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Abstract. We describe Monte Carlo approximation to the maximum
likelihood estimator in models with intractable norming constants and ex-
planatory variables. We consider both sources of randomness (due to the
initial sample and to Monte Carlo simulations) and prove asymptotical nor-
mality of the estimator.
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1. INTRODUCTION

Maximum likelihood (ML) is a well-known and often used method in esti-
mation of parameters in statistical models. However, for many complex models
exact calculation of such estimators is very difficult or impossible. Such problems
arise if considered densities are known only up to intractable norming constants,
for instance, in Markov random fields or spatial statistics. The wide range of ap-
plications of models with unknown norming constants is discussed, e.g., in [11].
Methods proposed to overcome the problems with computing ML estimates in such
models include, among others, maximum pseudolikelihood (MPL) [1] or Monte
Carlo maximum likelihood (MCML) [2], [7], [6], [14]. MPL estimators are easy
to compute but not efficient. This is demonstrated, e.g., in [17] for an important
autologistic spatial model via a simulation study. Comparison of MLP or “coding
method” with MCML is also discussed in [8]. In our paper we focus on MCML.

In influential papers [7], [6] the authors prove consistency and asymptotic nor-
mality of MCML estimators under the assumption that the initial sample is fixed,
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and only the Monte Carlo sample size tends to infinity. Both sources of random-
ness (one due to the initial sample and the other due to Monte Carlo simulations)
are considered in [2], [14], [18]. The authors of the first mentioned paper apply
the general importance sampling recipe. They show that for their scheme of sim-
ulations, the Monte Carlo sample size has to grow exponentially fast to ensure
consistency of the estimator. As the remedy for this problem they propose to use
a preliminary estimator which is consistent. Another possibility to overcome this
problem is proposed in [14]. The log-likelihood is first decomposed into indepen-
dent summands and then importance sampling is applied. Papers [2] and [14] de-
scribe asymptotic properties of MCML estimators only for models with missing
data. The goal of our paper is to consider models with intractable norming con-
stants and explanatory variables. Sometimes a method applicable in one of these
models cannot be used in the other. For instance, in missing data models there ex-
ists a powerful tool for computing maximum likelihood estimates, namely the EM
(expectation-maximization) algorithm [3], [5], [9], [16]. However, this procedure
cannot be applied to models with intractable norming constants and observable co-
variates. In the current paper we adapt the MCML method to our setting. Applying
argumentation similar to [14] to our model is not straightforward.

In the paper we consider a parametric model with covariates

p(y|x, θ) = 1

C(x, θ)
f(y|x, θ),

where y ∈ Y ⊂ Rd is a response variable, x ∈ X ⊂ Rl is a covariate or “explana-
tory” variable (random or deterministic), θ ∈ Rp is a parameter describing the re-
lation between y and x. The norming constant,

C(x, θ) =
∫
f(y|x, θ)dy,

is difficult or intractable.
Assume that the data consist of n independent observations (Y1, X1), . . . ,

(Yn, Xn). If we regard covariates as random, then we assume that these pairs form
an i.i.d. sample from a joint distribution with a density g(y, x). Alternatively, xi
can be regarded as deterministic and then we assume that the random variable Yi
has a probability distribution gi which depends on xi. Both cases can be analysed
very similarly. For simplicity we focus attention on the model with random covari-
ates. It is not necessary to assume that g(y|x) = p(y|x, θ0) for some θ0. The case
when no such θ0 exists, i.e. the model is misspecified, makes the considerations
only slightly more difficult. Thus, let us consider the following log-likelihood:

ℓn(θ) = log p(Y1, . . . , Yn|X1, . . . , Xn, θ)(1.1)

=
n∑
i=1

log f(Yi|Xi, θ)−
n∑
i=1

logC(Xi, θ).
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The first term in the last line of (1.1) is easy to compute while the second one is
approximated by a Monte Carlo (MC) method. Let h(y) be an importance sampling
(instrumental) distribution and note that

C(x, θ) =
∫
f(y|x, θ)dy =

∫ f(y|x, θ)
h(y)

h(y)dy = EY∼h
f(Y |x, θ)
h(Y )

.

Thus, an MC approximation of the log-likelihood ℓn(θ) is

(1.2) ℓmn (θ) =
n∑
i=1

log f(Yi|Xi, θ)−
n∑
i=1

logCm(Xi, θ),

where

Cm(x, θ) =
1

m

m∑
k=1

f(Y k|x, θ)
h(Y k)

,

and Y 1, . . . , Y m is a sample drawn from h.
Let us note that the general Monte Carlo recipe can also lead to approximation

schemes different from (1.2). For instance, we could generate n independent MC
samples instead of one, i.e. Y 1

i , . . . , Y
m
i ∼ hi, i = 1, . . . , n, and use the ith sample

to approximate C(xi, θ). Using this scenario, one can obtain estimators with better
convergence rates, but at the cost of increased computational complexity. Another
scheme, proposed in [2], approximates the log-likelihood by

(1.3)
n∑
i=1

log f(Yi|Xi, θ)− log
1

m

m∑
k=1

n∏
i=1

f(Y k
i |Xi, θ)

hi(Y k
i )

.

