2.1, tends to zero. Hence Pµfs(L = S) → 1 and (2.12) fol-
lows. �

Corollary 2.1 states that the data driven tests of H0 based on ŴS and ŴL

are asymptotically distribution-free. Since the convergence in (2.11) and (2.12)
is rather slow, we shall use simulated critical values. As we show empirically in
Section 4 they behave quite stably for moderate sample sizes when null densities
fs change as long as (A1) is fulfilled. For further discussion of this question see
Subsection 4.1.

3. TESTS SPECIFICATION

In this section we specify all estimators needed to calculate the data driven test
statistics ŴS and ŴL and to get our new tests of symmetry which we shall study
empirically and which we recommend as good solutions for testing symmetry.

As an orthonormal system we take a sequence b1, b3, . . . of the odd Legendre
polynomials. Since for typical null distributions b1 ◦ Fs is strongly correlated with
f ′s/fs, resulting in large value of v1 and negligibility of the first component of ℓ∗,
we omit b1 and set Ψ = b = (b3, . . . , b2k+1)

T in (2.4).
The usual estimator of the median is the sample median. However, it has a

large variance if fs(0) is close to zero (e.g., when fs is bimodal). To overcome this
problem, choose q ∈ (0, 1/2] and consider the estimator

(3.1) µ̂ = (X(⌊nq⌋) +X(n−⌊nq⌋+1))/2,

where X(i) denotes the i-th order statistic of the original sample X1, . . . , Xn. It is
easy to check that, under H0, this estimator is unbiased. If we restrict our attention
to null distributions Fs satisfying

(E1) fs
(
F−1s (q)

)
> 0

then, by classical asymptotic results on L-statistics, µ̂ is asymptotically normal,
and therefore (A3) is fulfilled.

To estimate f ′s/fs we use kernel estimators. To this end let K be a kernel
satisfying

(E2) K is a symmetric probability density uniformly bounded by C, twice dif-
ferentiable with |K ′| 6 CK, |K ′′| 6 CK.

Additionally assume

(E3) γn, hn are sequences of positive numbers such that γn → 0, hn → 0 and
nγ2nh

6
n →∞.
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Consider a random bandwidth hn based on Z and satisfying

(E4)
√
n

(
hn
hn
− 1

)
= OPµfs

(1).

Now, define nonparametric kernel estimators

(3.2) fs(x) = γn +
1

2nhn

2n∑
i=1

K

(
x− Zi

hn

)
, f ′s(x) =

d

dx

(
fs(x)

)
and, in consequence,

(3.3)
f ′s
fs

(x) =
f ′s(x)

fs(x)
.

Then we have the following proposition.

PROPOSITION 3.1. Under H0 and (E2)–(E4) the estimator f ′s/fs given in
(3.3) satisfies (A4).

Replacing in (3.2) and (3.3) Z by two parts of Ẑ we get estimators (f̂ ′s/fs)j ,
j = 1, 2, used in (2.4).

Plugging estimators of unknown quantities, based on Z, into the formula
defining the column matrix v defined in (2.2) we obtain

ṽ = −
∫
R
b
(
Fns(x)

)
f ′s(x)dx

with f ′s as in (3.2). Since

ṽ =
2n−1∑
i=1

b

(
i

2n

)(
fs(Z(i))− fs(Z(i+1))

)
+ b(1)

(
fs(Z(1)) + fs(Z(2n))

)
,

omitting the last summand we get an estimator of v, we shall apply in the sequel,
of the form

(3.4) v =
2n−1∑
i=1

b

(
i

2n

)(
fs(Z(i))− fs(Z(i+1))

)
.

The following proposition holds.

PROPOSITION 3.2. UnderH0 and (E2)–(E4), v is a consistent estimator of v.

Finally, we estimate the Fisher information J by a natural moment estimator

(3.5) J =
1

2n

2n∑
i=1

(
f ′s
fs

)2

(Zi) =
1

n

n∑
i=1

(
f ′s
fs

)2

(Xi − µ).

PROPOSITION 3.3. UnderH0 and (E2)–(E4), J is a consistent estimator of J .

