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Abstract. We prove that the Green function of a generator of isotropic
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bounded smooth open sets if the drift function is from an appropriate Kato
class.

2010 AMS Mathematics Subject Classification: Primary: 47A55,
60J50, 60J75, 47G20; Secondary: 60J35.

Key words and phrases: Unimodal Lévy process, heat kernel,
smooth domain, Green function, gradient perturbation.

1. INTRODUCTION

Let Xt be a pure-jump isotropic unimodal Lévy process on Rd, d > 2. That
is, Xt is a Lévy process with a rotationally invariant and radially non-increasing
density function pt(x) on Rd \ {0}. The characteristic exponent of {Xt} equals

ψ(x) =
∫
Rd

(
1− cos(x · z)

)
ν(dz), x ∈ Rd,

where ν is a Lévy measure, i.e.,
∫
Rd(1 ∧ |z|2)ν(dz) <∞. For general information

on unimodal processes, we refer the reader to [3], [15], [31]. One of the primary
examples of the mentioned class of processes is the isotropic α-stable Lévy process
having the fractional Laplacian ∆α/2 as a generator.

Perturbations of ∆α/2 by the first order operators are currently widely studied
by many authors from various points of view, see [5]–[8], [10], [14], [18], [19],
[22], [24]–[26], [28], [29]. In a recent paper [6] the authors studied the Green
function of ∆α/2 + b(x) · ∇ in bounded C1,1 domains. Here b is a vector field
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from the Kato class Kα−1d . It was shown that the Green function of the original
process is comparable with the Green function of the perturbed process for any
bounded C1,1 open set. In this paper we generalize the result of [6] to the case of
isotropic unimodal Lévy processes. Let
(1.1)
Lf(x) =

∫
Rd

(
f(x+ z)− f(x)− 1|z|<1

(
z · ∇f(x)

))
ν(dz), f ∈ C2

b (Rd),

be a generator of the process Xt. We will consider a non-empty bounded open
C1,1 set D and the Green function GD for L. Now, let G̃D(x, y) be a Green func-
tion for

L̃ = L+ b(x) · ∇,
where b is a function from the Kato class K∇d (see Section 2 for details). Our main
result is

THEOREM 1.1. Let d > 2, b ∈ K∇d , and let D ⊂ Rd be a bounded C1,1 open
set. We assume that the characteristic exponent

ψ ∈WLSC(α, 0, c) ∩WLSC(α1, 1, c1) ∩WUSC(α, 0, C), where α1 > 1,

(1.2) |∇xGD(x, y)| 6 C0
GD(x, y)

|x− y| ∧ δD(x) ∧ 1
.

Then, there exists a constant C such that, for x, y ∈ D,

(1.3) C−1GD(x, y) 6 G̃D(x, y) 6 CGD(x, y).

Here WLSC and WUSC are the classes of functions satisfying a weak lower
and a weak upper scaling condition, respectively (see Section 2). The condition
(1.2) is satisfied for a wide class of processes. For example, (1.2) holds under
a mild assumption on a density of the Lévy measure, which is satisfied for any
subordinate Brownion motion (see Lemma 3.2) (see also [12], Theorem 1.4).

Generally, we follow the approach of [6]. Since some proofs are almost iden-
tical to the ones from [6], we omit them. The main tool, we use in this paper, is the
Duhamel (perturbation) formula (see Theorem 3.1). We note that this result can-
not be obtained directly in the same way as the perturbation formula for fractional
Laplacian (see [6], Lemma 12). One of the other difficulties in this paper is that
we do not have the explicit formula for the potential kernel G(x) of Xt. Moreover,
for stable process, ψ(ξ) = |ξ|α, which gives a nice scaling of some main objects.
Here, we have only a weak scaling, but it is sufficient for our purpose, although it
makes the calculations a little harder. For example, in the estimates of the Green
function a factor V

(
δD(x)

)
appears. For stable process, V (r) = rα/2, and if y is

such that δD(y) = λδD(x), then V
(
δD(y)

)
= λα/2V

(
δD(x)

)
. For the general uni-

modal process, V satisfies the weak scaling condition, and we can only estimate
V
(
δD(y)

)
.
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The paper is organized as follows. In Section 2, we give the definitions of the
processes X and X̃ and present their basic properties. In Section 3, we introduce
Green functions of X and X̃ . Lastly, in Section 4, we prove Theorem 1.1.

When we write f(x) ≈ g(x), we mean that there is a number 0 < C < ∞
independent of x, i.e., a constant such that for every x we have C1f(x) 6 g(x) 6
Cf(x). The notation C = C(a1, a2, . . . , an) means that C is a constant which
depends only on a1, a2, . . . , an. We use the convention that constants denoted by
capital letters do not change throughout the paper. For a radial function f : Rd →
[0,∞) we shall often write f(r) = f(x) for any x ∈ Rd with |x| = r.

2. PRELIMINARIES

In what follows, Rd denotes the Euclidean space of dimension d > 2,
dy stands for the Lebesgue measure on Rd. Without further mention we will only
consider Borelian sets, measures and functions in Rd. As usual, we write a ∧ b =
min(a, b) and a ∨ b = max(a, b). By x · y we denote the Euclidean scalar product
of x, y ∈ Rd. We let B(x, r) = {y ∈ Rd : |x− y| < r}. For D ⊂ Rd, the distance
to the complement of D will be denoted by

δD(x) = dist(x,Dc).

DEFINITION 2.1. Let θ ∈ [0,∞), and ϕ be a non-negative non-zero function
on (0,∞). We say that ϕ satisfies the weak lower scaling condition (at infinity) if
there are numbers α > 0 and c ∈ (0, 1] such that

(2.1) ϕ(λθ) > cλαϕ(θ) for λ > 1, θ > θ.

In short, we say that ϕ satisfies WLSC(α, θ, c) and write ϕ ∈ WLSC(α, θ, c).
If ϕ ∈ WLSC(α, 0, c), then we say that ϕ satisfies the global weak lower scaling
condition.

We consider similarly θ ∈ [0,∞). The weak upper scaling condition holds if
there are numbers α < 2 and C ∈ [1,∞) such that

(2.2) ϕ(λθ) 6 Cλαϕ(θ) for λ > 1, θ > θ.

In short, ϕ ∈WUSC(α, θ, C). For global weak upper scaling we require that θ = 0
in (2.2).

Throughout the paper, Xt will be the pure-jump isotropic unimodal Lévy pro-
cess on Rd. The Lévy measure ν of Xt is radially symmetric and non-increasing,
so it admits the radial density ν, i.e., ν(dx) = ν(|x|)dx. Hence the characteristic
exponent ψ of Xt is radial as well. We assume that (see Theorem 1.1)

ψ ∈WLSC(α, 0, c) ∩WUSC(α, 0, C),(2.3)
ψ ∈WLSC(α1, 1, c1) for some α1 > 1.(2.4)
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Following [27], we define

h(r) =
∫
Rd

(
1 ∧ |x|

2

r2

)
ν(|x|)dx, r > 0.

Let us notice that
h(λr) 6 h(r) 6 λ2h(λr), λ > 1.

Moreover, by [3], Lemma 1 and (6),

2−1ψ(1/r) 6 h(r) 6 C1ψ(1/r).

In fact, we may write C1 = dπ2/2, but it will be more convenient to write this
constant as C1. We define the function V as follows:

V (0) = 0 and V (r) = 1/
√
h(r), r > 0.

