PROBABILITY
AND
MATHEMATICAL STATISTICS
Vol. 35, Fasc. 2 (2015), pp. 223–245

GEOMETRIC STABLE AND SEMISTABLE DISTRIBUTIONS ON \mathbf{Z}^d_+

Nadjib Bouzar

Abstract: The aim of this article is to study geometric \mathcal{F} -semistable and geometric \mathcal{F} -stable distributions on the d-dimensional lattice \mathbf{Z}_+^d . We obtain several properties for these distributions, including characterizations in terms of their probability generating functions. We describe a relation between geometric \mathcal{F} -semistability and geometric \mathcal{F} -stability and their counterparts on \mathbf{R}_+^d and, as a consequence, we derive some mixture representations and construct some examples. We establish limit theorems and discuss the related concepts of complete and partial geometric attraction for distributions on \mathbf{Z}_+^d . As an application, we derive the marginal distribution of the innovation sequence of a \mathbf{Z}_+^d -valued stationary autoregressive process of order p with a geometric \mathcal{F} -stable marginal distribution.

2000 AMS Mathematics Subject Classification: Primary: 60E07; Secondary: 62E10.

Keywords and phrases: Semigroup, geometric infinite divisibility, branching processes, mixture representation, domain of geometric attraction.

THE FULL TEXT IS AVAILABLE HERE