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Abstract. In this paper, we present several heavy-tailed distributions
belonging to the new class J of distributions obeying the principle of a sin-
gle big jump introduced by Beck et al. (2015). We describe the structure of
this class from different angles. First, we show that heavy-tailed distribu-
tions in the class J are automatically strongly heavy-tailed and thus have
tails which are not too irregular. Second, we show that such distributions are
not necessarily weakly tail equivalent to a subexponential distribution. We
also show that the class of heavy-tailed distributions in J which are nei-
ther long-tailed nor dominatedly-varying-tailed is not only non-empty but
even quite rich in the sense that it has a non-empty intersection with several
other well-established classes. In addition, the integrated tail distribution of
some particular of these distributions shows that the Pakes–Veraverbeke–
Embrechts theorem for the class J does not hold trivially.
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1. INTRODUCTION

In this paper, all distributions have unbounded support contained in [0,∞).
Recall that a distribution F is called heavy-tailed, denoted by F ∈ K, if for all
α > 0

∞∫
0

eαydF (y) =∞;

otherwise, F is called light-tailed, denoted by F ∈ Kc. Recently, Beck et al. intro-
duced in [1] the following new distribution class J .
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Let {Xi, i ­ 1} be a sequence of independent and identically distributed (i.i.d.)
random variables with common distribution F . Define the class J as the set of dis-
tributions F such that, for all n ­ 2,

(1.1) lim
K→∞

lim inf P
(
Xn,1 > x−K |

n∑
i=1

Xi > x
)
= 1,

where Xn,k means the k-th largest random variable in the sequence {Xi, 1 ¬ i
¬ n}, 1 ¬ k ¬ n. Here and in the following all unspecified limits are to be under-
stood for x→∞. Beck et al. [1] show that each of the following two properties is
equivalent to (1.1):

(1.2)

lim
K→∞

lim inf P
(
Xn,2 ¬ K |

n∑
i=1

Xi > x
)
= 1,

limP
(
Xn,2 > g(x) |

n∑
i=1

Xi > x
)
= 0 for all g ↗∞

for any (and hence for all) n ­ 2.
Note that this definition is a way of stating formally that the distribution of

X1 obeys the principle of a single big jump which means that conditional on the
sum X1 + . . .+Xn being unusually large, the probability that a single summand
dominates the sum is close to one while the conditional law of the second largest
summand remains tight (the letter J stands for jump).

It is natural to ask how the class J is related to well-established classes like
S,D and L which are respectively called subexponential, dominatedly varying and
long tailed (for their definitions, see [2]). In addition, the class OS of generalized
subexponential distributions first introduced in [5] is of interest. By definition, it
consists of those distributions for which

(1.3) C∗(F ) := lim supF ∗2(x)
(
F (x)

)−1
<∞,

where F ∗n means the n-fold convolution of F with itself for n ­ 2, and F :=1−F
denotes the tail of F . Note that the class S corresponds to the case C∗(F ) = 2.

The following relations for these classes are known:

(1.4) S ⊂ L ⊂ K, S ∪ D ⊂ J ⊂ OS, S = J ∩ L, D ⊂ K

(see [2], respectively [1], for relations not involving J , respectively those involv-
ing J ). It is not true that all distributions in J are heavy-tailed (see [1]). The
recent paper [8] actually shows that the class of light-tailed distributions in J is
considerably larger than the union of the well-known classes S(γ).

In this paper, the object of study is the class J ∩ K. The list of relations (1.4)
says that J ∩ K contains S ∪ D. We will not only show that this inclusion is
proper but that it is even quite large, thus suggesting that the class J cannot be
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simply characterized via other known classes. On the other hand, we will show first
that J ∩K is (strictly) contained in the class of strongly heavy-tailed distributions
which are characterized by the property that for all λ > 0 we have

(1.5) lim eλxF (x) =∞.

This class was denoted byK∗ in [1] and byDKc in [7]. It is clearly contained in the
class of heavy-tailed distributions but excludes some members of K with irregular
tails. The following result will be proved in Section 2.

