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Abstract. In this paper, Lukacs type characterization of Marchenko—
Pastur distribution in free probability is studied. We prove that for
free X and Y, if conditional moments of order 1 and —1 of
(X+Y)"V2X(X + Y)_1/2 given X + Y are constant, then X and Y fol-
low the Marchenko—Pastur distribution.
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1. INTRODUCTION

Since the publication of the paper [[3] free probability theory has been devel-
oped in many various directions. It turns out that many classical results for indepen-
dent random variables such as, for example, the Central Limit Theorem have their
free analogues. One of the deepest relations between classical and free probability
is constituted by so-called Bercovici—Pata bijections which give bijection between
infinitely divisible distributions with respect to free and classical convolution.

In this paper we are interested in characterization problems in free probabil-
ity. This seems to be another field which gives some interesting connections be-
tween classical and free probability. Our result is a new example of known, but not
completely well understood phenomena of analogies between characterizations in
classical and free probability. A basic example of such analogy is Bernstein’s theo-
rem which characterizes the Gaussian distribution by independence of X + Y and
X — Y for independent X and Y. In [[Z] it is proved that a similar result holds for
the Wigner semicircle law when independence is replaced by freeness assumption.

The main result of this paper is closely related to the Lukacs theorem which
provides a characterization of the gamma distribution by independence of V =
X+Yand U= X/(X +Y) for independent X and Y (see [B]). It is known
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that the assumption of independence of U and V can be replaced by a weaker
assumption, i.e. the assumption of constancy of regressions E(U|V') and E(U2|V)
(see [S]). In [T9] it is proved that constancy of regressions E(U|V') and E(U~|V)
also characterizes the gamma distribution.

The Lukacs property was also studied in a context of free probability in [II]
where the Laha—Lukacs regression of free Meixner family is considered (see also
[B] and [&]). Theorem 3.1 from [[II] contains, as a special case, a free analogue of the
Lukacs regressions in the case of constancy of regressions of U and U? given by V.
It turns out that such conditions characterize the Marchenko—Pastur (free Poisson)
distribution. The proof that the Marchenko—Pastur distributed, free X and Y have
the property that V = X + Y and U = (X + YY) /2X(X + Y)~'/2 are free can be
found in [M0]. The aim of this paper is to complete the picture of the analogy of
the Lukacs independence property in classical and free probability. We will prove
a free analogue of the result from [I5]. The proof of the main result relies mainly
on the technique developed in our previous papers [I1], [9].

The paper is organized as follows: in Section 2 we briefly introduce basic
notions of free probability and known facts which are needed to prove the main
result. In Section 3 we state and prove the main result of the paper.

2. PRELIMINARIES

In this section we give a collection of facts which we need in this paper. For
a more detailed introduction we refer to our previous papers [I1], [9]. A compre-
hensive introduction to free probability can be found in [R] or [T4].

By a non-commutative probability space we understand a pair (A, ¢), where
A is a unital algebra, and ¢ is a faithful, normal, tracial state; elements of 4 are
called random variables.

We say that probability measure p is the distribution of a self-adjoint random
variable X € Aif o (X") = [ t"du(t) forn =1,2,...

Let x = {Bi, Ba, ...} be a partition of the set of numbers {1,...,k}. The
partition y is a crossing partition if there exist distinct blocks B,, Bs € x and
numbers i1,i2 € By, j1,J2 € Bs such that 47 < j; < ig < jo. Otherwise, x is
called a non-crossing partition. The set of all non-crossing partitions of {1,...,k}
is denoted by NC'(k).

Forany k = 1,2, .. ., (joint) cumulants of order £ of non-commutative random
variables X1, ..., X,, are defined recursively as k-linear maps Ry, : A — C by the
equations

(p(Yl‘...‘Ym): Z H R|B|(Yi,i€B)
XENC(m) Bex

which are satisfied for any Y; € {Xy,..., X, },i=1,... ,m,andany m = 1,2, ..,
with | B| denoting the number of elements in the block B.
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The notion of freeness can be characterized in terms of behaviour of cumulants
in the following way. Consider unital subalgebras (.4;);cr of an algebra .4 in a non-
commutative probability space (A, ). Subalgebras (A;);c; are freely indepen-
dent iff for any n = 2,3, ... and for any X; € A;(;) withi(j) € [,j =1,...,n,
any n-cumulant

Rn(Xy,...,X,)=0

if there exists a pair k,l € {1,...,n} such thati(k) # i(l).
In the sequel we will use the following formula from [2] which connects cu-
mulants and moments for non-commutative random variables:

@2.1)
n k

P(X1...Xp)=) > Rip(X1, Ky, - X)) JT (X1 Xy, -1)
j=1

k=1 1<iz<..<iz<n

with 47 = 1 and ;11 = n + 1 (empty products are equal to one).
Non-commutative conditional expectation is well defined in so-called W*-
probability spaces, i.e. non-commutative probability spaces where the algebra A
is a von Neumann algebra. Non-commutative conditional expectation has many
properties analogous to those of classical conditional expectation. For more details
one can consult, e.g., [T7]. Here we state two of them which we need in the sequel.