Since h(r) is non-increasing, V is non-decreasing. We have

(2.5) V (r) 6 V (λr) 6 λV (r), r > 0, λ > 1.

By weak scaling properties of ψ and the property h(r) ≈ ψ(1/r), we get

(2.6)
(

c

2C1

)1/2

λα/2 6 V (λr)

V (r)
6 (2CC1)

1/2λα/2, r > 0, λ > 1,

(2.7)
V (ηr)

V (r)
6

(
2C1

c1

)1/2

ηα1/2, η < 1, r < 1.

Therefore, V ∈WLSC
(
α/2, 0,

√
c/(2C1)

)
∩WUSC(α/2, 0,

√
2CC1).

REMARK 2.1. The threshold (0, 1) in the scaling of V in (2.7) may be re-
placed by any bounded interval at the expense of constant

√
2C1/c1 (see [3],

Section 3), i.e., for any R > 1, there is a constant c such that

(2.8)
V (ηr)

V (r)
6 cηα1/2, η < 1, r < R.

The global weak lower scaling condition (assumption (2.3)) implies that pt(x)
is jointly continuous on (0,∞)× Rd (e−tψ ∈ L1(Rd)) and (see [4], Lemma 1.5)

pt(x) ≈ [V −1(
√
t)]−d ∧ t

V 2(|x|)|x|d
,(2.9)

ν(x) ≈ 1

V 2(|x|)|x|d
.(2.10)

Analogously to α-stable processes we define the Kato class for gradient per-
turbations.
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DEFINITION 2.2. We say that a vector field b : Rd → Rd belongs to the Kato
class K∇d if

(2.11) lim
r→0+

sup
x∈Rd

∫
B(x,r)

V 2(|x− z|)
|x− z|d+1

|b(z)|dz = 0.

REMARK 2.2. We note that L∞(Rd) ⊂ K∇d .

Let us put
p(t, x, y) = pt(y − x).

By [16], Theorem B.5, we have

|∇xp(t, x, y)| 6 c
1

V −1(
√
t)
p(t, x, y), t > 0, x, y ∈ Rd.

Let b ∈ K∇d . Following [5] and [20], for t > 0 and x, y ∈ Rd, we recursively define

p0(t, x, y) = p(t, x, y),

pn(t, x, y) =
t∫
0

∫
Rd

pn−1(t− s, x, z)b(z) · ∇zp(s, z, y) dz ds, n > 1,

and we let

(2.12) p̃ =
∞∑
n=0

pn.

By [20], Theorem 1.1, the series converges to a probability transition density func-
tion, and

(2.13) c−1T p(t, x, y) 6 p̃(t, x, y) 6 cT p(t, x, y), x, y ∈ Rd , 0 < t < T,

where cT → 1 if T → 0, see [20], Theorem 3. Moreover, one can prove that p̃ is
jointly continuous on (0,∞)× Rd × Rd (see [5], Corollary 19).

We consider the time-homogeneous transition probabilities

Pt(x,A) =
∫
A

p(t, x, y)dy, P̃t(x,A) =
∫
A

p̃(t, x, y)dy,

t > 0, x ∈ Rd, A ⊂ Rd. By Kolmogorov’s and Dynkin–Kinney’s theorems the
transition probabilities Pt and P̃t define, in a usual way, Markov probability mea-
sures {Px, P̃x, x ∈ Rd} on the space Ω of the right-continuous and left-limited
functions ω : [0,∞)→ Rd. We let Ex, Ẽx be the corresponding expectations. We
will denote by X = {Xt}t>0 the canonical process on Ω, Xt(ω) = ω(t). Hence,

Px(Xt ∈ B) =
∫
B

p(t, x, y)dy, P̃x(Xt ∈ B) =
∫
B

p̃(t, x, y)dy.



124 T. Grzywny et al.

For any open set D we define the first exit time of the process Xt from D,

τD = inf{t > 0 : Xt /∈ D}.

Now, by the usual Hunt’s formula, we define the transition density of the process
killed when leaving D (see [1], [13], [4]):

pD(t, x, y) = p(t, x, y)− Ex[τD < t; p(t− τD, XτD , y)], t > 0, x, y ∈ Rd .

We briefly recall some well-known properties of pD (see [4]). The function pD
satisfies the Chapman–Kolmogorov equations∫

Rd

pD(s, x, z)pD(t, z, y)dz = pD(s+ t, x, y) , s, t > 0, x, y ∈ Rd .

Furthermore, pD is jointly continuous (compare Lemma 2.3) when t ̸= 0, and we
have

(2.14) 0 6 pD(t, x, y) = pD(t, y, x) 6 p(t, x, y).

In particular,

(2.15)
∫
Rd

pD(t, x, y)dy 6 1.

By Blumenthal’s zero-one law, radial symmetry of pt and C1,1 geometry of the
boundary ∂D, we have Px(τD = 0) = 1 for every x ∈ Dc. In particular, pD(t, x, y)
= 0 if x ∈ Dc or y ∈ Dc. By the strong Markov property,

Ex[t < τD; f(Xt)] =
∫
Rd

f(y)pD(t, x, y)dy, t > 0, x ∈ Rd,

for functions f > 0.
For s ∈ R, x ∈ Rd, and ϕ ∈ C∞c (R×D), we have (see [2], Remark 4.2, and

[6], the proof of Lemma 5)

(2.16)
∞∫
s

∫
D

pD(u− s, x, z) [∂uϕ(u, z) + Lzϕ(u, z)] dzdu = −ϕ(s, x),

which justifies calling pD the Dirichlet heat kernel of L on D.
In a similar way, we define an analogous object for the process X̃ . Let τ̃D =

inf{t > 0 : X̃t /∈ D}. By Hunt’s formula,

(2.17) p̃D(t, x, y) = p̃(t, x, y)− Ẽx [τD < t; p̃(t− τD, XτD , y)].

Except symmetry, p̃D has analogous properties to pD, i.e., the Chapman–Kolmogo-
rov equation holds,∫

Rd

p̃D(s, x, z)p̃D(t, z, y)dz = p̃D(s+ t, x, y), s, t > 0, x, y ∈ Rd,

and 0 6 p̃D(t, x, y) 6 p̃(t, x, y). Now, we will prove that p̃D is jointly continuous
on (0,∞)×D ×D. First, we need two preparatory lemmas.
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LEMMA 2.1. Let δ > 0. Then Mδ := supt>0,|x−y|>δ p̃(t, x, y) <∞.

P r o o f. By (2.13) and [3], Corollary 7, for t 6 1,

p̃(t, x, y) 6 c
t

V 2(|x− y|)|x− y|d
.

Hence,
sup

0<t61,|x−y|>δ
p̃(t, x, y) 6 c

V 2(δ)δd
.

Furthermore, by the semigroup property, for t > 1,

p̃(t, x, y) 6 c
∫
Rd

p̃(t− 1, x, z)p(1, z − y)dz 6 cp(1, 0),

which implies

Mδ 6 cmax
{(
V (δ)δd

)−1
, p(1, 0)

}
<∞. �

LEMMA 2.2. Let δ > 0. Then

lim
s→0+

sup
t6s,x∈Rd

P̃x(|Xt −X0| > δ) = 0,(2.18)

lim
s→0+

sup
x∈Rd

P̃x(τB(x,δ) 6 s) = 0.(2.19)

P r o o f. Let s 6 1 and t 6 s. By (2.13) and [3], Corollary 6,

P̃x(|Xt −X0| > δ) 6 c1
∫
Bc

δ

p(t, y)dy 6 c
t

V 2(δ)
6 c(δ)s.

