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Abstract. In this paper we consider two different approaches for spatial
stochastic modeling of thunderstorms. Thunderstorm cells are represented
using germ-grain models from stochastic geometry, which are based on Cox
or doubly-stochastic cluster processes. We present methods for the opera-
tional fitting of model parameters based on available point probabilities and
thunderstorm records of past periods. Furthermore, we derive formulas for
the computation of point and area probabilities according to the proposed
germ-grain models. We also introduce a conditional simulation algorithm
in order to increase the model’s ability to precisely predict thunderstorm
events. A systematic comparison of area probabilities, which are estimated
from the proposed models, and thunderstorm records conclude the paper.
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1. INTRODUCTION

1.1. Motivation. One of the major responsibilities of meteorological services
such as Deutscher Wetterdienst (DWD) is the issuing of reliable weather forecasts
for potentially harmful weather events. Classically, deterministic weather forecasts
are derived from numerical models describing the atmosphere, which is referred to
as numerical weather prediction (NWP) in the literature, see, e.g., [T0]. Although
numerical models still provide the basis of almost all operational weather fore-
casts, the application of a wide range of probabilistic postprocessing methods has
become of growing interest during the last decades to improve forecast quality, see,
e.g., [27]. Calibrated probabilistic forecasts are related to single geographical loca-
tions (i.e., points, in mathematical terms). This includes, e.g., the probability of the
occurrence of a weather event at some point (which is meant as a point probability)
or the expected value of a random variable describing the weather at some fixed
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location. Another approach is to consider probabilistic weather forecasts that are
related to geographical regions (or areas, in mathematical terms). An example is
given by using so-called area probabilities, which describe the chance of a weather
event occurring somewhere in an area (rather than at a fixed point). Area proba-
bilities can be of particular interest for the generation of automated warning guid-
ances. While the computation of precise and reliable point forecasts is very well
developed, there are hardly any methods available for the analytical derivation of
further operationally applicable probabilistic forecasts (as, e.g., area probabilities).
In [5], approaches for the computation of area probabilities based on point prob-
abilities are proposed. However, the formulas derived in [I5] are only valid under
some restrictive assumptions, which make them inappropriate for the use in oper-
ational weather predictions on a non-local scale (e.g., the territory of Germany).
A promising alternative is given by the development of spatial (or spatio-temporal)
stochastic models for the considered weather events, which allow us to derive prob-
abilistic forecasts based on repeated Monte Carlo simulation.

1.2. Previous development. In the present paper we focus on the weather
event ‘occurrence of thunderstorms’. Unfortunately, stochastic models for thun-
derstorms can rarely be found in the literature. In [TZ], a model for wind loads in
thunderstorms is proposed at single sites but no approaches for spatially contin-
uous modeling of thunderstorm cells seem to be available. However, there exist
a variety of spatial, temporal and spatio-temporal stochastic models for precip-
itation that have been used for applications in various fields of hydrology, see,
e.g., [B]. A frequently used approach is to represent precipitation cells as circu-
lar or elliptical discs whose centers are modeled using spatial (or spatio-temporal)
Poisson or cluster processes. Brief overviews of existing point-process-based mod-
els can be found, e.g., in [I8] or [T9]. Unfortunately, certain limitations prevent the
use of these models in operational weather prediction. Most approaches assume
temporal and spatial stationarity, and model fitting procedures (mostly for large
parameter sets) always rely on observed precipitation patterns derived from radar
data. In operational weather forecasting, however, it is crucial to account for the
(permanently changing) weather conditions in the current period and future fore-
cast periods rather than for weekly, monthly or yearly averages, which contradicts
the assumption of temporal stationarity. Model fitting based on radar observations
is not suitable, either. On the one hand, radar observations from periods prior to
the forecast period become inaccurate already after one hour. On the other hand,
radar data for the (future) forecast period are not available at the time the forecast is
made. Finally, forecasters are typically interested in stochastic models to be applied
on a non-local scale, which does not allow for spatial stationarity assumptions due
to different meteorological (areas of low or high pressure, changing over time) and
geographical (plains or mountainous regions, not changing over time) conditions.
Although not directly applicable in operational weather prediction, the mentioned
papers still provide some valuable ideas for the approaches presented in this paper.
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1.3. Outline. To overcome the limitations mentioned above, a new spatial
stochastic model for precipitation cells has been developed recently, see [I3] and
[4], which better fulfills the requirements of operational weather prediction. In
that approach, precipitation cells occurring in a one-hour forecast period are rep-
resented by a germ-grain model with circular grains, which is based on a non-
stationary Cox point process. In Section D we first want to find out if this kind of
germ-grain model can also be applied for the modeling of thunderstorm cells. We
introduce model construction, describe model fitting and give a validation using
thunderstorm observations, where it turns out that the Cox germ-grain model is not
suitable for thunderstorm cells. Therefore, in Section B we propose a more gen-
eral and sophisticated germ-grain model for thunderstorm cells based on clustered
point processes. We again introduce model construction, provide procedures for
model fitting and describe a conditional simulation algorithm that provides a seam-
less transition from nowcasting based on observations to forecasting. A validation
shows that this kind of approach is able to provide point and area probabilities that
are much more reliable than those from previous methods.