However, this scheme leads to estimators with unsatisfactory asymptotics unless a
preliminary estimator is used. Thus, we focus our attention only on (1.2).

Let θ̂n be a maximizer of ℓn(θ) (a genuine maximum likelihood estimator). It
is well known that under some regularity assumptions (see [13], [15])

θ̂n ∼approx. N
(
θ∗,

1

n
D−1V D−1

)
,

where θ∗ is a maximizer of E(Y,X)∼g log p(Y |X, θ), i.e. the Kullback–Leibler pro-
jection,D = E(Y,X)∼g∇2 log p(Y |X, θ∗) and V = VAR(Y,X)∼g∇ log p(Y |X, θ∗).
Symbols ∇ and ∇2 denote derivatives with respect to θ, and VAR stands for the
variance-covariance matrix. In the main result of the current paper (Theorem 3.1)
we prove that the maximizer of (1.2), denoted by θ̂mn , satisfies

(1.4) θ̂mn ∼approx. N
(
θ∗, D

−1
(
V

n
+
W

m

)
D−1

)
,

where the matrix W will be given later. Formula (1.4) means that the estimator
θ̂mn behaves like a normal vector with the mean θ∗ when both the initial sample
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size n and the Monte Carlo sample size m are large. Note that the first compo-
nent of the asymptotic variance in (1.4), D−1V D−1/n, is the same as the asymp-
totic variance of the maximum likelihood estimator θ̂n. The second component,
D−1WD−1/m, is due to Monte Carlo randomness. Furthermore, if m is large,
then asymptotic behaviour of θ̂mn and θ̂n is similar. If the model is correctly spec-
ified, that is, g(y|x) = p(y|x, θ0) for some θ0, then θ∗ = θ0 and D = −V (under
standard assumptions on passing the derivative under the integral sign).

The choice of the instrumental distribution h affects W and thus the asymp-
totic efficiency of MCML. In [10], equation (2.11), a formula for optimal h is de-
rived (this h minimizes the trace of W in a model without covariates). This result
may be of some theoretical interest, but has a limited practical value because the
optimal h can be very difficult to sample from. On the other hand, a more practical
approach, suggested by several authors, e.g. [2], [18], is to select some distribution
in the underlying parametric family, i.e. to put

h(y) = p(y|ψ) = 1

C(ψ)
f(y|ψ)

for some fixed ψ ∈ Rp (here we restrict attention to models without covariates).
It is natural to guess that a “good choice” of ψ should be close to the target, θ∗.
Since θ∗ is unknown, one can use a preliminary estimator. Such a choice of h is
recommended in [2], [18]. In the first of the cited papers, theoretical results are
given which justify using a consistent preliminary estimate of θ∗ as ψ, compare
[2], Theorems 4 and 7. However, the results are about sampling scheme (1.3).
In [18], the sampling scheme (1.2) is considered and the choice of ψ near θ∗ is
recommended on heuristical grounds. In fact, the intuition behind this choice turns
out to be wrong, as demonstrated by the following toy example.

EXAMPLE 1.1. Let Y = {0, 1} and f(y|θ) = eθy for θ ∈ R. Of course, the
norming constant C(θ) = 1 + eθ is easy and there is no need to apply MCML,
but the simplicity of this model will allow us to clearly illustrate our point. As-
sume we have an i.i.d. sample Y1, . . . , Yn from f(·|θ∗)/C(θ∗). The ML estimator
is θ̂n = log

(
Ȳn/(1 − Ȳn)

)
, where Ȳn = n−1

∑n
i=1 Yi. Now suppose that we use

the MCML approximation (1.2) with h(y) = f(y|ψ)/C(ψ). It can be easily shown
that the asymptotic variance W (now a scalar) is the minimum for ψ∗ = 0, and not
for ψ = θ∗! The following direct derivation explains this fact. The formula (1.2)
now takes the form

ℓmn (θ) = nθȲn − n log
(

1

m

m∑
k=1

e(θ−ψ)Y
k

)
− n logC(ψ).

On noting that

1

m

m∑
k=1

Y ke(θ−ψ)Y
k
= Ȳ meθ−ψ,

1

m

m∑
k=1

e(θ−ψ)Y
k
= Ȳ meθ−ψ + (1− Ȳ m),
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we see that the equation∇ℓmn (θ) = 0 is equivalent to

Ȳn −
Ȳ meθ−ψ

Ȳ meθ−ψ + (1− Ȳ m)
= 0.