LEMMA 2.1. Consider a W*-probability space (A, ).
e If X e AandY € B, where B is a von Neumann subalgebra of A, then

(2.2) P(XY) = o(p(XB)Y).
o If X, Z € A are free, then

(2.3) P(X|Z) = (X)L

Now we give some basic analytical tools used to deal with non-commutative
random variables and their distributions.
For a non-commutative random variable X its r-transform is defined as

rx(z) = io: Ru+1(X) 2"

n=0

In [I3] it is proved that r-transform of a random variable with compact support is
analytic in a neighbourhood of zero. From properties of cumulants it is immediate
that for X and Y which are freely independent

2.4) TX+Y = X + Ty.

If X has the distribution y, then we will often write r,, instead of rx. The Cauchy
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transform of a probability measure v is defined as

Go(z) = [ ]

)
R Z—XT

Cauchy transforms and r-transforms are related by

(2.5) G, (r,,(z) + 1) = z.

z

Finally, we define a moment generating function Mx of a random variable X by
oo
Mx(z) = > @(X") 2",
n=0

It is easy to see that

1 1
(2.6) Mx(z) = —=Gx ()

z z

We will need the following lemma proved in [9].

LEMMA 2.2. Let V be a compactly supported, invertible non-commutative
random variable. Define C, = R,,(V™1,V,..., V), and C(z) = Y o0, Ciz" 1.

Then, for z in a neighbourhood of zero, we have

z+ C
2.7 = -
@) ) = 1oty
where r(2) is the R-transform of V. In particular,
n—1
(2.8) CQ =1- ClRl(V), Cn = — Z CiRn_i<V), n > 2.
i=1

The main result of this paper is a characterization of the Marchenko—Pastur
distribution. A random variable X is said to be Marchenko—Pastur (or free Poisson)
distributed if it has the distribution v = v(\, a), A\, @ > 0, defined by the formula

(2.9) v =max{0, 1 — A} 6o + A7,

where the measure 7 is supported on the interval (o(1 — VA2, a(l + ﬁ)2) and
has the density (with respect to the Lebesgue measure)

1
2rax

v(dr) = \/4/\042 —(z—a(l+ )\))2 dx.

The parameters A and « are called the rate and the jump size, respectively.
It is easy to see that if the distribution of X is free Poisson v(\, «), then R,,(X)
=a" )\, n=1,2,... Therefore, its r-transform has the form
Ao

T1-az

Tv(\a) (Z)
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3. MAIN RESULT

In this section we study a regressive characterization of the Marchenko—Pastur
distribution which is a free counterpart of the characterization of the gamma distri-
bution proved in [5].

THEOREM 3.1. Let (A, ¢) be a W*-probability space, let X and Y be non-
commutative random variables in (A, ). Assume that X and Y are free, X is
strictly positive, Y is positive, and there exist real numbers ¢ and d such that

3.1 o(XIX4+Y)=c¢X+Y)
and
(3.2) P(XTHX4+Y) =dX+ V).

Then X and Y have the free Poisson distributions v(c, ) and v((1 — ¢)f, a),
respectively, where = (d —1)/(cd —1),¢0 > 1,and o = (cd — 1)/ (C1(1 —¢))
for some Cy > 0.

REMARK 3.1. Note that since (X +Y)'/? and (X + Y) /2 belong to the von
Neumann algebra generated by X + Y and 1, it follows that by the properties of
conditional expectation the above statement can easily be rewritten to have con-
stant right-hand sides of equations (Bdl) and (B2). Therefore, we call the above
result a constant regression characterization.

Proof of Theorem BI. Multiplying (B) and (B2) by (X + Y)" and
applying the state to the both sides of the equations, we obtain for n > 0

(3.3) P(X(X+Y)") = co((X+Y)"),

(3.4) e (XTNEX4+Y)") =de((X+Y)" ).

Let us define three sequences (a)n>—1, (Bn)n>0 and (d,)n>0 as follows:
O = (p((X + Y)n)a

/Bn = QO(X (X + Y)n)’
6 = o(XTH(X+Y)").

We can rewrite (B3) and (B-4) as

(3.5) Bn = capyr,
(3.6) Op =doy_1.
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Multiplying both sides of the above equations by 2™ and summing over n=0, 1, . ..

we get
(3.7) B(z) = (A(z) - 1),
(3.8) D(z) = dz(A(z) - O‘Zl)
where

A(z) = io:oanz", B(z) = ioﬁnz", D(z) = iodnz".