Proofs of Propositions 3.1, 3.2 and 3.3 are given in Section 6.
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4. SIMULATION STUDY

In this section we present results of a simulation study for data driven tests
based on ŴS and ŴL. We discuss critical values and empirical powers of these
tests. We restrict our attention to the sample size n = 100, d(n) = 10 and addition-
ally, for the second test, to D = 3 and δn = 0.05. For notational convenience, we
shall denote here the corresponding tests by WS and WL, respectively. In simula-
tions we took a typical significance level α = 0.05. Every Monte Carlo experiment
was repeated 10,000 times.

As an estimator of the median we took that given by (3.1) with q = 0.3. Such
a choice is a compromise between unimodal and bimodal null densities and was
adjusted empirically. For kernel estimators we took the standard Gaussian kernel
K = ϕ, γn = 0.0001n−1/24 and hn = 0.8min{0.8IQR, s}n−3/20. Formally, to
fulfil (E2) this kernel requires some modification which, however, does not influ-
ence the simulation results. So, we omit the precise description. We also neglected
splitting the sample into two parts as described in (2.4) and estimated f ′s/fs from
the whole pooled sample.

4.1. Critical values. It is well known that data driven score statistics slowly
converge to their asymptotic distribution. We expect a similar behaviour of WS
and WL. Therefore, we determine empirical critical values. We took five symmet-
ric distributions with finite Fisher information (with bounded support as well as
distributed over the whole real line) including four unimodal distributions and one
bimodal distribution. The results are shown in Table 1. By tn we have denoted t-
Student’s distribution with n degrees of freedom. For description of LC(ρ, θ) see
Subsection 4.2.

It can be seen that for unimodal smooth densities empirical critical values are
quite stable, which attests that WS and WL are distribution-free (under the as-
sumptions). However, when the density becomes less smooth (like Beta(3, 3)), the
corresponding critical value takes larger values. Moreover, for bimodal distribu-
tions (like LC(0.5, 0.75)) the estimator µ̂ has a large variance resulting in a much
larger critical value. Taking this into account we recommend for a practical use
an average of the five simulated critical values from Table 1 as the (fixed) critical
values equal to 6.239 and 7.661 for WS and WL, respectively. Such a choice en-
sures that empirical sizes of the tests will fluctuate reasonably around the nominal
level 0.05 when varying a null distribution, and for typical smooth, unimodal null
densities will be a little bit less than 0.05.

Table 1. Simulated critical values of WS and WL for different symmetric
distributions. α = 0.05, n = 100, d(100) = 10; 10,000 MC runs

Normal t3 Cauchy Beta(3,3) LC(0.5,0.75) Average
WS 5.520 5.071 5.702 6.328 8.572 6.239
WL 6.786 6.056 6.686 7.952 10.827 7.661
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To check what happens when the assumption (A1) is violated we simulated
empirical size of WS for the Beta(2, 2) distribution with the infinite Fisher in-
formation (note that Beta(ξ, ξ), ξ > 2, have already finite Fisher information) ob-
taining 0.063 and for the uniform distribution (a discontinuous density) obtaining
0.210. On the other hand, when (A1) is fulfilled but fs is bimodal with fs(0) close
to zero we simulated empirical size of WS for LC(0.5, 0.65) obtaining 0.089. Ad-
ditionally, when fs(0) is equal to zero we considered the mixture of the chi-square
distribution with six degrees of freedom with its reflection about zero and obtained
much larger value 0.14. It is worth noting that Cabilio and Masaro [3] test also has
troubles with keeping the nominal size when (A1) does not hold but for bimodal
distributions behaves crazy getting a “size” 0.75 for the above-described two-sided
chi-square distribution with six degrees of freedom. Note also that many popular
families of asymmetric distributions like the Tukey family (see the next subsection)
do not satisfy (A1). For example, Tukey distributions have finite Fisher informa-
tion when positive parameters λ3 and λ4 are less than 1 and at least one of them is
less than 1/2.

4.2. Power behaviour. To compare empirical powers of the new testsWS and
WL we select three tests as their competitors:

• the Cabilio and Masaro [3] test, based on the difference between sample
mean and sample median, denoted here by CM ;

• the Mira [23] test, based on Bonferroni measure of skewness, denoted here
by Mira;

• the Ekström and Jammalamadaka [6] test, based on sample spacings, de-
noted here by EJ .