After elementary computations we see that the solution θ̂mn of this equation is

θ̂mn = log
Ȳn

1− Ȳn
+ ψ − log

Ȳ m

1− Ȳ m
.

Let us rewrite this expression as

θ̂mn = θ̂n + ψ − ψ̂m,

where the term ψ̂m is an ML estimate of ψ based on the MC sample. It is clear that√
m(ψ− ψ̂m)→d N

(
0, e−ψ(1 + eψ)2

)
, independently of θ. The asymptotic vari-

ance of the MC error is the minimum for ψ∗ = 0. The overall error of MCML is
the sum of two independent terms (θ̂n − θ∗) + (ψ̂m − ψ∗).

Asymptotic properties of MCML estimator (consistency, rates of convergence,
asymptotic normality) can be obtained using standard statistical methods from the
empirical processes theory [13], [15]. However, these tools should be adjusted to
the model with double randomness when both sample sizes n and m tend to infin-
ity simultaneously. This adaptation makes our proofs very arduous and technical
despite the fact that the main ideas are rather clear. Therefore, to make the paper
more transparent, we present only the proof of asymptotic normality. This result
is the most important from a practical point of view. Moreover, the argumenta-
tion used in proving this property well illustrates how to adapt standard methods
to the double randomness setup. Similar adaptation can be used to obtain consis-
tency and the rate of convergence of the MCML estimator. Since the proof of (1.4)
for the model with covariates is rather complicated, we begin in Section 2 with a
model without covariates and state Theorem 2.1. It is extended to the general case
(Theorem 3.1) in Section 3.

As we have already mentioned, related results on MCML for missing data
models can be found in [2], [14]. In particular, our theorems are of similar form to
those in [14]. However, models with intractable norming constants and observable
covariates, considered in our paper, are more difficult to investigate. Namely, we
have to analyse norming constants C(x, θ) as well as their derivatives ∇C(x, θ)
and ∇2C(x, θ), which depend on the parameter θ and the covariate x. To do it,
we need some additional assumption (compared to [14]). We discuss it in detail in
Remark 3.1 in Section 3.

Note also that in the proof of Theorem 2.3 in [14], the authors used arduous
and complicated argumentation relating to weak convergence of stochastic pro-
cesses and its properties. We are able to give a proof of Theorem 3.1 basing only
on elementary methods, if the estimator satisfies an additional and non-restrictive
assumption. We explain this idea in Section 3.
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2. MODEL WITHOUT COVARIATES

First, we consider a model without covariates

p(y|θ) = 1

C(θ)
f(y|θ)

with an intractable norming constantC(θ) =
∫
f(y|θ)dy.Assume we have an i.i.d.

sample Y1, . . . , Yn ∼ g(y). Similarly to the general case, we allow for misspeci-
fication of the model, i.e. we do not assume g(y) = p(y|θ0) for some θ0. In what
follows, θ∗ is a maximizer of EY∼g log p(Y |θ), i.e. the Kullback–Leibler projec-
tion. The MC approximation (1.2) multiplied by 1

n (denoted by ℓ̄mn (θ)) takes the
form

ℓ̄mn (θ) =
1

n

n∑
i=1

log f(Yi|θ)− log
1

m

m∑
k=1

f(Y k|θ)
h(Y k)

= ℓ̄n(θ)− rm(θ),

where

ℓ̄n(θ) =
1

n

n∑
i=1

[log f(Yi|θ)− logC(θ)],

rm(θ) = log
1

m

m∑
k=1

f(Y k|θ)
h(Y k)

− logC(θ).

Now we can state the main result of this section. We often refer to the proof of this
theorem while proving the main result of this paper (Theorem 3.1 in Section 3).

THEOREM 2.1. For some δ > 0 let U = {θ : |θ − θ∗| ¬ δ} be a neighbour-
hood of θ∗. Suppose the following assumptions are satisfied:

1. second partial derivatives of f(y|θ) with respect to θ exist and are contin-
uous for all y, and can be passed under the integral sign in

∫
f(y|θ)dy;

2.
√
min(n,m)(θ̂mn − θ∗) = Op(1);

3. matrices

V = VARY∼g∇ log p(Y |θ∗), D = EY∼g∇2 log p(Y |θ∗),

W =
1

C2(θ∗)
VARY∼h

[
∇f(Y |θ∗)
h(Y )

− ∇C(θ∗)
C(θ∗)

f(Y |θ∗)
h(Y )

]
exist, and D is negative definite;

4. the function D(θ) = EY∼g∇2 log p(Y |θ) is continuous at θ∗;
5. sup

θ∈U
|∇2ℓ̄n(θ)−D(θ)| →p 0, n→∞;

6. sup
θ∈U
|∇2Cm(θ)−∇2C(θ)| →p 0, m→∞.