Using formula () and freeness of X and Y, for a sequence 3,, we get

Bn = Rioy,
+ Ro (ap—1 4+ an—2a1 + ap_sas + ... + @1ap—2 + @p—1)
+R3 (an—2 + ap-301 + ap_ga101 + .. .)
+ ...+ Rn+1,
where R,, = R,,(X). This gives for n > 0

n+1

Bn = Ri > Qi oo Oy

k=1 i1t tig=ntl—k
Using the above equations we get

0o 00 n+1
B(z) =Y 2"Bp=>2"> Ri > Qi - Gy
n=0 k=1 i1+...+tig=n+1—k
oo N .
> a2 2
n=k—1i1+...+ip=n+1—k

[ee] [e.e]
AR S S a2t a2 = Y ATLAR )R,
m=0i1+...+ix=m k=1

i
o

I
e
N??‘
L
&
o

I
[~]8

T
I

This implies that
(3.9) B(z) = A(2)rx (zA(z)),
where x(z) = Z:LO:O Rn+12". Note that rx is the r-transform of X.
Next we proceed similarly with the sequence (65,),, and we obtain
op = Chay
+ Co (ap—1 + ap—2a1 + ap_zan + ... + a10p_2 + ap_1)
+ O3 (ap—2 + ap_sa1 + ap_gaiaq +...)
+ ...+ Chi,
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where C,, = R, (X™1, X, ..., X)) for n > 0. Thus for n > 0 we have
——

n—1

n+1

5n:ZCk Z Qg oo Oy

k=1 i1+t..tig=ntl1-k
The above equation gives us
[ee] n+1

D(Z): Zz”én: Zznzc’k Z iy - Oy
n=0

n=0 k=1 i1+...+ik=n+1—k

[e.9] [e.9] . .
e > a2, 2
k=1 n:k71i1+...+ik:n+1fk
) 00 ) ) 00
=Y oy ¥ S a2t a2 = Y FTLAR )G
k=1 m=0 11+...+ig=m k=1

This implies that
D(z) = A(2)C(2A(2)),
where C'(z) = Y Crq12™. Using Lemma D72 we get

zA(z) + Cy
1+ zA(2)rx (2A(2))

Using equations (39) and (B10), we can rewrite (B-2) and (BR) as

(3.10) D(z) = A(2)

A(z)rx (ZA(Z)) = c%(A(z) — 1),
ZA(Z) + 4 _ds ; [
Alz) L+ zA(2)rx (zA(2)) d (A( )+ z )

Let us define an auxiliary function /(z) = zA(2)rx (zA(z)). Then we can rewrite
the above equations as

(3.11) h(z) = c(A(z) — 1),
(3.12) A(Z)W - dz<A(z) + O‘Zl>

Since h(0) = 0, in some neighbourhood of zero we can multiply (312) by 1 + h.
Taking into account that equation (B22) implies C; = d a_1, we get

2A%(2) + A(2)C1 — zA(2)d (L + h(z)) — C1 (1 + h(2)) = 0.
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In the above equation we can replace one function A in the first and second terms
by (h + ¢)/c, which follows from (BTT). After simple transformations we obtain
h(z) c(d—1)

2A(z)  Ci(1—¢) — zA(2)(ed — 1)

Recall that h(z) = zA(z)rx(zA(z)). Since r is analytic in a neighbourhood of
zero and lim,_,0 zA(z) = 0, we get

(3.13)

B c(d—1)
S C1(1—c¢)—z(ed - 1)
From equation (Bl) and the assumption that X and Y are positive we get
c=eX) /e (X+Y) e (0,1).
Similarly, freeness of X and Y gives us
d=¢ (XT'(X+Y)) =1+pX He(Y) > 1.
The Cauchy—Schwarz inequality implies cd > 1. This means that X has free Pois-
son distribution with parameters
cld—1) ed—1
d = —".
cd—1 M@ Ci(1—r¢)

Since ¢ € (0,1) and c¢d > 1, we have A > 1
Next we shall determine the distribution of Y. Substituting in equation (B-1T)
h from (B13), we get

A%(2)z(ed — 1) + A(z)(2d(1 —¢) = C1(1 —¢)) + C1(1 —¢) = 0.

(3.14) rx(z)

A=cl =

Since A is the moment transform of X + Y, we can use the connection between
moment and Cauchy transforms, and after substituting z := 1/z we obtain

Gy (2)z(cd — 1)+Gxiy(2)d(1 — ¢)—Gxiy(2)2C1 (1 — ¢) + C1(1 — ) =0.
Now, using equation (Z3) we get the r-transform of X 4 Y in the form
B d—1

Ci(1—¢)—(cd—1)z"

x4y (2)

Equation (Z4) gives
1—c¢)(d—-1
IR (U VI
Ci(1—c¢)—(cd—1)z
This implies that Y has the free Poisson distribution with parameters
(I1—-¢c)(d—1) ed—1
A=——"F-——"=(1-¢)0 d ==
ed—1 (1=c)f and « Ci(1—¢)’

which completes the proof. m
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