To make our comparison more informative we also include two powerful tests
designed for the case of known center of symmetry: the hybrid test of Modarres
and Gastwirth [24], denoted here by MG, and the data driven test with a Schwarz
type selection rule, studied recently by Inglot et al. [17], and denoted here by NS.

We took two families of asymmetric distributions frequently appearing in
the literature. The first one is the Generalized Lambda Family, denoted here by
Lambda (cf., e.g., Cabilio and Masaro [3]), described by two shape parameters λ3
and λ4. As our test statistics are location and scale invariant we omit giving param-
eters λ1 (location) and λ2 (scale) for distributions from the Lambda family. The
second one is the Generalized Tukey-Lambda Family (see Freimer et al. [10]), de-
noted here by Tukey, described again by two shape parameters λ3 and λ4 (and with
λ1 = 0 and λ2 = 1). Besides the alternatives described above we took several oth-
ers which have been considered in Inglot et al. [17] or Józefczyk [21]. Below, we
describe them for convenience of the reader, dividing into three groups according
to a structure of asymmetry.

Let χ2
k(x) denote the density of the chi-square distribution with k degrees of

freedom, β(ξ,η)(x), ξ, η > 0, the density of the beta distribution, ϕ(x) the standard
normal density function, and U a random variable uniformly distributed over [0, 1].
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Additionally, define the density function en(x) by the formula

en(x) = c[ϕ(x+ 1)1(−∞,−1)(x) + ϕ(0)1[−1,1](x) + ϕ(x− 1)1(1,∞)(x)]

with c =
(
1 + 2ϕ(0)

)−1
. Moreover, ρ is a parameter belonging to [0, 1] while in

the two cases the letter m denotes the median of the underlying beta distribution.

• Alternatives with dominating asymmetry in the tails:

Notation Description of a random variable or a density
Lambda(λ3,λ4) X = sgn(λ3)[Uλ3 − (1− U)λ4 ], λ3 · λ4 > 0;
Tukey(λ3,λ4) X = (Uλ3 − 1)/λ3 −

(
(1− U)λ4 − 1

)
/λ4, λ3, λ4 > 0;

Ra(θ) f(x) = θ−2x exp{−x2/2θ2}, x > 0, θ > 0;
ChiSq(θ) f(x) = χ2

θ(x), x ∈ R, θ = 4, 5, . . .;
N-Fechner(θ) f(x) = ϕ

(
x/(1 + θ)

)
1(−∞,0](x) + ϕ

(
x/(1− θ)

)
1(0,∞)(x),

x ∈ R, θ ∈ (−1, 1);
EV(θ) f(x) = exp{(x− θ)− exp(x− θ)}, x ∈ R, θ ∈ R;
Beta(2, θ) f(x) = β(2,θ)(x), x ∈ [0, 1], θ > 1;
F(θ) f(x) = 0.5 + 2xθ−2(θ − |x|)1(|x|<θ), x ∈ [−1, 1], θ ∈ [0, 1].

• Alternatives with asymmetry in the tails and in the center:

Notation Density
LC(ρ, θ) f(x) = ρϕ(x− θ/ρ) + (1− ρ)ϕ

(
x+ θ/(1− ρ)

)
, x ∈ R, θ > 0;

NB3(ρ, θ) f(x) = ρϕ(x) + (1− ρ)β(3,3)(x+ θ), x ∈ R, θ ∈ [0, 1];
NC(ρ, θ) f(x) = ρϕ(x) + (1− ρ)

(
1/

[
π
(
1 + (x+ θ)2

)])
, x ∈ R, θ ∈ R;

Sin(θ, j) f(x) = 0.5 + θ sin(πjx), x ∈ [−1, 1], θ ∈ [−0.5, 0.5], j > 1;
BiBeta(θ) f(x) = 0.5

(
β(2,θ)(x− 1) + β(2,2)(x)

)
, x ∈ [0, 2], θ > 1;

BiChiSq(θ) f(x) = 0.5
(
χ2
θ(−x) + χ2

6(x)
)
, x ∈ R, θ = 2, 3, . . .