Then (
V

n
+
W

m

)−1/2
D(θ̂mn − θ∗)→d N (0, I), n,m→∞.



Asymptotics of MCML estimators 301

Note that 1 and 3 are rather standard regularity assumptions. Condition 2 stip-
ulates the square root consistency of the MCML estimator. It is automatically ful-
filled if ℓ̄mn (θ) is concave ([12], Theorem 4), in particular for exponential families,
i.e. if

f(y|θ) = exp
(
θTW (y)

)
withW (y) =

(
W1(y), . . . ,Wp(y)

)
. Besides, we show that conditions 4–6 are also

satisfied in this example. We can easily see that ∇2 log p(y|θ) = −∇2 logC(θ),
so assumptions 4 and 5 are obviously fulfilled. Thus, condition 6 is the last one to
establish. The function∇2Cm(θ) is matrix-valued, so it is enough to prove that for
each component (that is, for each r, s = 1, . . . , p)

(2.1) sup
θ∈U
|[∇2Cm(θ)]rs − [∇2C(θ)]rs| →p 0, m→∞.

Consider a family of functions

(2.2)
{[
∇2f(y|θ)
h(y)

]
rs

= exp
(
θTW (y)

)Wr(y)Ws(y)

h(y)
: θ ∈ U

}
.

The set U is compact, so to obtain (2.1) it is sufficient to assume that functions in
(2.2) are dominated by an integrable function (see [4], Theorem 16(a), and [15],
Example 19.8), i.e. for each r, s there is a function η such that EY∼hη(Y ) < ∞
and

∣∣[∇2f(y|θ)/h(y)]rs
∣∣ ¬ η(y) for each θ, y.

P r o o f o f T h e o r e m 2.1. Without loss of generality we can assume that
θ∗ = 0. First we assume that n

n+m → a and consider three cases corresponding to
rates at which n and m go to infinity: 0 < a < 1, a = 0 and a = 1. Once our theo-
rem is proved in these three special cases, standard application of the subsequence
principle shows that it is valid in general (for n → ∞ and m → ∞ at arbitrary
rates).

We begin with the case 0 < a < 1. It is well known (see [13], Theorem VII.5)
that we need to prove

(2.3)
(
V

n
+
W

m

)−1/2
∇ℓ̄mn (0)→d N (0, I), n,m→∞,

and for every M > 0

(2.4)

(n+m) sup
|θ|¬M/

√
n+m

∣∣∣∣ℓ̄mn (θ)−ℓ̄mn (0)−θT∇ℓ̄mn (0)− 1

2
θTDθ

∣∣∣∣→p 0, n,m→∞.

To obtain (2.3) notice that

(2.5)
√
n+m∇ℓ̄mn (0) =

√
n+m

n

√
n∇ℓ̄n(0)−

√
n+m

m

√
m∇rm(0)
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and the terms on the right-hand side in (2.5) are independent. We can calculate the
gradient

∇rm(0) =

1

m

m∑
k=1

[
∇f(Y k|0)
h(Y k)

− ∇C(0)
C(0)

f(Y k|0)
h(Y k)

]
1

m

m∑
k=1

f(Y k|0)
h(Y k)

.

By the LLN, CLT and Slutsky’s theorem we have
√
m∇rm(0)→d N (0,W ) and√

n∇ℓ̄n(0)→d N (0, V ), which implies
√
n+m∇ℓ̄mn (0)→d N

(
0, V/a+W/(1− a)

)
, n,m→∞.

Thus, we obtain (2.3) since
√
n+m

(
V/a+W/(1− a)

)−1/2
(V/n+W/m)1/2 → I, n,m→∞.

Now we focus on (2.4). Using the Taylor expansion, the left-hand side of (2.4)
can be bounded by

(2.6)
M2

2

(
sup
θ∈Um

n

|∇2ℓ̄n(θ)−D(θ)|+ sup
θ∈Um

n

|D(θ)−D(0)|+ sup
θ∈Um

n

|∇2rm(θ)|
)

for Umn = {θ : |θ| ¬ M/
√
n+m}. The first two terms in (2.6) tend to zero in

probability by assumptions 4 and 5. We prove that assumption 6 implies con-
vergence to zero in probability of the third term in (2.6). Calculating the second
derivative, we get

∇2rm(θ) =
∇2Cm(θ)

Cm(θ)
− ∇Cm(θ)∇

TCm(θ)

C2
m(θ)

− ∇
2C(θ)

C(θ)
+
∇C(θ)∇TC(θ)

C2(θ)
.

