PROBABILITY AND MATHEMATICAL STATISTICS Vol. 35, Fasc. 2 (2015), pp. 223–245 ## GEOMETRIC STABLE AND SEMISTABLE DISTRIBUTIONS ON \mathbf{Z}^d_+ ## Nadjib Bouzar Abstract: The aim of this article is to study geometric \mathcal{F} -semistable and geometric \mathcal{F} -stable distributions on the d-dimensional lattice \mathbf{Z}_+^d . We obtain several properties for these distributions, including characterizations in terms of their probability generating functions. We describe a relation between geometric \mathcal{F} -semistability and geometric \mathcal{F} -stability and their counterparts on \mathbf{R}_+^d and, as a consequence, we derive some mixture representations and construct some examples. We establish limit theorems and discuss the related concepts of complete and partial geometric attraction for distributions on \mathbf{Z}_+^d . As an application, we derive the marginal distribution of the innovation sequence of a \mathbf{Z}_+^d -valued stationary autoregressive process of order p with a geometric \mathcal{F} -stable marginal distribution. **2000 AMS Mathematics Subject Classification:** Primary: 60E07; Secondary: 62E10. **Keywords and phrases:** Semigroup, geometric infinite divisibility, branching processes, mixture representation, domain of geometric attraction. THE FULL TEXT IS AVAILABLE HERE