2. MODELING THUNDERSTORM CELLS BASED ON COX PROCESSES

2.1. Underlying probability space. Before we describe a first approach for the
spatial modeling of thunderstorm cells, a suitable mathematical framework needs
to be specified. In the following, we always consider a fixed one-hour forecast pe-
riod T that can be interpreted as some subinterval of the real line with a length
of 60 minutes. We denote by 7" — d for some d > 0 the one-hour time period
that starts (and ends) d minutes earlier than 7. In order to adequately describe
an underlying probability space, we first need to briefly sketch the mechanics of
commonly used weather forecast models. At DWD, e.g., a first probabilistic fore-
cast is provided by the ensemble COSMO-DE-EPS'. Such forecasts, however, are
subject to both random and systematic errors, which result from uncertainties and
inaccuracies in model specifications and boundary values due to discretization and
parametrization. In order to eliminate systematic errors, a post-processing method,
e.g., Model Output Statistics (MOS), can be applied, which provides statistically
unbiased probabilistic forecasts, see [[Z2] and [2Z]. These forecasts, however, are
still subject to random errors and can thus be interpreted as estimators of the un-
known future weather activity. To account for this, we introduce the probability
space (2, F, P), where €2 is an abstract space, which describes all possible weather
scenarios and the corresponding forecasts provided by the weather forecast models

! Probabilistic forecasts are provided using an ensemble of 20 numerical forecasts of the
COSMO-DE, see []. For the ensemble, the numerical model COSMO-DE is computed with a vari-
ation of model parameters and initial and boundary values, see [K]. From the distribution of the
resulting forecasts various probabilistic characteristics as, e.g., event probabilities can be estimated.
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of DWD, F denotes a suitable o-algebra of subsets of €2, and P is some probabil-
ity measure on (2, 7). As mentioned above, probabilistic forecasts are subject to
a random error, which is modeled by the random variable E : 2 — S in the fol-
lowing, with S being the (abstract) measurable space of all such possible errors.
Heuristically speaking, conditioning on {E' = e} for some realization e € S of E
indicates that a specific forecast provided by the models of DWD (with error e) is
given, which is always the case in applications.

2.2. Modeling of point probabilities. As indicated in Sections 1l and T, re-
liable, unbiased point forecasts, including point probabilities of the occurrence of
thunderstorms, are derived by DWD using numerical models and statistical post-
processing. Since these forecasts are interpreted as estimators, we model point
probabilities as random variables in the following. Let {P;,¢ € W} be a random
field in a bounded and convex observation window W C R?, where P; : Q — [0, 1]
denotes the random point probability of the occurrence of a thunderstorm at loca-
tion ¢ € W within the considered forecast period T'. For each t € W, we assume
the random variable P; to be o(F)-measurable, where o(E) C F is the sub-o-
algebra of events generated by F. Accordingly, if conditioned on {E = e} for
any realization e of F, the value of P; is non-random and depends only on e.
In this case any realization of P, can be identified by the conditional expectation
f(e) =E(P,| E = e). In general, point probabilities can be estimated by DWD
for any location ¢ inside the observation window W. In practice, however, this
is only done for a finite number of sites (e.g., a network of weather stations or
a regularly spaced lattice). For this purpose, we suppose that there is a sequence
$1,...,5n € W of geographically distinct locations at which point probabilities
ps, = E(Ps, | E=e€),...,ps, = E(Ps, | E = e) of a particular realization e of
E are available. A fundamental assumption in the modeling of probabilities of
the occurrence of thunderstorms is that there is a thunderstorm at some location
t € W if and only if ¢ is covered by at least one thunderstorm cell. Consequently,
for a random set M C W, which can be considered a model for the union of
all thunderstorm cells in W, the random point probability P; is represented as
P, = P(t € M| E) for each t € W. In order to give a more precise representa-
tion of point probabilities (and also further probabilistic characteristics such as,
e.g., area probabilities) the random union set M of thunderstorm cells needs to be
specified.