Therefore,

(2.7) sup
θ∈U
|∇2rm(θ)| ¬ sup

θ∈U

|∇2Cm(θ)| |Cm(θ)− C(θ)|
Cm(θ)C(θ)

+ sup
θ∈U

|∇2Cm(θ)−∇2C(θ)|
C(θ)

+ sup
θ∈U

|∇Cm(θ)|2 |C2
m(θ)− C2(θ)|

C2
m(θ)C

2(θ)

+ sup
θ∈U

|∇Cm(θ)∇TCm(θ)−∇C(θ)∇TC(θ)|
C2(θ)

.

Note that continuous functions C(θ), |∇C(θ)|, |∇2C(θ)| are bounded on the com-
pact set U , in particular, the function C(θ) is separated from zero, i.e. there exist
positive constants α,K such that

α ¬ C(θ) ¬ K, |∇C(θ)| ¬ K, |∇2C(θ)| ¬ K
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for every θ ∈ U. Therefore, all we need is assumption 6 and

sup
θ∈U
|Cm(θ)− C(θ)| →p 0, m→∞,(2.8)

sup
θ∈U
|∇Cm(θ)−∇C(θ)| →p 0, m→∞.(2.9)

Indeed, by these conditions we infer that for arbitrary ε, η > 0 and sufficiently
large m the events

|Cm(θ)− C(θ)| ¬ ε for all θ ∈ U,
|∇Cm(θ)−∇C(θ)| ¬ ε for all θ ∈ U,
|∇2Cm(θ)−∇2C(θ)| ¬ ε for all θ ∈ U

have probability at least 1 − η. Therefore, we get the following bounds for every
θ ∈ U :

α/2 ¬ Cm(θ) ¬ K + α/2, |∇Cm(θ)| ¬ K + ε, |∇2Cm(θ)| ¬ K + ε

(to be precise, they hold with probability at least 1 − η if m is sufficiently large).
Thus, we can prove that every expression that bounds supθ∈U |∇2rm(θ)| in (2.7)
is arbitrarily small, for instance, considering the first one on the right-hand side of
(2.7), we have

sup
θ∈U

|∇2Cm(θ)| |Cm(θ)− C(θ)|
Cm(θ)C(θ)

¬ 2(K + ε)ε

α2
.

Besides, notice that uniform convergence in (2.8) and (2.9), that we have just used,
easily follows from the Taylor expansion, LLN and assumption 6. For instance, for
some θ′ ∈ (0, θ)

∇Cm(θ)−∇C(θ) = ∇Cm(0)−∇C(0) + [∇2Cm(θ
′)−∇2C(θ′)]θ,

so

sup
θ∈U
|∇Cm(θ)−∇C(θ)| ¬ |∇Cm(0)−∇C(0)|+ δ sup

θ∈U
|∇2Cm(θ)−∇2C(θ)|.

Thus, the proof in the case 0 < a < 1 is completed. For a = 0 or a = 1 we proceed
similarly. For example, if a = 0, then we should prove an analog of (2.4), namely,
for every M > 0

n sup
|θ|¬M/

√
n

∣∣∣∣ℓ̄mn (θ)− ℓ̄mn (0)− θT∇ℓ̄mn (0)− 1

2
θTDθ

∣∣∣∣→p 0, n,m→∞.
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Argumentation is almost the same as in the proof of (2.4). To obtain (2.3) in this
case note that

(2.10)
√
n∇ℓ̄mn (0) =

√
n∇ℓ̄n(0)−

√
n

m

√
m∇rm(0).

Therefore, the expression (2.10) tends in distribution to N (0, V ). Moreover,

√
nV −1/2 (V/n+W/m)1/2 → I, n,m→∞,

which completes the proof. �

3. MODEL WITH COVARIATES

Let us return to the general case and state the main theorem of the paper. We
need the following new notation:

ϕ(y|x) =
[
∇f(y|x, θ∗)

h(y)
− ∇C(x, θ∗)

C(x, θ∗)

f(y|x, θ∗)
h(y)

]
1

C(x, θ∗)
,

rmn (θ) =
1

n

n∑
i=1

[
log

1

m

m∑
k=1

f(Y k|Xi, θ)

h(Y k)
− logC(Xi, θ)

]
.

Then ℓ̄mn (θ) = ℓ̄n(θ)− rmn (θ).

THEOREM 3.1. For some δ > 0 let U = {θ : |θ − θ∗| ¬ δ} be a neighbour-
hood of θ∗. Suppose the following assumptions are satisfied:

1. second partial derivatives of f(y|x, θ) with respect to θ exist and are con-
tinuous for all y and x, and may be passed under the integral sign in

∫
f(y|x, θ)dy

for fixed x;
2.