Hence, we obtain (2.18). The equality (2.19) is a consequence of (2.18) and the
strong Markov property (see [10], the proof of Lemma 3.1). �

Although, in this paper, we consider only bounded sets, the following lemma
also holds for unbounded domains. To obtain it we use standard arguments (e.g.,
[13], Theorem 2.4).

LEMMA 2.3. p̃D is jointly continuous on (0,∞)×D ×D.

P r o o f. Let 0 < δ < r, Dδ = {y ∈ D : δD(y) > δ} and Dδ
r = Dδ ∩ Br.

Generally, δ is close to zero and r is large. We assume that (t, x, y) ∈ [δ, r] ×
Dδ ×Dδ

r . We denote by

r̃D(t, x, y) = Ẽx[p̃(t− τD, XτD , y), τD < t]

the killing measure of X̃ . Hence,

p̃D(t, x, y) = p̃(t, x, y)− r̃D(t, x, y).
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Let s < δ/2,

hs(t, x, y) = Ẽx[p̃(t− s− τD, XτD , y), τD < t− s],

and ϕs(t, x, y) = Ẽxhs(t,Xs, y). By the Markov property,

r̃D(t, x, y)− ϕs(t, x, y) = Ẽx[p̃(t− τD, XτD , y), τD 6 s]

− Ẽx
[
τD 6 s, ẼXs [p̃(t− s− τD, XτD , y), τD < t− s]

]
.

By Lemma 2.1,
(2.20)

|r̃D(t, x, y)− ϕs(t, x, y)| 6 2MδP̃x(τD 6 s) 6 2Mδ sup
z∈Rd

P̃z(τB(z,δ) 6 s).

Hence, by (2.19), it is enough to prove the continuity of ϕs on [δ, r] ×Dδ ×Dδ
r

for 0 < s < δ/2.
First, we prove the equicontinuity of hs(·, z, ·) on [δ, r]×Dδ

r for z ∈ Rd. Fix
ε > 0. By (2.13) and (2.9), there is 0 < λ 6 δ/4 such that, for w ∈ Dc, v ∈ Dδ

and u 6 λ,

(2.21) p̃(u,w, v) 6 c
λ

V 2(δ)δd
< ε.

Next, by the semigroup property, (2.9) and (2.13), there is R > 2r such that, for
w ∈ Bc

R, v ∈ Br and u 6 r,

(2.22) p̃(u,w, v) 6 cr

V 2(R/2)Rd
< ε.

Now, we divide hs into three parts and treat them separately,

hs(t, z, y) = J1(t, z, y) + J2(t, z, y) + J3(t, z, y),

where

J1(t, z, y) = Ẽz[p̃(t− s− τD, XτD , y), τD < t− s− λ,XτD ∈ BR],
J2(t, z, y) = Ẽz[p̃(t− s− τD, XτD , y), t− s− λ 6 τD < t− s],
J3(t, z, y) = Ẽz[p̃(t− s− τD, XτD , y), τD < t− s− λ,XτD ∈ B

c
R].

By (2.21) and (2.22),

(2.23) J2(t, z, y) + J3(t, z, y) < 2ε, z ∈ Rd, (t, y) ∈ [δ, r]×Dδ
r .

Since p̃(·, ·, ·) is continuous on (0,∞) × Rd × Rd, it is uniformly continuous on
[λ/2, r]×BR×Br. Hence, there is 0 < ε1 6 λ/2 such that, for (u,w), (u0, w0) ∈
[λ/2, r]×Dδ

r and w ∈ BR,

(2.24) |p̃(u, v, w)− p̃(u0, v, w0)| < ε if |(u,w)− (u0, w0)| < ε1, v ∈ Rd.
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Assume that (t0, y0) ∈ [δ, r]×Dδ
r and t0 6 t. Then

J1(t0, z, y0) = Ẽz[p̃(t0 − s− τD, XτD , y0), τD < t− s− λ,XτD ∈ BR]
− Ẽz[p̃(t0 − s− τD, XτD , y0), t0 6 τD + s+ λ < t,XτD ∈ BR].

This, (2.21) and (2.24) imply, for (t, y), (t0, y0) ∈ [δ, r]×Dδ
r ,

(2.25)
sup
z∈Rd

|J1(t, z, y)− J1(t0, z, y0)| < 2ε if |(t, y)− (t0, y0)| < ε1, z ∈ Rd.

Combining (2.23) with (2.25) gives the equicontinuity of hs(·, z, ·) on [δ, r]×Dδ
r

for z ∈ Rd.
This implies the equicontinuity of ϕs(·, z, ·) on [δ, r]×Dδ

r for z ∈ Rd. Since
P̃s is strong Feller, ϕs(t, ·, y) is continuous on Rd. Therefore, ϕs(·, ·, ·) is jointly
continuous on [δ, r]× Rd ×Dδ

r . By (2.20) and (2.19), rD(·, ·, ·) is jointly continu-
ous on [δ, r]×Dδ

r ×Dδ
r , which implies continuity on (0,∞)×D ×D. Since p̃ is

jointly continuous, p̃D is jointly continuous on (0,∞)×D ×D. �

By similar calculations to those in [20], Theorem 2, one can prove that p̃ is the
fundamental solutions for L̃.

LEMMA 2.4. For s > 0, x ∈ D and ϕ ∈ C∞c
(
(0,∞)×D

)
, we have

(2.26)
∞∫
s

∫
D

p̃D(u− s, x, z)(∂u + L̃)ϕ (u, z) dz du = −ϕ(s, x).

3. GREEN FUNCTIONS

In this section we define and prove some properties of the Green functions of
L and L̃.

3.1. Green function of L.

DEFINITION 3.1. A non-empty open setD⊂Rd is of class C1,1 at scale r>0
if for everyQ ∈ ∂D there are ballsB(x′, r) ⊂ D andB(x′′, r) ⊂ Dc tangent atQ.

If D is C1,1 at some unspecified scale (hence also at all smaller scales), then
we simply say that D is C1,1. The localization radius,

r0 = r0(D) = sup{r : D is C1,1 at scale r},

refers to the local geometry of D, while the diameter,

diam(D) = sup{|x− y| : x, y ∈ D},

refers to the global geometry of D. The ratio diam(D)/r0(D) > 2 will be cal-
led the distortion of D. We can localize each C1,1 open set as follows (see [5],
Lemma 1):
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LEMMA 3.1. There exists κ > 0 such that ifD isC1,1 at scale r andQ ∈ ∂D,
then there is a C1,1 domain F ⊂ D with r0(F ) > κr, diam(F ) < 2r and

(3.1) D ∩B(Q, r/4) = F ∩B(Q, r/4).

We will write F = F (z, r), and note that the distortion of F is at most 2/κ,
an absolute constant.

In what follows D will be a non-empty bounded C1,1 open set in Rd. We note
that such D may be disconnected, but then it may only have a finite number of
connected components at a positive distance from each other.

DEFINITION 3.2. We say that a function h is L-harmonic in the open set D if
for every U such that U ⊂ D we have

h(x) = Exh(XτU ), x ∈ Rd .