• Alternatives with asymmetry only in the center:

Notation Density
NB(ρ, θ) f(x) = ρϕ(x) + (1− ρ)β(2,θ)(x+m), x ∈ R, θ > 1;
ENB(ρ, θ) f(x) = ρ en(x) + (1− ρ)β(2,θ)

(
x+ 1

2

)
, x ∈ R, θ > 1;

MB(ρ, θ) f(x) = ρ
2β(2,3)(x− 1) + ρ

2β(3,2)(x) + (1− ρ)β(2,θ)(x+m− 1),
x ∈ [0, 2], θ > 1.

Note that the symmetric part of Beta(2, θ) has finite Fisher information for
θ > 2 while the symmetric parts of F(θ) and Sin(θ, j) are the uniform distribution
on [−1, 1] strongly violating (A1). Moreover, the alternatives Beta(2, θ), NB(ρ, θ),
MB(ρ, θ) and BiBeta(θ), 1 < θ 6 2, have continuous densities with infinite Fisher
information as Beta(2, 2) does (cf. the remark in the previous subsection concern-
ing Beta(2, 2)). As was said previously, Tukey(λ3,λ4) has finite Fisher information
if both positive parameters are less than 1 (continuous density) and at least one of
them is less than 1/2. A similar property takes place for Lambda(λ3,λ4) with pos-
itive parameters, but for negative parameters Fisher information is always finite.
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Finally, note that densities of BiBeta(θ) and BiChiSq(θ) take value zero at x = 0,
which in effect causes poor null behaviour of all tests under consideration.

Table 2. Comparison of powers and average powers (in %) of WS, WL, CM , Mira, EJ ,
NS and MG. α = 0.05, n = 100, d(100) = 10; 10,000 MC runs. The Lambda family

Type λ3 λ4 WS WL CM Mira EJ NS MG

7 1.4 0.25 91 92 57 46 50 100 100
8 0.00007 0.1 100 100 97 96 82 100 100
9 0.025213 0.094029 61 52 55 53 44 74 85

10 −0.0075 −0.03 83 76 77 77 60 89 96
11 −0.13 −0.16 7 6 8 8 11 9 10
12 −0.1 −0.18 32 24 38 39 31 39 49
13 −0.001 −0.13 100 100 100 100 89 100 100
14 −0.0001 −0.17 100 100 100 100 89 100 100

Average power 71.8 68.8 66.5 64.9 57.0 76.4 80.0

In Table 2 we present powers of the tests WS, WL, CM, Mira, EJ and
alsoNS andMG (for which data have been centered by the true median) for some
alternatives from the Lambda family as considered, e.g., in Cabilio and Masaro [3].
It can be observed that in almost all cases CM dominates Mira and EJ . So, in
the next tables we shall restrict ourselves only to comparison of the new tests with
CM and with NS and MG. It is also easily seen that WS behaves better than
CM for the considered cases from the Lambda family. On average, WS loses ca.
8% in power to actually the best test (when a true median is known) which is MG.
Moreover, the loss of WL with respect to WS is about 3%.

In Table 3 we show the powers of WS, WL, CM and also NS and MG for
the alternatives with dominating asymmetry in the tails which have been described
above.

Table 3. Comparison of empirical powers (in %) of WS, WL, CM , NS and MG.
α = 0.05, n = 100, d(100) = 10; 10,000 MC runs. Asymmetry in the tails

Distribution WS WL CM NS MG

Tukey(10,0.9) 42 38 19 49 67
Tukey(4,6.5) 65 57 64 70 80
Lambda(0.025213,0.094029) 61 52 55 74 85
Lambda(−0.1,−0.18) 32 24 38 39 49
Ra(2) 49 42 32 56 74
ChiSq(9) 65 58 52 75 89
N-Fechner(0.4) 42 33 34 54 68
EV(0.6) 66 57 56 72 69
Beta(2,1.2) 69 64 35 85 94
Average power 54.7 47.2 42.8 63.7 75.0
F(0.4) 92 88 80 82 66

As could be expected,MG detects the alternatives from Table 3 with very high
powers. Moreover, we can observe that WS and WL lose on average with respect
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to NS ca. 9% and 16%, respectively. The results for F(0.4), presented in the last
row, are not reliable since sizes of the new tests as well as CM for symmetric part
of this alternative are equal to 0.21 and 0.12, respectively, and are far from the
nominal level 0.05. However, if one transforms Xi’s onto the real line by taking
Yi = tg π

2Xi, then a character of asymmetry preserves (the function a remains
unchanged), powers of WS and WL become 63 and 68, respectively, while the
size decreases to the nominal 0.05. It corresponds well to powers of NS and MG
for this alternative and to the rest of Table 3.