THEOREM 1.1. The following inclusions hold:

J ∩ K ⊂ OS ∩ K ⊂ DKc.

Note that the first inclusion is clear from (1.4), so we need only to show the
second one. In addition, we will show in Example 2.1 that this inclusion is proper.
We remark that Theorem 1.1 shows in particular that condition (iii) F I ∈ J ∩DKc

in Theorem 19 in [1] can be replaced by the equivalent condition F I ∈ J ∩ K.
Before we state our second result, we define the class DK1 which was intro-

duced by Wang et al. [7] as the set of all distributions which satisfy

(1.6) limxδF (x) =∞ for some δ > 0.

Note that D ⊂ DK1 ⊂ DKc. In addition, we will call two distributions F and G
weakly tail equivalent, denoted by F ≈ G, if

0 < lim inf F (x)
(
G(x)

)−1 ¬ lim supF (x)
(
G(x)

)−1
<∞.

THEOREM 1.2. The class (J ∩ K) \ (L ∪ D) is non-empty. Moreover, none
of its intersections with DK1 and its complement is empty and each of these two
subclasses contains both distributions which are weakly tail equivalent to a distri-
bution in S and distributions which are not.

We will provide four corresponding examples in Sections 3 and 4. Note that it
does not matter whether or not we replace L by S in Theorem 1.2 since S = J ∩L
by (1.4).

Finally, we investigate the class J with respect to integrated tail distributions.
In Theorem 19 of [1], the integrated tail distribution of the claim size in the Sparre
Andersen risk model is required to belong to the class J ∩K, so the question arises
whether there exists a distribution F whose integrated tail distribution F I ∈ J ∩
K \ S. Otherwise, if F I ∈ S , then the corresponding result is the known Pakes–
Veraverbeke–Embrechts theorem, see Theorem 16 of [1].

To answer this question, we recall the concepts of an integrated tail distribution
and a generalized long-tailed distribution.
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For a distribution F , if 0 < µ :=
∫∞
0

F (y)dy <∞, then the distribution F I

defined by

F I(x) = 1(x < 0) + µ−1
∞∫
x

F (y)dy1(x ­ 0), x ∈ (−∞,∞),

is called the integrated tail distribution of F .
A distribution F is called generalized long-tailed, denoted by F ∈ OL (see

[6]), if for any t > 0

C(F, t) := lim supF (x− t)
(
F (x)

)−1
<∞.

The inclusion OS ⊂ OL is well known.
The following proposition gives a positive answer to the previous question and

has important implications concerning Theorem 19 of Beck et al. [1]. At the same
time it provides one of the four examples required to prove Theorem 1.2.

PROPOSITION 1.1. There exists a distribution F such that F ∈ DKc \ OL
and F /∈ DK1, thus F /∈ J , but F I ∈ (J ∩DKc) \ (L ∪ D), F I /∈ DK1, and F I

is not weakly tail equivalent to a distribution in S.

We prove Proposition 1.1 in Section 4.

2. PROOF OF THEOREM 1.1

We prove that the second inclusion in the theorem holds. Suppose that F ∈
OS\DKc. Then there exists some λ > 0 and a sequence of positive numbers
{xn, n ­ 1} such that xn > 2xn−1 and

(2.1) F (xn) ¬ exp{−λxn}

for every n ∈ N. Since F ∈ OS , there exist two constants 2 ¬ C∗(F ) <∞ and
y0 large enough such that

F ∗2(y) ¬ 2C∗(F )F (y)

for all y ­ y0. Take any y ­ y0; then

F (2−1y) ¬
(
P(S2 > y)

)2−1

¬
(
2C∗(F )F (y)

)2−1

.

Iterating, for any positive integer m, we get

F (2−my) ¬
(
2C∗(F )

)2−1+...+2−m(
F (y)

)2−m

(2.2)

¬ 2C∗(F )
(
F (y)

)2−m
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as long as 2−m+1y ­ y0. Without loss of generality, we assume that x1 ­ y0. For
any x > x1, there exists a positive integer n := n(x) ­ 2 such that xn−1 < x
¬ xn. Further, there exists a positive integer m := m(x) such that

max{xn−1, 2−mxn} < x ¬ 2−m+1xn.