We define the Green function of L for D,

GD(x, y) =
∞∫
0

pD(t, x, y)dt, x, y ∈ Rd .(3.2)

We briefly recall some basic properties of GD(x, y) (see [4] for details). For x ∈
Dc or y ∈ Dc, GD(x, y) = 0. The Green function GD(x, y) is symmetric, con-
tinuous for x ̸= y, and GD(x, x) = ∞ for x ∈ D. Furthermore, GD(·, y) is L-
harmonic in D \ {y} for every y ∈ D. We also have

LEMMA 3.2. Let −ν ′(r)/r be non-increasing. Then (1.2) holds.

P r o o f. Since GD(·, y) is L-harmonic on D \ B(y, r) for small r > 0, by
(2.10) and by Theorem 1.1 and Proposition 1.3 in [23], we have

(3.3) |∇xGD(x, y)| 6 c
GD(x, y)

δD\B(y,|x−y|/2)(x)
6 2c

GD(x, y)

|x− y| ∧ δD(x) ∧ 1
. �

The Green operator of L for D is

GDf(x) = Ex
τD∫
0

f(Xt)dt =
∫
Rd

GD(x, y)f(y)dy, x ∈ Rd ,

and we have

(3.4) GD(Lϕ)(x) =
∫
D

GD(x, y)Lϕ(y)dy = −ϕ(x) , x ∈ Rd, ϕ ∈ C∞c (D).

By the Ikeda–Watanabe formula [17], the Px-distribution of XτD has a density
function, called the Poisson kernel and defined as

(3.5) PD(x, z) =
∫
D

GD(x, y)ν(z − y)dy, x ∈ D, z ∈ (D)c.
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Hence,
Px(XτD ∈ B) =

∫
B

PD(x, z)dz, B ⊂ (D)c.

Because of the C1,1 geometry of D, Px(XτD ∈ ∂D) = 0 (see [30]); hence, the
above formula holds for B ⊂ Dc (we put PD(x, z) = 0 for z ∈ ∂D).

By G we denote the potential kernel of X , that is,

G(x) =
∞∫
0

pt(x) dt,

which is finite on Rd \ {0} since d > 2 and the global weak upper scaling condition
for ψ holds. For x ∈ Rd \ {0}, we write

U(x) =
V 2(|x|)
|x|d

.

We note that, by (2.5), U(x) is radially non-increasing. In [15], Theorem 3 and
Section 4, it was proved that G(x) ≈ U(x) for x ̸= 0. Let

r(y, z) = δD(y) ∨ δD(z) ∨ |y − z|.

LEMMA 3.3. Let D be a bounded open C1,1 set. Then

GD(y, z) ≈ U(y − z)
V
(
δD(y)

)
V
(
δD(z)

)
V 2

(
r(y, z)

) , y, z ∈ Rd,

where the comparability constant depends only on ψ and the distortion of D.

P r o o f. Taking the estimates of pD(t, x, y) (see [4], Proposition 4.4 and The-
orem 4.5) and integrating them against time (see [11], the proof of Theorem 7.3),
we get

GD(y, z) ≈ U(y − z)
(
V
(
δD(y)

)
V
(
δD(z)

)
V 2(|y − z|)

∧ 1
)
,

where the comparability constant depends on ψ only through the scaling charac-
teristics and the distortion of D. Since V is non-decreasing, we have

V
(
δD(y)

)
V
(
δD(z)

)
V 2

(
r(y, z)

) 6
V
(
δD(y)

)
V
(
δD(z)

)
V 2(|y − z|)

∧ 1.

By the symmetry of GD(x, y), we may assume that δD(y) 6 δD(z). If r(y, z) =
|y − z|, then

V
(
δD(y)

)
V
(
δD(z)

)
V 2(|y − z|)

∧ 1 =
V
(
δD(y)

)
V
(
δD(z)

)
V 2

(
r(y, z)

) .
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Let r(y, z) = δD(z). If δD(y) > δD(z)/2, then

V
(
δD(y)

)
V
(
δD(z)

)
V 2

(
r(y, z)

) >
V
(
δD(y)

)
V
(
2δD(y)

) > 1

2
> 1

2

(
V
(
δD(y)

)
V
(
δD(z)

)
V 2(|y − z|)

∧ 1
)
.

If δD(y) < δD(z)/2, then r(y, z) = δD(z) < 2|y − z|. Hence, by (2.5), we have,
for y, z ∈ D,

V
(
δD(y)

)
V
(
δD(z)

)
V 2(|y − z|)

∧ 1 6
V
(
δD(y)

)
V
(
δD(z)

)
V 2

(
r(y, z)/2

) 6 4
V
(
δD(y)

)
V
(
δD(z)

)
V 2

(
r(y, z)

) . �

The following result is the so-called 3G-theorem (see [6]).

PROPOSITION 3.1. Let D be a bounded open C1,1 set at scale r > 0. There
is a constant C2 = C2

(
d, ψ, diam(D)/r

)
such that

GD(x, z)GD(z, y)

GD(x, y)
6 C2V

(
δD(z)

)( GD(x, z)

V
(
δD(x)

) ∨ GD(z, y)

V
(
δD(y)

)).
P r o o f. Let G(x, y) = U(y − x)/V 2

(
r(x, y)

)
. Then

(3.6) G(x, z) ∧ G(z, y) 6 c(d)G(x, y).

Indeed, assume that |y − z| 6 |x− z|; then |x− y| 6 2|x− z| and

r(x, y) 6 δD(x) + |x− y| 6 3r(x, z).

By the monotonicity of U , V and (2.5) we obtain

G(x, z) 6
U
(
(x− y)/2

)
V 2

(
r(x, y)/3

) 6 322dG(x, y).

By Lemma 3.3, GD(x, y) ≈ GD(x, y)/
(
V
(
δD(x)

)
V
(
δD(y)

))
. Hence, by (3.6),

GD(x, z)GD(z, y)

GD(x, y)
≈ V 2

(
δ(z)

)G(x, z)G(z, y)
G(x, y)

6 cV 2
(
δ(z)

)(
G(x, z) ∨ G(z, y)

)
≈ V

(
δD(z)

)( GD(x, z)

V
(
δD(x)

) ∨ GD(z, y)

V
(
δD(y)

)). �

The next lemma is crucial in our consideration. The proof is based on the proof
of Lemma 9 in [6]. Nevertheless, we give the details, because here we can see how
the weak scaling condition is used.

LEMMA 3.4. Let us assume that 0 < r0 <∞ and diam(D) 6 r0. Then it fol-
lows thatGD(y, z)/[δD(z)∧ |y− z|] is uniformly in y integrable against |b(z)|dz.
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P r o o f. By Lemma 3.3, it is enough to prove the uniform integrability of

H(y, z) = U(y − z)
V
(
δD(y)

)
V
(
δD(z)

)
V 2

(
r(y, z)

) δD(z) ∨ |y − z|
|y − z|δD(z)

.

Let AR(y) = {z ∈ D : H(y, z) > R}. We will show that

lim
R→∞

sup
y∈D

∫
AR(y)

H(y, z)|b(z)|dz = 0.

Let c2 = c2
(
diam(D)

)
be such that

(3.7) V (ηr) 6 c2η
α1/2V (r), η < 1, r < diam(D)

(see Remark 2.1). We recall that α1 > 1. For r > 0, we put

(3.8) Kr = sup
x∈Rd

∫
B(x,r)

|b(y)|U(x− y)
|x− y|

dy.