√
min(n,m)(θ̂mn − θ∗) = Op(1);

3. matrices

V = VAR(Y,X)∼g∇ log p(Y |X, θ∗), D = E(Y,X)∼g∇2 log p(Y |X, θ∗)

and the expectation W̃ = EY∼h,X∼g
∣∣ϕ(Y |X)

∣∣2 exist, and D is negative definite;
4. the function D(θ) = E(Y,X)∼g∇2 log p(Y |X, θ) is continuous at θ∗;
5. supθ∈U |∇2ℓ̄n(θ)−D(θ)| →p 0, n→∞;
6. it follows that:
(a) sup

x∈X
|Cm(x, θ∗)− C(x, θ∗)| →p 0, m→∞;

(b) sup
x∈X
|∇Cm(x, θ∗)−∇C(x, θ∗)| →p 0, m→∞;

(c) sup
θ∈U,x∈X

|∇2Cm(x, θ)−∇2C(x, θ)| →p 0, m→∞;
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7. there exist constants α > 0, K > 0 such that for each x ∈ X and θ ∈ U

α ¬ C(x, θ) ¬ K, |∇C(x, θ)| ¬ K, |∇2C(x, θ)| ¬ K.
Then the matrix

W = VARY∼h EX∼g ϕ(Y |X)

is finite and(
V

n
+
W

m

)−1/2
D(θ̂mn − θ∗)→d N (0, I), n,m→∞.

Some comments on the relation of Theorem 3.1 to the results in [14] are given
in Remark 3.1 after the proof of this theorem.

P r o o f o f T h e o r e m 3.1. Without loss of generality we can assume that
θ∗ = 0.

Similarly to the proof of Theorem 2.1 we consider three cases: 0 < a < 1,
a = 0 and a = 1, where n

n+m → a. Finally, we complete the proof by using the
subsequence principle.

We focus on the case 0 < a < 1 because for a = 0 or a = 1 we proceed in
a similar way (cf. the proof of Theorem 2.1). It is well known (see [13], Theo-
rem VII.5) that we need to prove that for every M > 0

(3.1)

(n+m) sup
|θ|¬M/

√
n+m

∣∣∣∣ℓ̄mn (θ)−ℓ̄mn (0)−θT∇ℓ̄mn (0)− 1

2
θTDθ

∣∣∣∣→p 0, n,m→∞,

and

(3.2)
(
V

n
+
W

m

)−1/2
∇ℓ̄mn (0)→d N (0, I), n,m→∞.

We start with (3.1). Using the Taylor expansion, the left-hand side of (3.1) can be
bounded by

(3.3)
M2

2

(
sup
θ∈Um

n

|∇2ℓ̄n(θ)−D(θ)|+ sup
θ∈Um

n

|D(θ)−D(0)|+ sup
θ∈Um

n

|∇2rmn (θ)|
)

for Umn = {θ : |θ| ¬ M/
√
n+m}. The first two terms in (3.3) tend to zero in

probability by assumptions 4 and 5. We prove that assumptions 6 and 7 imply
convergence to zero in probability of the third term in (3.3). Calculating the second
derivative of rmn (θ), we get

∇2rmn (θ) =
1

n

n∑
i=1

[
∇2Cm(Xi, θ)

Cm(Xi, θ)
− ∇Cm(Xi, θ)∇TCm(Xi, θ)

C2
m(Xi, θ)

− ∇
2C(Xi, θ)

C(Xi, θ)
+
∇C(Xi, θ)∇TC(Xi, θ)

C2(Xi, θ)

]
.
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Therefore,

(3.4) sup
θ∈U
|∇2rmn (θ)| ¬ sup

θ∈U,x∈X

|∇2Cm(x, θ)| |Cm(x, θ)− C(x, θ)|
Cm(x, θ)C(x, θ)

+ sup
θ∈U,x∈X

|∇2Cm(x, θ)−∇2C(x, θ)|
C(x, θ)

+ sup
θ∈U,x∈X

|∇Cm(x, θ)|2 |C2
m(x, θ)− C2(x, θ)|

C2
m(x, θ)C

2(x, θ)

+ sup
θ∈U,x∈X

|∇Cm(x, θ)∇TCm(x, θ)−∇C(x, θ)∇TC(x, θ)|
C2(x, θ)

.

To prove that every term on the right-hand side of (3.4) tends to zero in probability,
we proceed analogously to the proof of Theorem 2.1. Namely, we strengthen con-
vergence in assumptions 6(a) and 6(b) to hold uniformly over θ ∈ U. Then, using
these arguments, assumptions 6(c) and 7, we obtain uniform bounds (over θ ∈ U
and x ∈ X ) for Cm(x, θ), |∇Cm(x, θ)| and |∇2Cm(x, θ)| that hold with probabil-
ity at least 1 − η if m is sufficiently large. Hence, the same reasoning as in the
analogous part of the proof of Theorem 2.1 gives convergence of every expression
on the right-hand side of (3.4) to zero in probability.