2.3. Modeling of thunderstorm cells. In a first attempt, we propose a model
for thunderstorm cells based on spatial Cox processes. A similar approach has been
applied successfully to the modeling of precipitation cells, see [13] and [T4]. One
major requirement for the application in operational weather prediction is spatial
non-stationarity to account for geographical differences as well as locally vary-
ing weather conditions in the considered forecast period 7. For this purpose, we
suppose that thunderstorm cells, or, more precisely, their cell centers, occur in W
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according to a random intensity function {A;,t € W}, where A; : Q — [0, 00) is
a non-negative random variable modeling the intensity of the occurrence of a thun-
derstorm at location ¢ € W. Analogously to the random point probabilities, A; is
assumed to be o(FE)-measurable for each ¢ € . In order to find a closed repre-
sentation of {A;,¢ € W}, which is crucial for model fitting and simulation, some
simplification is necessary. Since it is assumed that estimated point probabilities
are only available at the sites s1, ..., s, (see Section ), we suppose that, condi-
tioned on { £ = e} for each e € S, the intensity function {A;,t € W} is piecewise
constant in certain neighborhoods of s1, . . ., s,,. The most intuitive choice of such a
neighborhood is the Voronoi tessellation {V'(s1), ...,V (sy)} of s1,..., sn, where
V(i) is the Voronoi cell of s; being defined as

V(si) ={x e W:|lz—si|]| < |l —sj||forall j =1,...,n with j # i}

fori =1,...,n. We denote by ||z — s|| the Euclidean distance of two locations
x,s € W. This implies the following representation of the intensity function {A;,
te Wh

A=) Ajly,(t) forallte [ V(si),
j=1 i=1

where 1y : W — {0,1} denotes the indicator function of the set V' C W, and
A1,..., A, 1 2 — [0,00) are some non-negative, o(E)-measurable random vari-
ables that can be interpreted as random local intensities of the occurrence of a
thunderstorm. If ¢ € W is not located within any of the Voronoi cells, we set A; to
the minimum intensity of all adjacent Voronoi cells. Having specified the intensity
of thunderstorm occurrence, a model for the centers of thunderstorm cells can be
given. For the approach considered in this section we use a spatial Cox point pro-
cess {X;,i=1,...,Zx} in W with random intensity function {A;,t € W} (see
[]), where Zx : Q — {0, 1,...} denotes the total number of thunderstorm cells
in W . In particular, the random variable Z x is almost surely finite. Clearly, the Cox
process {X;,i = 1,..., Zx} cannot be assumed to be o(FE)-measurable because
even given a specific realization of the weather forecast, the weather activity in the
(future) forecast period 7' (which includes the occurrence of thunderstorms) is still
considered to be random.

While there are well-developed methods for the detection and identification of
thunderstorm cell centers (see, e.g., [[f]), the determination of cell shapes and sizes
is hardly possible. Thus, it is unclear how the shape of thunderstorm cells should
be represented realistically. A reasonable simplifying approach is to model thun-
derstorm cells by circular discs with a common random radius R : 2 — (0, c0),
which is assumed to be o (F)-measurable. This is equivalent to the assumption that
there is a thunderstorm at some location ¢ € W if ¢ has a distance of not more than
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R km to at least one thunderstorm cell center. Accordingly, the random set M of
thunderstorms, which was introduced in Section 2, is represented as a germ-grain
model (see, e.g., [1]), i.e.,

Zx

i=1

with b(z,r) = {y € R? : ||y — x|| < r} denoting the two-dimensional (closed)
ball with center z € R? and radius > 0. Note that the approach of modeling
thunderstorm cells as circular discs is also used by DWD, see NowCastMIX data
described in Section 3. Furthermore, circular or elliptical discs are often con-
sidered for the modeling of precipitation cells, see, e.g., [I8], [T9] or Section IT2.
Analogous to the Cox process {X;,7 = 1,..., Zx} of cell centers, the germ-grain
model M cannot be assumed to be o (F)-measurable.