If 2−mxn ­ xn−1 ­ y0, then, by (2.2) and (2.1), we have

F (x) ¬ F (2−mxn) ¬ 2C∗(F )
(
F (xn)

)2−m

¬ 2C∗(F ) exp{−λ2−mxn} ¬ 2C∗(F ) exp{−2−1λx};

if 2−mxn < xn−1, then, by (2.1), we obtain

F (x) ¬ F (xn−1) ¬ exp{−λxn−1} ¬ exp{−2−1λ2−m+1xn} ¬ exp{−2−1λx},

so F is light-tailed, and therefore the claim follows. �

The following example, which was introduced by C. M. Goldie (see Exam-
ple 4.1 of [4]), shows that the inclusion OS ∩ K ⊂ DKc is proper.

EXAMPLE 2.1. Take x0 = 0, xn =
∑n

k=0 k
k−2, n ­ 2. Define a distribution

F such that

F (x) = 1(x < 0) +
∞∑
n=1

n−n1
(
x ∈ [xn−1, xn)

)
for x ∈ (−∞,∞). Then F ∈ DKc, but F /∈ OS ∩ K.

P r o o f. For n large enough, we have

F (xn − 1)
(
F (xn)

)−1
= F (2−1xn)

(
F (xn)

)−1 ­ n+ 1→∞

as n→∞. Thus F /∈ OL ⊃ OS ∩ K. But when x ∈ [xn−1, xn) and δ > 1, from

xδF (x) ­ xδn−1F (xn) ­ (n− 1)δ(n−3)n−n →∞

as n→∞, we obtain F ∈ DK1 ⊂ DKc. �

3. PROOF OF THEOREM 1.2

The first example shows that (J ∩ K)\(L ∪ D) contains distributions which
are not in DK1 and which are weakly tail equivalent to a distribution in S.

EXAMPLE 3.1. Assume that F1 ∈ S is continuous with all (polynomial) mo-
ments finite and let y0 ­ 0 and a > 1 be two constants such that aF1(y0) ¬ 1. For
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example, we can take F1(x) = 1(x < 0) + e−x
2−1

1(x ­ 0) for x ∈ (−∞,∞) and
y0 = (ln a)2. Define the distribution F by

F (x) = F1(x)1(x < x1)(3.1)

+
∞∑
i=1

(
F1(xi)1(xi ¬ x < yi) + F1(x)1(yi ¬ x < xi+1)

)
for x ∈ (−∞,∞), where {xi, i ­ 1} and {yi, i ­ 1} are two sequences of pos-
itive constants satisfying xi < yi < xi+1 and F1(xi) = aF 1(yi), i ­ 1. Then
F ∈ (J ∩ DKc) \ (L ∪ D) and F /∈ DK1. Obviously, F (x) ≈ F1(x).

P r o o f. It can be easily seen that F1(x) ¬ F (x) ¬ aF1(x). Since F1 ∈ S =
L ∩ J and using the fact that J is closed under weak tail equivalence (see Propo-
sition 8 of [1]), we obtain F ∈ J . Next it is easy to verify that F ∈ K \ DK1 and
hence F /∈ D, and since limn→∞

(
F (yn)

)−1
F (yn − 1) = a, we get F /∈ L. �

Next, we provide an example in (J ∩K)\(L∪D) which is inDK1 and which
is weakly tail equivalent to a distribution in S. To this end, we first construct a
distribution F1 belonging to the class (S ∩DK1) \D and then show that F defined
as in the previous example has the required properties.