The results for the alternatives from the second group are shown in Table 4.
For these alternatives the data driven tests provide superior power. WS and WL
lose on average with respect to NS ca. 11% and 14%, respectively. Contrary to
CM (cf. NC(0.4,3)), WS and WL do not have weak points. Moreover, note that
hereMG is distinctly worse than our new data driven tests although there is a need
of estimation of an unknown median.

Table 4. Comparison of empirical powers (in %) of WS, WL, CM , NS and MG.
α = 0.05, n = 100, d(100) = 10; 10,000 MC runs. Asymmetry in the tails and in the center

Distribution WS WL CM NS MG

LC(0.7,0.6) 70 62 66 81 69
NB3(0.8,0.25) 47 40 57 67 63
NC(0.4,3) 80 85 14 81 43
Average power 65.7 62.3 45.7 76.3 58.3
Sin(0.5,3) 59 71 3 100 56
Sin(0.5,8) 39 56 16 44 44
BiBeta(2) 10 10 75 5 4
BiChiSq(6) 9 9 72 5 4
BiBeta(8) 68 62 67 100 95
BiChiSq(2) 64 62 66 100 99

Results for the alternative Sin(θ, j), similarly to those for F(θ), seem to be
not reliable. A different case of bimodal distributions is presented in the last four
rows of Table 4. The last two rows show powers while the third and fourth from
below show sizes for the two considered alternatives. Here large “powers” of CM
correspond to even greater “sizes” of this test illustrating that CM is helpless in
distinguishing between null and alternative hypotheses when fs(0) is close to zero.
But both data driven tests behave quite reasonable, also in comparison with NS
and MG.

Table 5. Comparison of empirical powers (in %) of WS, WL, CM , NS and MG.
α = 0.05, n = 100, d(100) = 10; 10,000 MC runs. Asymmetry only in the center

Distribution WS WL CM NS MG

NB(0.15, 5) 28 34 11 27 14
ENB(0.4, 1.2) 28 27 24 66 23
MB(0.2, 6) 27 28 14 27 11
Average power 27.7 29.7 16.3 40.0 16.0
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Finally, in Table 5 we present the powers for the alternatives with asymmetry
only in the center. These alternatives are hard to detect for all tests but data driven
tests become the best ones. CM is much worse and sometimes breaks down (cf.
NB(0.15, 5)).

5. DISCUSSION, CONCLUSIONS AND EXAMPLE

For better insight into an ability of compared tests to detect various types of
alternatives we calculated an average power of compared tests for twelve alterna-
tives, six from Table 3 (from the third to eighth rows) and six from Tables 4 and
5, all satisfying the assumption (A1), and for which a value of the corresponding
null density at zero is far from zero. We have obtained 49.6% for WS, 45.2% for
WL, 37.8% for CM , 59.9% for NS, and 54.8% for MG. This together with Ta-
ble 2 illustrates thatWS andWL behave comparably well. A more difficult testing
problem, they have to face, leads to a quite reasonable loss (ca. 10–14%) in power
in comparison with the case when nothing has to be estimated (NS). Simultane-
ously, all test procedures taken into account, and especially CM , are significantly
worse, both on average and for most individual alternatives. Moreover, the new
data driven tests keep stable power in each case under the model and are relatively
robust when violating assumptions. The results presented in Section 4 suggest to
apply WS when we expect asymmetry on tails. In the cases when tails are rather
symmetric we recommend to apply WL.