By (2.11), Kr <∞ and Kr ↓ 0 as r ↓ 0. Since U is a radial decreasing function,
we may write U(r) = U(x) for all |x| = r, and we have∫
B(x,r)

|b(z)| dz 6 r

U(r)

∫
B(x,r)

U(x− z)
|x− z|

|b(z)| dz 6 Kr
r

U(r)
, x ∈ Rd, r > 0.

Let m > 2 be such that δD(y) 6 mδD(z); then, by (3.7),

(3.9) H(y, z)
|y − z|
U(y − z)

6
V
(
δD(y)
r(y,z)r(y, z)

)
V
(
δD(z)
r(y,z)r(y, z)

)
V
(
r(y, z)

)2 r(y, z)

δD(z)

6 c22
δD(y)

α1/2

r(y, z)α1−1δD(z)1−α1/2
6 c22

(
δD(y)

δD(z)

)1−α1/2

6 c22m
1−α1/2.

By (3.7), we also have

(3.10)
U(y − z)
|y − z|

=
V 2(y − z)
|y − z|d+1

6 c22
|y − z|α1

diam(D)α1
V 2

(
diam(D)

)
.

Hence, the relation (3.9) yields AR(y) ⊂ {z ∈ D : |y − z| < cR−1/(d+1−α1)},
where c = c

(
m,

(
diam(D), α1

))
is some constant.

Let Dr = {x ∈ D : δD(x) > r}. If R→∞, then, uniformly in y,

(3.11)
∫

AR(y)∩DδD(y)/m

H(y, z)|b(z)|dz 6 c22m
1−α1/2KcR−1/(d+1−α1) → 0.
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For y ∈ D, k, n > 0 and m > 2, we consider

Wm
n,k(y) =

{
z ∈ D :

δD(y)

m2n+1
< δD(z) 6

δD(y)

m2n
, k <

|y − z|
δD(y)

6 k + 1

}
.

Wm
n,k(y) may be covered by c1(k + 1)d−2md−12n(d−1) balls of radii δD(y)

m2n , thus∫
Wm

n,k(y)

|b(z)| dz

6 c1(k + 1)d−2md−12n(d−1) sup
x∈Rd

∫
B(x,δD(y)/(m2n))

|b(z)| dz

6 c1KδD(y)/(m2n)(k + 1)d−2md−12n(d−1)
(
δD(y)

m2n

)d+1

V −2
(
δD(y)

m2n

)
= c1KδD(y)/(m2n)(k + 1)d−2m−22−2nδD(y)

d+1V −2
(
δD(y)

m2n

)
.

For z ∈Wm
n,k(y), we have δD(y) > 2δD(z), hence we get |y − z| > δD(y)/2 and

|y − z| > δD(z). Therefore,

H(y, z) 6
V
(
δD(y)

)
V
(
δD(z)

)
|y − z|dδD(z)

, z ∈Wm
n,k(y),

and we obtain∫
AR(y)\DδD(y)/m

H(y, z)|b(z)| dz 6
∞∑
n=0

∞∑
k=0

∫
Wm

n,k(y)

V
(
δD(y)

)
V
(
δD(z)

)
|y − z|dδD(z)

|b(z)| dz

6
∞∑
n=0

∞∑
k=0

V
(
δD(y)

)
V
(
δD(y)/(m2n)

)
m2n+1(

(k + 1)δD(y)/2
)d
δD(y)

∫
Wm

n,k(y)

|b(z)| dz

6 c2KδD(y)/m

∞∑
n=0

∞∑
k=0

(k + 1)−2m−12−n
V
(
δD(y)

)
V
(
δD(y)/(m2n)

)
6 c3KδD(y)/m

∞∑
n=0

∞∑
k=0

(k + 1)−2mα/2−12n(α/2−1) 6 c4m
α/2−1KδD(y)/m .

Let ε > 0. We choose m and R so large that c4mα/2−1Kdiam(D)/m < ε/2 and

sup
y∈D

∫
DδD(y)/m∩AR(y)

H(y, z)|b(z)| dz < ε/2 .

This completes the proof. �

LEMMA 3.5. If f ∈ K∇d , then

(3.12) ∇y
∫
D

GD(y, z)f(z) dz =
∫
D

∇y GD(y, z)f(z) dz , y ∈ D.
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P r o o f. Fix y ∈ D, and let 0 < h < δD(y)/2 and hd = (0, . . . , 0, h) ∈ Rd.
Then

|GD(y + hd, z)−GD(y, z)|
h

=
1

h

∣∣∣∣ 1∫
0

d

ds
GD(y + shd, z)ds

∣∣∣∣
=

∣∣∣∣ 1∫
0

∂

∂yd
GD(y + shd, z)ds

∣∣∣∣ 6 c1
1∫
0

GD(y + shd, z)

|y + shd − z| ∧ δD(y + shd)
ds

6 c2
1∫
0

U(y + shd, z)

|y + shd − z|
ds.

Since f ∈ K∇d , U(y + shd, z)/(|y + shd − z|) is uniformly in h integrable on
(0, 1)×D, which completes the proof (see [6], Lemma 10). �

For x, y ∈ D, we let

(3.13) κ(x, y) =
∫
D

|b(z)| GD(x, z)GD(z, y)

GD(x, y)
(
δD(z) ∧ |y − z|

)dz,
(3.14) κ̂(x, y) =

∫
D

|b(z)|
GD(x, z)GD(z, y)

(
δD(x) ∧ |x− y|

)
GD(x, y)

(
δD(z) ∧ |y − z|

)(
δD(x) ∧ |x− z|

)dz.
LEMMA 3.6. Let λ < ∞, r < 1. There is C3 = C3(d, ψ, b, λ, r) such that if

D is C1,1, diam(D)/r0(D) 6 λ and diam(D) 6 r, then κ(x, y) 6 C3, κ̂(x, y)
6 2C3 for x, y ∈ D, and C3(d, ψ, b, λ, r)→ 0 as r → 0.

P r o o f. By Lemma 3.3 and (2.7), we have

V
(
δD(z)

)
V
(
δD(x)

)GD(x, z) ≈ V 2
(
δD(z)

)
V 2

(
r(x, z)

)U(x− z)

6 c

(
δD(z)

r(x, z)

)α1

U(x−z)6C
(
δD(z) ∧ |x−z|

)U(x−z)
|x−z|

.

By Proposition 3.1, we obtain

(3.15)
GD(x, z)GD(z, y)

GD(x, y)
6 C2V

(
δD(z)

)( GD(x, z)

V
(
δD(x)

) ∨ GD(z, y)

V
(
δD(y)

))
6 cC2

((
δD(z) ∧ |x− z|

)U(x− z)
|x− z|

)
∨
((
δD(z) ∧ |y − z|

)U(y − z)
|y − z|

)
= CC2

(
δD(z) ∧ |x− z| ∧ |y − z|

)(U(x− z)
|x− z|

∨ U(y − z)
|y − z|

)
.
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Hence,

GD(x, z)GD(z, y)

GD(x, y)
(
δD(z) ∧ |y − z| ∧ |x− z|

) 6 CC2

(
U(x− z)
|x− z|

∨ U(y − z)
|y − z|

)
.