EXAMPLE 3.2. Let us choose any constants α ∈ (0, 1), β ∈ (α, 2α) and x1 >

2α/(β−α). For all integers n ­ 1, let xn+1 = xβα
−1

n . Clearly, xn+1 > 2xn and
xn →∞ as n→∞. Now, define the distribution F1 as follows:

(3.2) F1(x) = 1(x < 0) +
(
x−11 (x−α1 − 1)x+ 1

)
1(0 ¬ x < x1)

+
∞∑
n=1

(
x−αn + (x−βn − x−αn )(xn+1 − xn)

−1(x− xn)
)
1(xn ¬ x < xn+1)

for x ∈ (−∞,∞). Then it follows that F1 has an infinite mean and belongs to the
class (S ∩ DK1) \ D.

Further, in this example, let us take a = 2 and yn = 2−1(xn+1 + xn) +

2−1(xβ−αn − 1)−1(xn+1 − xn) such that xn < yn < xn+1 and 2F1(yn) = F1(xn)
for all n ­ 1. Let F be a distribution such that

F (x) = F1(x)1(x < x1)(3.3)

+
∞∑
n=1

(
F1(xn)1(xn ¬ x < yn) + F1(x)1(yn ¬ x < xn+1)

)
for x ∈ (−∞,∞). Then F ∈ (J ∩ DK1) \ (L ∪ D) and F (x) ≈ F1(x).

P r o o f. The distribution F1 clearly has an infinite mean. It belongs to the
class DK1 \ D due to the following two facts:(

F1(xn+1)
)−1

F1(2
−1xn+1) ­ 2−1(1 + xβ−αn )→∞, n→∞,



The structure of a class of distributions 127

where we used the elementary inequality (a− c)/(b− c) ¬ a/b for b ­ a > 0 and
c ­ 0, and for all x ∈ [xn, xn+1), n ­ 1,

xF1(x) ­ xnF1(xn) ∼ x1−αn →∞, n→∞.

Next we prove that F1 ∈ S . By

F ∗21 (x) = 2F1(x)− F1
2
(2−1x) + 2

x∫
2−1x

F1(x− y)F1(dy),

and
lim inf
x→∞

(
F1(x)

)−1
F ∗21 (x) = 2,

we need only to prove

H(x) :=
(
F1(x)

)−1 x∫
2−1x

F1(x− y)F1(dy)→ 0, x→∞.

To this end, we estimate H(x) in the two cases: xn ¬ x < 2xn and 2xn ¬ x <
xn+1, n ­ 1. When x ∈ [xn, 2xn), the relation 2−1x ¬ y ¬ x implies 2−1xn ¬
y ¬ xn, n ­ 1. Thus, by (3.2), we have

(3.4) H(x) ¬
(
F1(2xn)

)−1
(xn − xn−1)

−1x−αn−1
( xn−1∫

0

+
xn∫

xn−1

)
F1(y)dy

¬
(
F1(2xn)

)−1
(xn − xn−1)

−1x−αn−1
(
xn−1 + F1(xn−1)(xn − xn−1)

)
∼ x−(1−α)(1−β

−1α)
n + x−α(2β

−1α−1)
n → 0, n→∞.

When x ∈ [2xn, xn+1), the relation 2−1x ¬ y ¬ x implies xn¬y¬xn+1, n­1.
Thus, by (3.2), we obtain

(3.5) H(x) ¬
(
F1(xn+1)

)−1
(xn+1 − xn)

−1x−αn

( xn∫
0

+
2−1xn+1∫

xn

)
F1(y)dy

¬
(
F1(xn+1)

)−1
(xn+1 − xn)

−1x−αn

(
xn + F1(xn)(2

−1xn+1 − xn)
)

∼ x−(β−α)(α
−1−1)

n + 2−1x−(2α−β)n → 0, n→∞.

By (3.4) and (3.5), we get F1 ∈ S .
Now, we prove that F ∈ (J ∩ DK1) \ (L ∪ D). By (3.3) we easily get

(3.6) F1(x) ¬ F (x) ¬ 2F1(x),

that is, F (x) ≈ F1(x). Then, by (3.6) and F1∈S⊂J , we have F ∈J . Next, by
F1 ∈ DK1 \ D, we immediately get F ∈ DK1 \ D. Finally, F /∈ L follows from(

F (yn)
)−1

F (yn − 1) = 2

for all n ­ 1. �
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The next example shows that there exist distributions in (J ∩DK1) \ (L∪D)
which are not weakly tail equivalent to a distribution in S .