To illustrate how new tests apply to an analysis of real data we used that from
Table II in Doksum [4] presenting survival times (in days) of 72 guinea pigs that
received a dose of tubercle bacilli. For these data the statistics ŴS and ŴL take
the same value 10.754. Empirical critical values, calculated in the same way as
described in Subsection 4.1, for the sample size n = 72 are equal to 6.821 and
8.897, respectively. Hence both tests reject the null hypothesis of symmetry. Since
the symmetric part of the density under consideration is unimodal and smooth (cf.
Fig. 5.1 in Ghosh [12], confirming such a claim), we simulated p-values using
the standard normal distribution, as a null distribution, obtaining 0.017 and 0.030,
respectively.

6. PROOFS

In this section we present proofs of all statements formulated in Sections 2
and 3.

Hints for the proof of Proposi t ion 2.1. A standard argument shows
that under (A1) and (A2) the score vector for the family Gk has the following
components:

ℓϑ = Ψ
(
fs(· − µ)

)
, ℓµ = −f

′
s

fs
(· − µ), ℓfs =

2√
fs(· − µ)

.
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The component ℓfs is the superposition of the translation by µ and the operator
of multiplication by 2/

√
fs on the domain of symmetric functions in L2(Pµfs) or-

thogonal to 1/
√
fs. The component ℓϑ is antisymmetric about µ, hence orthogonal

to the range of ℓfs consisting of symmetric functions about µ. Thus ℓ∗, which is
the residue of the orthogonal projection of ℓϑ onto the subspace spanned by the
remaining components, has the form (2.2).

P r o o f o f P r o p o s i t i o n 2.2. The proof goes similarly to that of Theo-
rem 1 in Inglot and Ledwina [19]. First we introduce an auxiliary notation. Con-
sider a set

Υ = {(νn) : νn = µ+ tn/
√
n, (tn) bounded}

of deterministic sequences corresponding to realizations of discretized estimator
µ̂d of µ. For (νn) ∈ Υ put Zνn = (X1− νn, . . . , Xn− νn, νn−X1, . . . , νn−Xn)
and denote by Fνnns the empirical distribution function of Zνn . In particular,
Z = Zµ, i.e., it corresponds to a constant sequence νn = µ. Moreover, denote by
v̂νn , Ĵνn and (f̂ ′s/fs)νnj , j = 1, 2, the estimators applied in (2.4) but based on Zνn

instead of on Ẑ, and denote by ℓ̂∗νnj , j = 1, 2, the estimators of ℓ∗ given by (2.4)
but based again on two parts of Zνn . Finally, let us put

ℓ∗νn = Ψ
(
Fs(· − νn)

)
+
v

J

f ′s
fs

(· − νn) a.e.,

in which nothing is estimated and only the true median µ is replaced by an arbitrary
(νn) ∈ Υ.

Observe that

(6.1) ℓ̂∗ −
1√
n

n∑
i=1

ℓ∗(Xi)

=
1√
n

⌊n/2⌋∑
i=1

(
ℓ̂∗2(Xi)− ℓ∗(Xi)

)
+

1√
n

n∑
i=⌊n/2⌋+1

(
ℓ̂∗1(Xi)− ℓ∗(Xi)

)
.

By an exchangeability argument it is enough to show that one, say the first, term
on the right-hand side of (6.1) converges to zero in probability. Arguing as in The-
orem 2, p. 44, in Bickel et al. [2] it is enough to do this replacing ℓ̂∗2 by ℓ̂∗νn2
with arbitrary (νn) ∈ Υ. To this end take any (νn) ∈ Υ and consider the following
decomposition:

1√
n

⌊n/2⌋∑
i=1

(
ℓ̂∗νn2(Xi)− ℓ∗(Xi)

)
=

1√
n

⌊n/2⌋∑
i=1

(
ℓ∗νn(Xi)− ℓ∗(Xi)

)
+

1√
n

⌊n/2⌋∑
i=1

(
ℓ̂∗νn2(Xi)− ℓ∗νn(Xi)

)
= R1 +R2.
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The convergence ofR1 in probability Pµfs to zero follows immediately from The-
orem 2.3 of Schick [27] by setting f ′s/fs(· − µ) as his κµ and ℓ∗(· − µ) as his hµ.
Here we use the orthogonality relation∫