By (3.8) and the observation that limr→0Kr = 0, we have the statement for κ. The
rest of the proof is the same as that of Lemma 11 in [6], so we omit it. �

3.2. Green function of L̃. We will consider analogous objects to the ones con-
sidered in the previous section. We define the Green function and the Green oper-
ator of L̃ = L+ b∇ on D:

(3.16)
G̃D(x, y) =

∞∫
0

p̃D(t, x, y)dt, x, y ∈ Rd,

G̃Dϕ(x) =
∫
Rd

G̃D(x, y)ϕ(y)dy, ϕ ∈ Cc(Rd).

From the properties of p̃D(t, x, y) we get G̃D(x, y) = 0 if x ∈ Dc or y ∈ Dc.
By (2.13), we have

lim
t→0

p̃(t, x, y)

t
= lim

t→0

p(t, x, y)

t
= ν(y − x).

Thus, the intensity of jumps of the canonical process Xt is the same as that of X̃t.
Accordingly, we obtain the following description.

LEMMA 3.7. The P̃x-distribution of (τD, XτD) on (0,∞)× (D)c has density

(3.17)
∫
D

p̃D(u, x, y)ν(z − y) dy , u > 0 , z ∈ (D)c.

We define the Poisson kernel of D for L̃,

(3.18) P̃D(x, y) =
∫
D

G̃D(x, z)ν(y − z) dz , x ∈ D , y ∈ Dc.

By (3.16), (3.18) and (3.17), we have

(3.19) P̃x(XτD ∈ A) =
∫
A

P̃D(x, y)dy

if A ⊂ (D̄)c. For the case of A ⊂ ∂D, we refer the reader to Lemma 4.1.

LEMMA 3.8. G̃D(x, y) is continuous for x ̸= y, G̃D(x, x) =∞ for x ∈ D,
and

G̃D(x, y) 6 C4U(x− y), x, y ∈ Rd,

where C4 = C4

(
d, ψ, diam(D)

)
.
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Since the proof of the lemma is the same as the proof of Lemma 7 in [6], we
omit it.

For x ̸= y, we let

G1(x, y) =
∫
D

GD(x, z)b(z) · ∇zGD(z, y)dz.

By Lemma 3.6,
(3.20)

|G1(x, y)| 6 C0GD(x, y)
∫
D

|b(z)|GD(x, z)GD(z, y)
GD(x, y)

(
δD(z) ∧ |y − z|

)dz 6 C0C3G(x, y).

For f ∈ K∇d , we have∫
D

GD(x, y)
∫
D

|b(z)| GD(x, z)GD(z, y)

GD(x, y)
(
δD(z) ∧ |y − z|

)dz|f(y)|dy
6 C3

∫
D

GD(x, y)|f(y)|dy <∞.

Hence, by Lemma 3.5, (3.3) and Fubini’s theorem,

GDb∇GDf(x)=
∫
D

GD(x, z)
∫
D

b(z) · ∇GD(z, y)f(y)dydz=
∫
D

G1(x, y)f(y)dy.

Let us note that the linear map f 7→ b∇GDf preserves K∇d because ∇GDf is a
bounded function, see Lemma 3.4 for b equal to f .

The next lemma results from integrating (2.26) against time.

LEMMA 3.9. For all φ ∈ C∞c (D) and x ∈ D, we have
(3.21)∫

D

G̃D(x, z)L̃φ(z) dz =
∫
D

G̃D(x, z)
(
Lφ(z) + b(z) · ∇φ(z)

)
dz = −φ(x).

For every x ∈ D, let us define the function

(3.22) fx(y) = G̃D(x, y)−GD(x, y)−
∫
D

G̃(x, z)b(z) · ∇zGD(z, y)dz.

We can notice that fx(y) = 0 for y ∈ Dc.

LEMMA 3.10. The function fx(y) is well defined on Rd \ {x}, integrable on
Rd and bounded on Rd \B(x, r) for r > 0.

P r o o f. Let us fix y ̸= x and 0 < ρ 6 min{|x − y|/2, δD(x)/2}. By Lem-
ma 3.8 and (3.3),
(3.23)∫
D

|G̃D(x, z)b(z) · ∇zGD(z, y)|dz 6 C4C0

∫
D

U(x− z)|b(z)| |GD(z, y)|
δD(z) ∧ |z − y|

dz.
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Let D = D1 ∪ D2, where D1 = B(x, ρ/2)c ∩ D and D2 = B(x, ρ/2). By the
monotonicity of U and Lemma 3.4,

(3.24)
∫
D1

U(x− z)|b(z)| |GD(z, y)|
δD(z) ∧ |z − y|

dz

6 U

(
ρ

2

) ∫
D

|b(z)| |GD(z, y)|
δD(z) ∧ |z − y|

dz 6 c1U

(
ρ

2

)
for every y ∈ D. Since b ∈ K∇d ,
(3.25)∫
D2

U(x− z)|b(z)| GD(z, y)

δD(z) ∧ |z − y|
dz 6 C4U(ρ)

ρ

∫
D

U(x− z)|b(z)|dz 6 c2
U(ρ)

ρ
.

It implies that (3.23) is finite for every y ̸= x and bounded on Rd \ B(x, r) for
every r > 0.

It remains to show the integrability of fx. Let r = δD(x)/4 andB = B(x, 2r).
We put Mr =

(
2c1U(r/2) + c2U(r)/r

)
|D|. By (3.24) and (3.25),∫

D

∫
D

|G̃D(x, z)b(z) · ∇zGD(z, y)|dzdy

6Mr +
∫
B

∫
B

|G̃D(x, z)b(z) · ∇zGD(z, y)|dzdy

6Mr + C2
0

∫
B

∫
B

U(x− z)|b(z)| GD(z, y)

δD(z) ∧ |z − y|
dzdy

6Mr + C2
0

∫
B

∫
B

U(x− z)|b(z)|U(z − y)
|z − y|

dzdy

6Mr + C2
0

∫
D

U(x− z)|b(z)|
∫

B(z,diam(D))

U(z − y)
|z − y|

dydz

6Mr + cD
∫
D

U(x− z)|b(z)|dz,

which is finite since b ∈ K∇d . �

THEOREM 3.1. Let x, y ∈ Rd, x ̸= y. We have

(3.26) G̃D(x, y) = GD(x, y) +
∫
D

G̃D(x, z)b(z) · ∇zGD(z, y)dz.

P r o o f. For x ̸∈ D, GD(x, ·) ≡ 0 and (3.26) holds true. We fix x ∈ D. Let
g ∈ C∞c

(
B(0, 1)

)
be a symmetric function such that g > 0 and

∫
g(x)dx = 1. Let

rx = δD(x)/3 > δ > 0 and gδ(x) = δ−dg(x/δ). Set

D+δ = {x : dist(x,D) < δ} and D−δ = {x ∈ D : dist(x, ∂D) > δ}.
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We consider uδ,x = gδ ∗ fx ∈ C∞c (D+δ). Letφ∈C∞c (D−δ); then gδ ∗φ∈C∞c (D).
By Lemma 3.9,

(3.27) ⟨gδ ∗ fx,Lφ⟩ = ⟨fx, gδ ∗ Lφ⟩ = ⟨fx,L(gδ ∗ φ)⟩ = 0.