EXAMPLE 3.3. Let m ­ 1 be an integer. Let us choose any constants α ∈
(2 + 3m−1,∞) and x1 > 4α. For all integers n ­ 1, let xn+1 = x1+α−1

n . Clearly,
xn+1 > 4xn and xn →∞ as n→∞. Now, define the distribution F as follows:

F (x) = 1(x < 0) +
(
x−11 (x−α1 − 1)x+ 1

)
1(0 ¬ x < x1)(3.7)

+
∞∑
n=1

((
x−αn + (x−α−2n − x−α−1n )(x− xn)

)
1(xn ¬ x < 2xn)

+ x−α−1n 1(2xn ¬ x < xn+1)
)

for x ∈ (−∞,∞). Further, let m ∈ N and

Gm(x) =
(
F (x)

)m
:= F

m
(x), x ∈ (−∞,∞).

Then Gm ∈ (J ∩ DK1) \ (L ∪ D) with finite mean, and Gm is not weakly tail
equivalent to a distribution in S.

REMARK 3.1. This example shows that there are many such distributions
since m, α and x1 are arbitrary. Further, based on each of the above distributions
and using the method of Example 2.1, we can construct new distributions in the
class DK1 \ (L ∪ D) which are not weakly tail equivalent to a distribution in S.

P r o o f. According to Proposition 12 b) in [1] and Lemma 3.1 below, we need
to prove the above conclusion only for m = 1, i.e. G1 = F . By (3.7), it is easy to
see that when x ­ x1, we have

(3.8) x−α−1 ¬ F (x) ¬ 2αx−α.

Thus F ∈ DK1. Moreover, using (3.7) and (3.8), we see that the distribution F has
a finite mean which we denote by µ. In fact, we get

(3.9)
∞∫
0

y4F (y)dy <∞.

Observe that F /∈ L ∪ D by (3.7) and the following facts hold true:(
F (2xn)

)−1
F (2xn − 1) = 2− x−1n → 2, n→∞,

and
F (2xn)

(
F (xn)

)−1
= x−1n → 0, n→∞.
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Next we prove that F ∈ J . For x > 2K, we obtain

(3.10) B(x) := P (X2,2 ¬ K|X1 +X2 ­ x)

=

(
1

2
F

2
(
x

2

)
+

x/2∫
0

F (x− y)dF (y)

)−1 K∫
0

F (x− y)dF (y)

= 1−
(
1

2
F

2
(
x

2

)
+

x/2∫
0

F (x− y)dF (y)

)−1( x/2∫
K

F (x− y)dF (y)+
1

2
F

2
(
x

2

))

­ 1−
( x/2∫

0

F (x− y)dF (y)
)−1( x/2∫

K

F (x− y)dF (y)
)

− F
2
(
x

2

)(
2F (x)F

(
x

2

))−1
:= 1−B1(x)−B2(x).

By (3.8), we have for x ­ 2x1

(3.11) B2(x) ¬
(
F

(
x

2

))−1
24α−1x1−α → 0.

Next we estimate B1(x) in each of the five cases: xn ¬ x < xn +K, xn +
K ¬ x < 2xn, 2xn ¬ x < 2xn +K, 2xn +K ¬ x < 4xn and 4xn ¬ x < xn+1.

When x ∈ [xn, xn + K), it follows that K ¬ y ¬ 2−1x implies 2xn−1 ¬
x− y ¬ xn, n ­ 2. Thus, by (3.7), we obtain

B1(x) ¬
(K∫

0

F (x− y)dF (y)
)−1 x/2∫

K

F (x− y)dF (y)(3.12)

¬
(
F (xn +K)F (K)

)−1
F (K)F (2xn−1)

∼
(
F (K)

)−1
F (K)→ 0, K →∞.