ℓ∗(x− µ)
f ′s
fs

(x− µ)fs(x− µ)dx = 0

for f ′s/fs and ℓ∗, which is an obvious consequence of the definition of the efficient
score vector ℓ∗. Since the sequences (Pn

µfs
) and (Pn

νnfs
) of distributions are mutu-

ally contiguous, it is enough to prove that R2 converges to zero under Pνnfs . But
then we can remove in all places an unnecessary deterministic shift tn/

√
n and get

the equivalent condition

(6.2)
1√
n

⌊n/2⌋∑
i=1

(
ℓ̂∗µ2(Xi)− ℓ∗(Xi)

) Pµfs−→ 0.

Now, by (2.2) and (2.4) the left-hand side of (6.2) can be written as

1√
n

⌊n/2⌋∑
i=1

[
Ψ
(
Fns(Xi−µ)

)
−Ψ

(
Fs(Xi−µ)

)]
+

[
v

J
− v

J

]
1√
n

⌊n/2⌋∑
i=1

f ′s
fs

(Xi − µ)

+
v

J

(
1√
n

⌊n/2⌋∑
i=1

[(
f ′s
fs

)
2

(Xi − µ)−
f ′s
fs

(Xi − µ)
])

= R3 +R4 +R5.

We apply Proposition A.2 of Inglot et al. [17] toR3 after observing thatR3 equals(
1/
√
2 + o(1)

)
(Φ̂ − Φ̂0) in the notation of that paper. So, this term tends to zero

in probability. The remainder term R4 tends to zero due to (A5) and boundedness
in L2(Pµfs) of the second factor. The first factor in R5 is bounded in probability
again by (A5). The conditional expectation (under Pµfs), with respect to the second
part of Z, of the second factor in R5 equals zero since by (A4) both f ′s/fs and its
estimator are odd functions. In effect, the conditional variance (under Pµfs), with
respect to the second part of Z, of the second factor inR5 is equal to

(
1/2 + o(1)

) ∫
R

(
f ′s
fs

(x)− f ′s(x)

fs(x)

)2

fs(x) dx,

which tends to zero in probability by (A4). This completes the proof. �

P r o o f o f P r o p o s i t i o n 3.1. The proof goes similarly to that of Lem-
ma A.2 in Inglot and Ledwina [20]. By symmetry of the kernel K and symmetry
of Z it follows that fs is an even function, which by (3.3) implies that f ′s/fs is
an odd function. To prove the second condition in (A4) introduce auxiliary kernel
estimators

f̃s(x) = γn +
1

2nhn

2n∑
i=1

K

(
x− Zi

hn

)
, f̃ ′s(x) =

1

2nh2n

2n∑
i=1

K ′
(
x− Zi

hn

)
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and f̃ ′s/fs = f̃ ′s/f̃s, where γn and hn are as in (E3). From Section 8 of Forrester et
al. [9] and (E3) it follows that

(6.3)
∫
R

(
f̃ ′s
fs

(x)− f ′s(x)

fs(x)

)2

fs(x) dx
Pµfs−→ 0 as n→∞.

Observe that hn|f ′s(x)| 6 Cfs(x) due to (E2) and f̃s(x) > γn. Hence, by (3.3),

(6.4)

∣∣∣∣∣f ′sfs − f̃ ′s
fs

∣∣∣∣∣ 6
∣∣∣∣f ′sfs

∣∣∣∣ |fs − f̃s|
f̃s

+
|f ′s − f̃ ′s|

f̃s
6 C
|fs − f̃s|
γnhn

+
|f ′s − f̃ ′s|
γn

.

From (E2) and (E4) for some ξi’s between hn and hn we have

(6.5) fs(x)− f̃s(x) =
hn − hn
2nhnhn

2n∑
i=1

K

(
x− Zi

hn

)
+

1

2nhn

2n∑
i=1

K ′
(
x− Zi

ξi

)
x− Zi

ξi

ξi(hn − hn)
hnhn

= OPµfs

(
1

hn
√
n

)
uniformly in x. Similarly we obtain

(6.6) |f ′s(x)− f̃ ′s(x)| = OPµfs

(
1

h2n
√
n

)
uniformly in x. Now, (6.4)–(6.6) imply

∫
R

(
f ′s
fs

(x)− f̃ ′s
fs

(x)

)2

fs(x) dx = OPµfs

(
1

nγ2nh
4
n

)
.