So uδ,x is weak L-harmonic on D−δ. Since uδ,x ∈ D(L), by [9], Theorem 2.7, we
get uδ,x(y) = Eyuδ,x(XτU ) for every U ⊂ D−δ. Since δ < rx, for every y ∈ Rd
we have

|uδ,x(y)| 6 Ey|uδ,x(XτB(x,2rx)
)| 6 ∥fx1Bc(x,rx)∥∞ :=M.

Since |uδ,x(y)|
δ→0−−−→ |fx(y)| a.s., we obtain |fx(y)| 6 ∥fx1Bc(x,rx)∥∞ a.s. Since

fx is continuous, fx is bounded on Rd.
Let {Un}n∈N be a family of sets such that Un ↗ D−δ. By the quasi-left con-

tinuity of Xt,

|uδ,x(y)| = | lim
n→∞

Eyuδ,x(XτUn
)| = |Ey lim

n→∞
uδ,x(XτUn

)| = |Eyuδ,x(XτD−δ
)|

=
∣∣Ey(uδ,x(XτD−δ

), XτD−δ
∈ D+δ \D−δ

)∣∣ 6MPy(XτD−δ
∈ D+δ \D−δ).

So |uδ,x(y)| 6MPy(XτD−δ
∈ D+δ \D−δ), and with δ → 0 we finally obtain

|fx(y)| 6MPy(XτD ∈ ∂D) = 0,

which completes the proof. �

Let G0(x, y) = GD(x, y). We inductively define

Gn(x, y) =
∫
D

Gn−1(x, z)b(z) · ∇zGD(z, y) dz , x ̸= y ∈ D, n = 1, 2, . . .

By Lemmas 3.5 and 3.6, Fubini’s theorem and induction, we also have
(3.28)
Gn(x, y) =

∫
GD(x, z)b(z) · ∇zGn−1(z, y)dz , x ̸= y ∈ D, n = 2, 3, . . .

We end this section with the estimates of G̃D(x, y) for small sets D.

LEMMA 3.11. Let d > 2, b ∈ K∇d and λ > 0. There is ε = ε(d, ψ, b, λ) > 0
such that if diam(D)/r0(D) 6 λ and diam(D) 6 ε, then

(3.29)
2

3
GD(x, y) 6 G̃D(x, y) 6

4

3
GD(x, y), x, y ∈ Rd.

P r o o f. We follow the arguments from [6]. We present only the main steps
of the proof, the details are left to the reader.
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Let x ̸= y. Iterating (3.26), by (3.28) we obtain, for n = 0, 1, . . .,

G̃D(x, y) = GD(x, y) +
∫
G̃D(x, z)b(z) · ∇zGD(z, y)dz(3.30)

=
n∑
k=0

Gk(x, y) +
∫
G̃D(x, z)b(z) · ∇zGn(z, y)dz.

Let λ > 0. We note that the constant C3 from Lemma 3.6 may be arbitrarily
small if diam(D)/r0(D) 6 λ and r0(D) is small enough. Hence, we may choose
ε = ε(d, ψ, b, λ) > 0 such that C0C3 < 1/4. By (1.2), (3.20), Lemma 3.6 and in-
duction,

(3.31) |Gn(x, y)| 6
∫
D

|Gn−1(x, z)||b(z)||∇zGD(z, y)|dz

6 (C0C3)
n−1 ∫

D

GD(x, z)|b(z)||∇zGD(z, y)| dz 6 4−nGD(x, y),

(3.32) |∇xGn(x, y)| 6 2−nC0
GD(x, y)

δD(x) ∧ |x− y|

for n = 0, 1, 2, . . . Now, we have G̃D(x, y) =
∑∞

n=0Gn(x, y). Indeed, by (3.32),
the remainder in (3.30) is bounded by

2−nC0

∫
D

U(x− z)|b(z)| GD(z, y)

δD(z) ∧ |y − z|
dz → 0 as n→∞.

The integral is finite because of Lemma 3.4. Thus, by (3.31),

G̃D(x, y) 6
∞∑
n=0

Gn(x, y) 6
∞∑
n=0

4−nGD(x, y) =
4

3
GD(x, y),

G̃D(x, y) > GD(x, y)−
∞∑
n=1

4−nGD(x, y) =
2

3
GD(x, y). �

4. PROOF OF THEOREM 1.1

Using the comparability of GD and G̃D for small C1,1 sets and repeating
the arguments from [6], we obtain estimates of the Poisson kernel and Harnack
principles. The proofs are almost identical to the ones from [6]. Nevertheless, due
to the references we use, we present them below.

By the Ikeda–Watanabe formula, we get

(4.1) P̃x(XτD ∈ A) ≈ Px(XτD ∈ A) , x ∈ D, A ⊂ (D)c,

for a sufficiently small diam(D) and bounded distortion. The next lemma says
that the process X̃t does not hit the boundary of our general C1,1 open set D at the
moment of the first exit from D.
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LEMMA 4.1. For every x ∈ D, we have P̃x(XτD ∈ ∂D) = 0.

P r o o f. Let u(x) = P̃x(XτD ∈ ∂D), x ∈ Rd. We claim that there exists c =
c(d, ψ,D, b)>0 such that u(x)<1− c for x∈D. Indeed, we consider small ε>0,
x ∈ D, r = ε dist(x,Dc), the ball B = B(x, r/2) ⊂ D, and the ball B′ ⊂ (D)c

with radius and distance to B comparable with r. By (4.1), (2.13) and Lemma 3.7,

P̃x(XτD /∈ ∂D) > P̃x(XτB(x,r/2)
∈ B′) ≈ Px(XτB(x,r/2)

∈ B′) > c,

where in the last inequality we used (3.5), (2.10), (2.5) and [27]. Furthermore,
let Dn = {y ∈ D : dist(y,Dc) > 1/n}, n = 1, 2, . . . We consider n such that
B(x, r/2) ⊂ Dn. We have P̃x(XτDn

∈ D) 6 1 − P̃x(XτB ∈ B′) 6 1 − c, as be-
fore. Let C = sup{u(y) : y ∈ D}. We have u(x) = Ẽx{u(XτDn

): XτDn
∈ D} 6

C(1− c), hence C 6 C(1− c), and so C = 0. �

In the context of Lemma 3.11, the P̃x distribution of XτD is absolutely contin-
uous with respect to the Lebesgue measure and has the density function

(4.2) P̃D(x, y) ≈ PD(x, y), y ∈ Dc,

provided x ∈ D. This follows from (3.19) and Lemma 4.1. For clarity,

(4.3) P̃x(XτS ∈ A) ≈ Px(XτS ∈ A), x ∈ S, A ⊂ Sc.

LEMMA 4.2 (Harnack inequality for L̃). Let x, y ∈ Rd, 0 < s < 1 and k ∈ N
satisfy |x − y| 6 2ks. Let u be non-negative in Rd and L̃-harmonic in B(x, s) ∪
B(y, s). There is C5 = C5(d, ψ, b) such that

(4.4) C−15 2−k(d+α)u(x) 6 u(y) 6 C52
k(d+α)u(x).

P r o o f. We may assume that s 6 1∧ ε/2, with ε of Lemma 3.11. Let f(z) =
u(z) for z ∈ B(y, 2s/3)c and f(z) =

∫
B(y,2s/3)c

u(v)PB(y,2s/3)(z, v) dv for z ∈
B(y, 2s/3), so that f is non-negative in Rd and L-harmonic in B(y, 2s/3). Let
z ∈ B(y, s/2). By (4.3),

u(z) = Ẽzu
(
X(τB(y,2s/3))

)
=

∫
B(y,2s/3)c

u(v)P̃B(y,2s/3)(z, v) dv ≈ f(z).