When x ∈ [xn +K, 2xn), n ­ 2, by (3.7), we have,

B1(x) ¬
(K∫

0

F (x− y)dF (y)
)−1( x−xn∫

K

+
x/2∫

x−xn

)
F (x− y)dF (y)

:= B11(x) +B12(x).

Note that xn ¬ x − y ¬ 2xn for K ¬ y ¬ x − xn, n ­ 2, so, by (3.7)–(3.9), we
have

B11(x) ¬
(
F (x)F (K)

)−1 x−xn∫
K

(
F (x) + x−α−1n y

)
dF (y)(3.13)

¬
(
F (K)

)−1∞∫
K

(1 + y)dF (y)→ 0, K →∞.
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Now we deal with B12(x) in the two cases: xn + K ¬ x < 3 · 2−1xn and
3 · 2−1xn ¬ x < 2xn. When x ∈ [xn +K, 3 · 2−1xn), we get 2xn−1 ¬ x − y ¬
xn for x− xn ¬ y ¬ 2−1x, n ­ 2, so, by (3.7), we have

B12(x) ¬
(
F (3 · 2−1xn)F (K)

)−1 (
F (2xn−1)F (K)

)
(3.14)

∼
(
F (K)

)−1
2F (K)→ 0, K →∞.

When x ∈ [3 · 2−1xn, 2xn), we have 2xn−1 ¬ y ¬ xn, n ­ 2, and, by (3.7),
we get

(3.15) B12(x) = 0.

When x ∈ [2xn, 2xn + K), if K ¬ y ¬ xn, then xn ¬ 2xn − y ¬ 2xn; if
xn ¬ y ¬ xn + 2−1K, then xn − 2−1K ¬ 2xn − y ¬ xn, n ­ 2. Thus, by (3.7)–
(3.9), we have

B1(x) ¬
(
F (x)F (K)

)−1( xn∫
K

+
xn+2−1K∫

xn

)
F (2xn − y)dF (y)(3.16)

¬
(
F (K)

)−1( xn∫
K

(1 + y)dF (y)+
xn+2−1K∫

xn

xndF (y)
)

¬
(
F (K)

)−1(∞∫
K

(1 + y)dF (y)+
∞∫
K

ydF (y)
)
→ 0, K →∞.

When x ∈ [2xn +K, 4xn), if K ¬ y ¬ x − 2xn, then 2xn ¬ x − y ¬ 4xn;
if x− 2xn ¬ y ¬ 2−1x, then xn ¬ x− y ¬ 2xn, n ­ 2. Thus, by (3.7)–(3.9), we
have

B1(x) ¬
(K∫

0

F (x− y)dF (y)
)−1( x−2xn∫

K

+
2−1x∫
x−2xn

)
F (x− y)dF (y)(3.17)

¬
(
F (2xn)F (K)

)−1(
F (2xn)F (K)

+
2−1x∫
x−2xn

(
x−αn + (x−α−2n − x−α−1n )(x− xn − y)

)
dF (y)

)
¬

(
F (K)

)−1(
F (K) +

∞∫
K

(1 + y)dF (y)
)
→ 0, K →∞.

When x ∈ [4xn, xn+1), if 0 ¬ y ¬ 2−1x, then 2xn ¬ x − y ¬ xn+1, n ­ 2,
so, by (3.7), we have

(3.18) B1(x) ¬
(
F (K)

)−1
F (K)→ 0, K →∞.

By (3.10)–(3.18), we get F ∈ J .
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Next, we prove that F is not weakly tail equivalent to a distribution in S. To
see this, we state the following lemma.

LEMMA 3.1. Assume that the distribution F satisfies

(3.19) lim sup
t→∞

C(F, t) = lim sup
t→∞

lim supF (x− t)
(
F (x)

)−1
=∞.

Then F is not weakly equivalent to any long-tailed distribution.

P r o o f o f L e m m a 3.1. We assume there exists a distribution F1 ∈ L and
F1(x) ≈ F (x). Then there are two constants 0 < C1 ¬ C2 <∞ such that

(3.20) C1 = lim inf
(
F (x)

)−1
F1(x) ¬ lim sup

(
F (x)

)−1
F1(x) = C2.