The last step is proving (3.2). First, notice that

√
n+m∇ℓ̄mn (0) =

√
n+m

n

√
n∇ℓ̄n(0)−

√
n+m

m

√
m∇rmn (0)

= A1 +A2,

where

A1 =

[√
n+m

n

√
n∇ℓ̄n(0)−

√
n+m

m

1√
m

m∑
k=1

ϕ̄(Y k)

]
,(3.5)

A2 =

√
n+m

m

[
1√
m

m∑
k=1

ϕ̄(Y k)−
√
m∇rmn (0)

]
,(3.6)

and ϕ̄(y) = EX∼gϕ(y|X). By the CLT, the expression (3.5) tends in distribution
to N

(
0, V/a +W/(1 − a)

)
since the Monte Carlo sample is independent of the

observation. To show that the term (3.6) tends to zero in probability, we prove that

(3.7)
√
m∇rmn (0)− 1

n

n∑
i=1

1√
m

m∑
k=1

ϕ(Y k|Xi)

and

(3.8)
1

n

n∑
i=1

1√
m

m∑
k=1

ϕ(Y k|Xi)−
1√
m

m∑
k=1

ϕ̄(Y k)
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tend to zero in probability. We start with (3.7) and calculate

∇rmn (0) =
1

n

n∑
i=1

1

m

m∑
k=1

ϕ(Y k|Xi)C(Xi, 0)

Cm(Xi, 0)
.

Therefore, by the Cauchy–Schwarz inequality, the expression (3.7) is bounded by

(3.9)

√
1

n

n∑
i=1

[Cm(Xi, 0)− C(Xi, 0)]2

C2
m(Xi, 0)

√
1

n

n∑
i=1

∣∣∣∣ 1√
m

m∑
k=1

ϕ(Y k|Xi)

∣∣∣∣2.
By assumptions 6(a) and 7 we again infer that for arbitrary ε > 0, η > 0 and suffi-
ciently large m with probability at least 1− η for every x ∈ X

|Cm(x, 0)− C(x, 0)| ¬ ε and Cm(x, 0) ­ α/2.

Therefore, the term under the first square root in (3.9) tends in probability to
zero because with probability at least 1− η

1

n

n∑
i=1

[Cm(Xi, 0)− C(Xi, 0)]
2

C2
m(Xi, 0)

¬ sup
x∈X

[Cm(x, 0)− C(x, 0)]2

C2
m(x, 0)

¬ 4ε2

α2

if m is sufficiently large. Using Markov’s inequality and assumption 3, we see that
the second square root in (3.9) is bounded in probability, since

EXi∼g,Y k∼h
1

n

n∑
i=1

∣∣∣∣ 1√
m

m∑
k=1

ϕ(Y k|Xi)

∣∣∣∣2 = EX∼g,Y k∼h

∣∣∣∣ 1√
m

m∑
k=1

ϕ(Y k|X)

∣∣∣∣2
= EX∼g,Y∼h

∣∣ϕ(Y |X)
∣∣2 = W̃ <∞,

where we use the fact that EY∼hϕ(Y |x) = 0 for fixed x.
Now consider (3.8). Change the order of summation and notice that

EXi∼g,Y k∼h

∣∣∣∣ 1√
m

m∑
k=1

[
1

n

n∑
i=1

ϕ(Y k|Xi)− ϕ̄(Y k)

]∣∣∣∣2
= EXi∼g,Y∼h

∣∣∣∣ 1n n∑
i=1

ϕ(Y |Xi)− ϕ̄(Y )

∣∣∣∣2 = 1

n
EX∼g,Y∼h

∣∣ϕ(Y |X)− ϕ̄(Y )
∣∣2,

so (3.8) tends to zero in L2, hence, in probability. �

REMARK 3.1. To explain the relation between the results in [14] concerning
models with missing data and our results for models with intractable constants, we
compare our methods and those in [14]. Describing the missing data model, we
borrow the notation from [14].
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In the missing data model one approximates the observed data likelihood,
that is ∫

fθ(x, y)dx,

where fθ(x, y) is the joint density of observed y and missing x. Therefore, one
estimates the integral of the density. In the model with intractable constants and
covariates, which is considered in this paper, one approximates∫

f(y|x, θ)dy,

i.e. the integral of a function that is not a density but only a nonnegative function.
These facts have significant impact on the proofs of Theorem 2.3 in [14] and The-
orem 3.1 in the current paper. Namely, in [14] one considers limits of sequences of
random variables:

(3.10)
1

m

m∑
i=1

fθ(Xi|y)
h(Xi)

,
1

m

m∑
i=1

∇fθ(Xi|y)
h(Xi)

,
1

m

m∑
i=1

∇2fθ(Xi|y)
h(Xi)

,

where X1, . . . , Xm are i.i.d. from a density h, and y, θ are fixed. These limits are
one, zero and zero, respectively, so they do not depend on y and θ. In our problem
we consider the expressions

(3.11)
1

m

m∑
k=1

f(Y k|x, θ)
h(Y k)

,
1

m

m∑
k=1

∇f(Y k|x, θ)
h(Y k)

,
1

m

m∑
k=1

∇2f(Y k|x, θ)
h(Y k)

,

where Y 1, . . . , Y m are i.i.d. from a density h, and x, θ are fixed. The limits of
expressions in (3.11) are C(x, θ),∇C(x, θ) and ∇2C(x, θ), respectively. Thus,
they do depend on x and θ. In fact, the proofs of Theorem 2.3 in [14] and our
Theorem 3.1 are based on uniform convergence of quantities in (3.10) and (3.11).
Thus, dependence on x, θ of limits of terms in (3.11) makes the proof of Theorem
3.1 more difficult than Theorem 2.3 in [14], because we also have to investigate
functionsC(x, θ),∇C(x, θ) and∇2C(x, θ) in x ∈ X and θ ∈ U. To do it, we need
the additional condition (assumption 7) that helps us to controlC(x, θ), |∇C(x, θ)|
and |∇2C(x, θ)| uniformly over x and θ.

The considerable difference between [14] and our paper can be also found
while comparing argumentation used to obtain the convergence

(3.12)
(
V

n
+
W

m

)−1/2
∇ℓ̄mn (0)→d N (0, I), n,m→∞,

that is needed in the proof of Theorem 3.1 and its analog in the proof of Theorem
2.3 in [14]. Namely, to prove the analog of (3.12) in [14] one uses an arduous and
complicated method based on weak convergence of stochastic processes and its
properties (see [14], Lemma A.4). Our analysis relates only to elementary tools,
for instance, the CLT. The price that we pay for this significant simplification of
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the proof is the additional assumption 2 in Theorem 3.1. However, this price is low,
because assumption 2 is not restrictive. Indeed, it is automatically fulfilled if ℓ̄mn (θ)
is concave in θ (see [12], Theorem 4). In particular, ℓ̄mn (θ) is concave for models
with densities belonging to the exponential family, for instance, the autologistic
model [8].

Note that in assumptions 5 and 6 in Theorem 2.1 and assumptions 5 and 6
in Theorem 3.1 we need uniform convergence in probability. In the corresponding
conditions (4), (5) and (7) in Theorem 2.3 in [14] one uses almost sure conver-
gence. Moreover, comparing assumption 6(b) in Theorem 3.1 to assumption (6) in
Theorem 2.3 in [14], we see that the condition contained in the current paper is
also weaker, because we replace the Donsker class by the Glivenko–Cantelli class
(in probability).

Finally, we discuss assumptions in Theorem 3.1. Note that conditions 1–3 are
similar to their analogs in Theorem 2.1. Therefore, we briefly comment on the
others. Consider the exponential family with

f(y|x, θ) = exp
(
θTW (y, x)

)
,

where W (y, x) =
(
W1(y, x), . . . ,Wp(y, x)

)
, the set X is compact and the func-

tionW (y, x) is continuous with respect to the variable x. For simplicity we restrict
attention to a finite (but very large) space Y , so that

C(x, θ) =
∑
y∈Y

exp
(
θTW (y, x)

)
.

The autologistic model [8] that is very popular in spatial statistics belongs to this
family. We can calculate that

∇C(x, θ) =
∑
y∈Y

exp
(
θTW (y, x)

)
W (y, x),

∇2C(x, θ) =
∑
y∈Y

exp
(
θTW (y, x)

)
W (y, x)W T (y, x),

∇2 log p(y|x, θ) = −∇2 logC(x, θ) = −∇
2C(x, θ)

C(x, θ)
+
∇C(x, θ)∇TC(x, θ)

C2(x, θ)
.

Since the function W (y, x) is continuous with respect to x, functions C(x, θ),
∇C(x, θ),∇2C(x, θ) are continuous with respect to both variables on the com-
pact set X ×U, so assumption 7 is satisfied. Besides, the function∇2 log p(y|x, θ)
is also continuous, which implies condition 4 to be fulfilled. The uniform conver-
gence in assumptions 5 and 6 follows from Theorem 16(a) in [4] or Example 19.8
in [15] if we again use compactness of sets X , U and continuity of considered
functions.
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