By (E3) and (6.3) the condition in (A4) follows. �

P r o o f o f P r o p o s i t i o n 3.2. First observe that fs(Z(1)) + fs(Z(2n))
→ 0 in probability. Hence, by the definition of v it is enough to prove consistency
of ṽ. To this end write

(6.7)
v − ṽ =

∫
R

[
b
(
Fns(x)

)
− b

(
Fs(x)

)]
f ′s(x)dx+

∫
R
b
(
Fs(x)

)
[f ′s(x)− f ′s(x)]dx.

Since b is a vector of Lipschitz functions, the Euclidean norm of the first integral
in (6.7) can be estimated by

C

hn
|b′(1)|k sup

x∈R
|Fns(x)− Fs(x)|,



334 T. Inglot and A. Janic

where |y|k = (y21 + . . . + y2k)
1/2 is the Euclidean norm of the vector y, which

clearly goes to zero in probability by (E3) and (E4). Calculating the second integral
in (6.7) by parts we see that it can be replaced by

(6.8) −
∫
R
b′
(
Fs(x)

)
[fs(x)− fs(x)]fs(x)dx

= −
∫
R
b′
(
Fs(x)

)
[fs(x)− f̃s(x)]fs(x)dx−

∫
R
b′
(
Fs(x)

)
[f̃s(x)− fs(x)]fs(x)dx

= R6 +R7.

Recall that b′ is a vector of bounded functions. Thus, R6 goes to zero in proba-
bility by (6.5) and (E3). By the Schwarz inequality, (R7)

2 can be estimated by
|b′(1)|2k

∫
R[f̃s(x) − fs(x)]

2fs(x)dx which by (E3) tends to zero in probability.
This proves the consistency of ṽ. �

P r o o f o f P r o p o s i t i o n 3.3. From (6.4)–(6.6) we get∣∣∣∣(f ′sfs
)2

−
(
f̃ ′s
fs

)2∣∣∣∣ = ∣∣∣∣f ′sfs +
f̃ ′s
fs

∣∣∣∣ ∣∣∣∣f ′sfs − f̃ ′s
fs

∣∣∣∣ = OPµfs

(
1√

nγnh3n

)
uniformly in x, which by (E3) tends to zero in probability. Since by the law of large
numbers we have

1

2n

2n∑
i=1

(
f ′s
fs

)2

(Zi)
Pµfs−→ J,

to prove the consistency of J , it is enough to check

(6.9)
1

2n

2n∑
i=1

[(
f̃ ′s
fs

)2

(Zi)−
(
f ′s
fs

)2

(Zi)

]
Pµfs−→ 0.

The summands in (6.9) have the same distribution. Therefore, (6.9) will follow if
we show that

E

∣∣∣∣( f̃ ′sfs
)2

(Z1)−
(
f ′s
fs

)2

(Z1)

∣∣∣∣→ 0.

Since E(f ′s/fs)
2(Z1) = J does not depend on n, a routine argument shows that it

is enough to prove

E

(
f̃ ′s
fs

(Z1)−
f ′s
fs

(Z1)

)2

→ 0.

Taking the conditional expectation with respect to Z1, we see that the last condition
reduces to

(6.10) E

( ∫
R

(
f̃ ′s(x) + (2nh2n)

−1L1(x)

f̃s(x) + (2nhn)−1L(x)
− f ′s(x)

fs(x)

)2

fs(x) dx

)
→ 0,
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where L1(x) = K ′(0) +K ′
(
(2x)/hn

)
−K ′

(
(x− Z1)/hn

)
−K ′

(
(x+ Z1)/hn

)
and L(x) = K(0) + K

(
(2x)/hn

)
− K

(
(x − Z1)/hn

)
− K

(
(x + Z1)/hn

)
are

random variables which are bounded, uniformly in x, by 4C2. Consequently, due
to (E3), (6.10) follows from (6.3), and the proof is complete. �
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