2.4. Model fitting. Given { E'=e} for some e €S, the distribution of the germ-
grain model M for the union of thunderstorm cells is completely characterized
by the corresponding realizations of the random local intensities A1, ..., A, for
the occurrence of thunderstorms and the random cell radius . We propose fitting
methods to determine these model characteristics based on the available point prob-
abilities Ps,, ..., P, . In applications, fitting as well as simulation of the model
is always performed depending on a particular realization of the weather fore-
cast models of DWD. Thus, in the following we consider a fixed realization e € S
of the random error E and the corresponding realizations ps, = E(Ps, | E = e),
cosDs, =E(Ps, |E=¢),a1=E(A1|E=¢€),...,ap, =E(A,|E=¢)and r =
E(R|E = e). Note that conditioned on {E = e} the point process {X;,i =
1,..., Zx} is a Poisson process with deterministic intensity function {\;, t € W},
where \; = E(A; | E = e) for t € W, and the germ-grain model M is a Boolean
model, see [I] and [9]. At DWD, observed thunderstorm cells are modeled as circu-
lar discs with a constant radius of 10 km. In order to provide consistence with those
observations in applications as performed in Section I3, we also set » = 10 km
in the followingz. Thus, only the intensities ag, ..., a, need to be estimated. For
that purpose, we first derive a representation formula for area probabilities accord-
ing to the proposed model. Let 5(W) denote the Borel o-algebra on W. For any
B € B(W), the area probability 7(B) for the occurrence of thunderstorms in B
given {E = e} is modeled as 7(B) = P(BN M # 0| E = e). Using the dis-
tributional properties of Poisson processes (see [9]), we can derive the following

2In [3], a statistical method has been presented to estimate the radius r based on the correlation
structure of the available point probabilities ps, , . . . , Ps,, . This method has been applied successfully
to the modeling and simulation of precipitation cells.
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representation formula:

7(B)=P(BNM#0|E =e)
=1-P(#{i: X; € B®blo,R)} =0|E =e¢)

=l-exp{— [ i aily (s, (t) dt}

B®b(o,r) i=1
=1- exp{ — Zl a; j;]l(BEBb(o,r))ﬂV(si)(t) dt}
1= R

=1- exp{ - éai V2((B @ b(o,r)) N V(Si)>}’

where o € R? denotes the origin, v5(-) is the two-dimensional Lebesgue measure,
#C describes the cardinality of a countable set C, and A ® B = {x + y,z €
A,y € B} denotes the Minkowski sum of two sets A and B. By setting B = {s;}
for 7 = 1,...,n we immediately get the following representation formula of the
corresponding point probability ps, for the occurrence of thunderstorms at site s;:

ps; =1 —exp{ - a; I/Q(b(Sj,T’) ﬂV(si))} forallj =1,...,n.

i=1

These equations can easily be rearranged to

1 n
10g<1_p > = Zaﬂ&(b(sj,?“)ﬂV(sz)) forallj:17_."n’
S5

=1

which describes a system of n linear equations with the unknowns aj, ..., a,.
However, under the constraint that aq,...,a, = 0, this system of equations, in
general, cannot be solved exactly. Therefore, a1, ..., a, are computed by solving
this system of equations in a non-negative least squares sense, i.e.,

(al,...,an):argmin{i<log< L >—i:ilagl/g(b(sj,r)ﬂV(si)))Z}.

al,....al, >0\ j=1 1 — Ps;

2.5. Application and model validation. To conclude this chapter, a validation
of the proposed Cox germ-grain model for thunderstorm cells is performed. We
consider a convex observation window W containing the boundaries of Germany,
and a regularly spaced lattice consisting of 1,575 locations sy, ..., S1575 € W to-
gether with point probabilities of the occurrence of thunderstorms at these loca-
tions for a sequence of 2,205 one-hour forecast periods covering the months May,
June and July 2016 with forecast lead times of 1 to 3 hours ahead. The observation
window W, the locations s1, ..., s1575 and the point probabilities ps, , ..., Ds;50s
for the forecast period July 11, 2016, 15-16 UTC (Universal Time, Coordinated)
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FI1GURE 1. Examples of data and simulation results for July 11, 2016, 15-16 UTC: point probabil-

ities at s1, ..., s1575 (top left), area probabilities for By, ..., Bggg computed using the Cox germ-

grain model (top right), typical realization of the Cox germ-grain model (bottom left), thunderstorm
observations from NowCastMIX (bottom right).

are illustrated in Figure [ (top left), where the Voronoi cell V (s;) of each location
si € {s1,...,S1575} is colored according to the point probability ps,. A typical
realization of the fitted germ-grain model for the same period is also shown in
Figure [ (bottom left). In order to analyze the quality of the developed model,
we use it for the computation of area probabilities. A reasonable choice for test
areas would be some partition of the observation window W. The Voronoi tes-
sellation {V(s1), ...,V (s1575)}, however, is not appropriate since most Voronoi
cells appear to be of the same size and shape. To obtain test areas with varying
shapes, sizes and orientations, we generate a realization of a homogeneous Pois-
son point process in W, whose intensity is chosen so that the expected number of
points in W is equal to 1,000. We obtained a realization with 999 points and use
the cells of the corresponding Voronoi tessellation, denoted by Bj ..., Bggg in the
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FIGURE 2. Biases of point probabilities from available data (left) and area probabilities computed
using the Cox germ-grain model (right) against NowCastMIX data.