The Harnack inequality for L (see [15]) implies u(y) ≈ u(z), where the compara-
bility constant depends on ψ, d, b. The standard chain rule provides u(x) ≈ u(y)
for |x− y| < 3/2s. Therefore, we assume that |x− y| > 3s/2. For z ∈ B(y, s/2)
and w ∈ B(x, s/2) we have |w − z| 6 |x− y|+ |y − z|+ |w − x| 6 2ks+ s 6
2k+1s. Hence, by the Ikeda–Watanabe formula, (2.10) and [27],

PB(x,s/2)(x, z) =
∫

B(x,s/2)

GB(x,s/2)(x,w)ν(|w − z|)dw > ExτB(x,s/2)ν(2
k+1s)

≈
ψ
(
1/(2k+1s)

)
(2k+1s)dψ(2/s)

> 1

(2k+1s)dC2α(k+2)
> 1

2k(d+α)C2d+2α
s−d.
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Since P̃B(x,s/2) ≈ PB(x,s/2), by the first part of the proof we obtain

u(x) =
∫

B(x,s/2)c
P̃B(x,s/2)(x, z)u(z) dz >

∫
B(y,s/2)

P̃B(x,s/2)(x, z)u(z) dz

≈
∫

B(y,s/2)

PB(x,s/2)(x, z)u(z) dz >
c|B(y, s/2)|

2k(d+α)sd2d+2α
u(y) = C52

−k(d+α)u(y).

By symmetry, u(x) ≈ u(y). �

We obtain also the boundary Harnack principle for L and general C1,1 sets D.

LEMMA 4.3 (boundary Harnack principle). Let z ∈ ∂D, 0 < r 6 r0(D), and
0 < p < 1. If ũ, ṽ are non-negative in Rd, regular L̃-harmonic in D ∩ B(z, r),
vanish on Dc ∩ B(z, r) and satisfy ũ(x0) = ṽ(x0) for some x0 ∈ D ∩ B(z, pr),
then

(4.5) C−16 ṽ(x) 6 ũ(x) 6 C6ṽ(x), x ∈ D ∩B(z, pr),

with C6 = C6

(
d, ψ, b, p, r0(D)

)
.

P r o o f. In view of Lemma 4.2 we may assume that r is small. Let F =
F (z, r/2) ⊂ B(z, r) be the C1,1 domain of Lemma 3.1, localizing D at z. For x ∈
F we have ũ(x) =

∫
P̃F (x, z)ũ(z) dz ≈ u(x), where u(x) =

∫
PF (x, z)ũ(z) dz.

Similarly, ṽ(x) ≈ v(x) =
∫
PF (x, z)ṽ(z) dz. Since ũ(x0) = ṽ(x0), we have u(x0)

≈ v(x0). By [21], Theorem 2.18, u(x) ≈ v(x) provided x ∈ D ∩ B(z, r/8). We
use Lemma 4.2 for the full range x ∈ D ∩B(z, pr). �

Now, we have all the tools necessary to prove the main result of our paper.
Since in the proof we follow the idea from [6], we only give its basic steps (for
details see [6], the proof of Theorem 1).

P r o o f o f T h e o r e m 1.1. By (3.26) and (3.3), we have the estimate

(4.6) G̃D(x, y) 6 GD(x, y) + C0

∫
D

G̃D(x, z)GD(z, y)

δD(z) ∧ |y − z|
|b(z)| dz, x, y ∈ D.

We consider η < 1, say η = 1/2. By Lemma 3.4 and the uniform integrability in
Lemma 3.6 (see (3.15)), there is a constant r > 0 so small that∫

Dr

GD(z, y)

δD(z) ∧ |y − z|
|b(z)| dz < η

C0
, y ∈ D,(4.7)

∫
Dr

GD(x, z)GD(z, y)

GD(x, y)
(
δD(z) ∧ |y − z|

) |b(z)| dz < η

C0
, y ∈ D.(4.8)
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Here, Dr = {z ∈ D : δD(z) 6 r}. We put

ρ = [ε ∧ r0(D) ∧ r]/16,

with ε = ε(d, ψ, b, 2/κ) of Lemma 3.11, see also Lemma 3.1.
To prove (1.3) we will consider x and y in the partitions of D ×D.
First, we consider y far from the boundary of D, say δD(y) > ρ/4.
• For |x− y| 6 ρ/8,GD(x, y) ≈ GB(x, y) ≈ U(x− y) ≈ G̃D(x, y) (we use

Lemmas 3.3, 3.11, 3.8).
• If ρ/8 < δD(x), we use the Harnack inequalities for L and L̃.
• For δD(x) < ρ/8, we use the boundary Harnack principle (see Lemma 4.3

and [21], Theorem 2.18).
Next, suppose that δD(y) 6 ρ/4. Here, the difficulty lies in the fact that G̃D

is non-symmetric.
In the proof of lower bounds we consider two cases: x close to y, and x far

away from y.
• In the case |x − y| 6 ρ, we locally approximate D by a small C1,1 set F

such that δD(x) = δF (x) and δD(y) = δF (y) (see [6], Lemma 1). Then G̃D(x, y)
> G̃F (x, y) ≈ GF (x, y) ≈ GD(x, y) (see Lemma 3.3).

• For |x − y| > ρ and δD(x) > ρ/4 we use the Harnack inequalities. For
δD(x) 6 ρ/4 we use the boundary Harnack principle.

In the next step, we prove the upper bound in (1.3) for δD(x) > ρ/4. We have
already proved that, for z ∈ D \Dr,

c−11 GD(x, z) 6 G̃D(x, z) 6 c1GD(x, z).

By (3.13), Lemmas 3.6 and 3.8, and (4.6), (4.7), we have

G̃D(x, y) 6 AGD(x, y) + C0

∫
Dr

G̃D(x, z)GD(z, y)

|y − z| ∧ δD(z)
|b(z)| dz,(4.9)

G̃D(x, y) 6 AGD(x, y) +B(x),(4.10)

where A = 1 + c1C0C3 and B(x) = ηC4U
(
δDr(x)

)
. Now, plugging (4.10) into

(4.9), and using (4.7), (4.8) and induction, we get, for n = 0, 1, . . .,

(4.11) G̃D(x, y) 6 A
(
1 + η + . . .+ ηn

)
GD(x, y) + ηnB(x).

In consequence,

(4.12) G̃D(x, y) 6
A

1− η
GD(x, y).
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Finally, we prove the upper bound in (1.3) when δD(x) < ρ/4.
• If |x− y| > ρ, we use the boundary Harnack principle.
• For |x− y| 6 ρ, consider the same set F as above. We have

G̃D(x, y) = G̃F (x, y) +
∫
D\F

P̃F (x, z)G̃D(z, y)dz.

By Lemma 3.11 and (4.2), G̃F (x, y) ≈ GF (x, y) and P̃F (x, z) ≈ PF (x, z). We
already know that, for |z − y| > ρ, G̃D(z, y) ≈ G(z, y). Thus,

G̃D(x, y) ≈ GF (x, y) +
∫
D\F

PF (x, z)GD(z, y) dz = GD(x, y).

The proof of Theorem 1.1 is complete. �
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