By F1 ∈ L and (3.20), for any 0 < t <∞ we have

(3.21)
(
F (x)

)−1
F (x− t) ¬

(
C1F1(x)

)−1
C2F1(x− t) ∼ C−11 C2.

Obviously, (3.21) contradicts (3.19). Hence the conclusion of the lemma holds. �

In Example 3.3, we have(
F (2xn)

)−1
F (2xn − t) = 1 + t− tx−1n → 1 + t, n→∞,

that is, (3.19) holds. Thus, by Lemma 3.1, F is not weakly tail equivalent to a
distribution in S. �

The remaining statement of Theorem 1.2 will be proved in the next section.

4. PROOF OF PROPOSITION 1.1

Next, we will provide an example proving Proposition 1.1 and showing at the
same time the remaining claim of Theorem 1.2 that there exists a distribution in
(J ∩DKc) \ (L ∪ D) which is not inDK1 and which is not weakly tail equivalent
to a distribution in S.

EXAMPLE 4.1. Define the distribution F as follows:

(4.1) F (x) = 1(x < 0) + 8−11(0 ¬ x < 4)

+
∞∑
n=2

(
(2−2

−1(n+n2)− 2−2
−1(3n+n2))1(2n ¬ x < 2n+1)

)
for x ∈ (−∞,∞).

Then F ∈ DKc \ OL, thus F /∈ J , but F I ∈ (J ∩ DKc) \ (L ∪ D), F I /∈ DK1,
and F I is not weakly tail equivalent to a distribution in S.
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P r o o f. First, it is easy to check that

F (2n − 1)
(
F (2n)

)−1 ∼ 2n →∞, n→∞.

Consequently, F ̸∈ OL. Since J ⊂ OL, we get F ̸∈ J . It is easy to verify that
F ∈ DKc \ DK1. In addition, since

∞∫
0

F (y)dy = 2−1 +
∞∑
n=2

(22
−1(n−n2) − 2−2

−1(n+n2)) = 1,

the distribution F has a finite mean µ = 1. Further, we obtain for x ∈ (−∞,∞)

(4.2) F I(x) = 1(x < 0) + (1− 8−1x)1(0 ¬ x < 4)

+
∞∑
n=2

(
22
−1(n−n2)+(2−2

−1(3n+n2)− 2−2
−1(n+n2))(x− 2n)

)
1(2n ¬ x < 2n+1).

It is easy to see that F I ∈ DKc \ DK1, and F I ̸∈ L ∪ D by (4.2) and the
following facts:

F I(2n+1 − 1)
(
F I(2n+1)

)−1
= 2 + 2−n → 2, n→∞,

and
F I(2n+1)

(
F I(2n)

)−1
= 2−n → 0, n→∞.

Next we prove that F I ∈ J . Let {Xi, i ­ 1} be a sequence of i.i.d. random
variables with common distribution F I . As before, Xn,k denotes the k-th largest
random variable in the sequence {Xi, 1 ¬ i ¬ n}, 1 ¬ k ¬ n. For x > 2K > 0
we obtain

(4.3) B(x) := P(X2,2 ¬ K|S2 ­ x)

=
(
2−1F I

2
(2−1x) +

2−1x∫
0

F I(x− y)dF I(y)
)−1 K∫

0

F I(x− y)dF I(y)

= 1−
(
− 2−1(n+ n2)F I

2
(2−1x) +

2−1x∫
0

F I(x− y)dF I(y)
)−1

×
( 2−1x∫

K

F I(x− y)dF I(y)− 2−1(n+ n2)F I
2
(2−1x)

)
­ 1−

( 2−1x∫
0

F I(x− y)dF I(y)
)−1( 2−1x∫

K

F I(x− y)dF I(y)
)

− F I
2
(2−1x)

(
2F I(x)F I(2−1x)

)−1
:= 1−B1(x)−B2(x).
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For all x ∈ [2n, 2n+1), n ­ 2, by (4.2), we have

B2(x) ¬
(
2F I(2n+1)F I(2n−1)

)−1
F I

2
(2n−1)(4.4)

=
(
F I(2n−1)

)−1
22
−1(7n−6−n2) → 0, n→∞.

Now, we estimate B1(x) in the two cases: 2n ¬ x < 2n +K and 2n +K ¬
x < 2n+1. When x ∈ [2n, 2n + K), n ­ 2, by (4.2) and

∫∞
0

ydF I(y) < ∞, we
have

(4.5) B1(x) ¬
(K∫

0

F I(x− y)dF I(y)
)−1 x/2∫

K

F I(x− y)dF I(y)

¬
(
F I(x)F I(K)

)−1 x/2∫
K

(
F I(x−K) + 2(n−n

2)/2y
)
dF I(y)

¬
(
F I(2n +K)F I(K)

)−1(
F I(2n −K)F I(K) +

x/2∫
K

2(n−n
2)/2ydF I(y)

)
= O

(
F I(K) +

+∞∫
K

ydF I(y)
)
→ 0, K →∞.

When x ∈ [2n +K, 2n+1), n ­ 2, by (4.2), we have

B1(x) ¬
( x−2n∫

0

F I(x− y)dF I(y)
)−1( x−2n∫

K

+
x/2∫
x−2n

)
F I(x− y)dF I(y)(4.6)

:= B11(x) +B12(x).

By (4.2), (4.6) and
∫∞
0

ydF I(y) <∞, we have

B11(x) =
( x−2n∫

0

F I(x− y)dF I(y)
)−1( x−2n∫

K

F I(x− y)dF I(y)
)

(4.7)

¬
(
F I(x)F I(x− 2n)

)−1( x−2n∫
K

(
F I(x) + 2(−n−n

2)/2y
)
dF I(y)

)
¬

(
F I(K)

)−1 ( x−2n∫
K

(1 + y) dF I(y)
)
→ 0, K →∞.

Now we deal with B12(x) in the two cases: 2n + K ¬ x < 3 · 2n−1 and
3 · 2n−1 ¬ x < 2n+1. When x ∈ [2n + K, 3 · 2n−1), n ­ 2, by (4.2), (4.6) and
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0

ydF I(y) <∞, we have

(4.8) B12(x) ¬
(
F I(x)F I(x− 2n)

)−1
×
( x/2∫
x−2n

2(3n−2−n
2)/2 + (2(2−n−n

2)/2 − 2(n−n
2)/2)(x− 2n−1 − y)dF I(y)

)
¬

(
F I(3 · 2n−1)F I(K)

)−1( x/2∫
K

2(n−n
2)/2dF I(y) +

x/2∫
K

2(n−n
2)/2ydF I(y)

)
¬

(
F I(K)

)−1(
2F I(K) + 2

∞∫
K

ydF I(y)
)
→ 0, K →∞.

When x ∈ [3 · 2n−1, 2n+1), n ­ 2, by (4.2) and (4.6), we have

B12(x) ¬
(
F I(x)F I(x− 2n)

)−1
F I(2−1x)F I(x− 2n)(4.9)

¬
(
F I(2n+1)F I(2n−1)

)−1(
F I(2n−1)

)2 → 0, n→∞.

Therefore, by (4.3)–(4.9), we get F I ∈ J .
Finally, by Lemma 3.1 and(

F I(2n+1)
)−1

F I(2n+1 − t) = 1 + t− 2−nt ∼ 1 + t, n→∞,

we see that F I is not weakly tail equivalent to a distribution in S. �

REMARK 4.1. Observe that the example shows that F I ∈ J does not imply
that F ∈ J . Conversely, F ∈ J does not imply F I ∈ J either even if we assume
that F has a finite first moment (otherwise, F I is not defined). As an example,
we can take the example in Section 3.8 in [3] for which F ∈ S and F I /∈ S . Since
S ⊂ J , we have F ∈ J . Further, S ⊂ L and F ∈ L imply F I ∈ L by Lemma 2.26
in [3]. Since J ∩ L = S , we obtain F I /∈ J .
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