following, as test areas. For each available forecast period the area probabilities
7(B1),. .., n(Bggg) are computed? according to the formula stated in Section 4.
In Figure 0 (top right), the test areas By, . .., Bggg are shown, where each area B;
is colored according to the corresponding area probability 7(B;) for the forecast
period July 11, 2016, 15-16 UTC. Computed area probabilities correspond well
with the underlying data showing higher values in regions with higher point prob-
abilities and vice versa. Probabilities are not computed for some areas close to the
boundary of the observation window to avoid edge effects.

In order to perform a systematic model validation, we use NowCastMIX data,
which are based on radar and lightning* observations. In NowCastMIX, centers
of thunderstorms are first recorded, and thunderstorm cells are then modeled as
discs with a fixed radius of 10 km (which is the reason for choosing the same cell
radius in Section [Z4)). Additional thunderstorm characteristics such as movement
speed, movement direction and hail flag (an indicator for thunderstorm strength
taking the values 0, 1 or 2) are derived from radar reflectivities using several radar
processing methods and are included in NowCastMIX data, see [I[1]. An example
is shown in Figure M (bottom right), where cells are colored according to an in-
ternal classification of DWD, and additionally some warning cones are illustrated
that show the possible movements of cells during the following hour. For each
test area B € {Bi,..., Bggg}, we consider the sequence 7 (B), ..., m205(B)
of area probabilities (for the 2,205 available forecast periods) and a sequence

3 Area probabilities can also be estimated based on repeated Monte Carlo simulation of the
Cox germ-grain model, which turns out to be more efficient than direct computation in most cases.

* Lightning data is LINET provided by Nowcast GmbH.
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FIGURE 3. Logarithmic skill scores of point probabilities from available data (left) and area
probabilities computed using the Cox germ-grain model (right) against NowCastMIX data.

Ii(B), ..., I2205(B) of thunderstorm indicators, which are one if there is a thun-
derstorm within B in the corresponding forecast period with respect to NowCast-
MIX data and zero otherwise. In order to compare area probabilities and thunder-
storm indicators, we analyze three score functions: the bias, the logarithmic skill
score and the empirical correlation coefficient. Another common score for proba-
bilistic weather forecasts is the Brier skill score, which is, however, less suitable for
rare events such as the occurrence of thunderstorms. The definition of the bias (dif-
ference of mean area probability and mean thunderstorm indicator from NowCast-
MIX) and the correlation coefficient should be clear but the logarithmic skill score

requires some more explanation, see also [?2]. For each j € {1,...,2205} the ig-
norance i; of 7;(B) is put to — log (m;(B)) if I;(B) = Land to — log (1 — 7;(B))
if I;(B) = 0. Then, the logarithmic score /s is defined as the mean of i1, . . . , 12205,

ie,ls = ﬁ 251015 1. Since the logarithmic score is difficult to compare for dif-

ferent forecast periods, it is related to the logarithmic score s of a reference pre-

diction, where usually 7;(B) = %05 251015 I;(B) foralli =1,...,2205 is used.

Then, the logarithmic skill score [ss is defined as lss = 1 — ls/ ls. Of course, loga-
rithmic scores of analyzed area probabilities should not be bigger than those of the
(naive) reference prediction, which is why the logarithmic skill score is requested
to be clearly positive. The three scores are computed and illustrated for all test areas
that are not too close to the boundaries of W, see Figures -4 (right), where each
area is colored according to the value of the corresponding score function. Since
the quality of computed area probabilities is expected to strongly depend on the
precision of the underlying point probabilities, the same score functions are also
computed for the available data, see Figures D- (left), where each Voronoi cell
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FIGURE 4. Empirical correlation coefficients of point probabilities from available data (left) and
area probabilities computed using the Cox germ-grain model (right) against NowCastMIX data.

V (si) is colored according to the value of the score function at the correspond-
ing location s;. At some locations in the northwest of the observation window no
thunderstorms occurred during the entire period, which is why the correspond-
ing Voronoi cells are left white. We find that available point probabilities do not
seem to contain any systematic bias (mean bias is —0.2%, single values ranging
between —2 % and 1 %) but only moderate logarithmic skill scores (mean value
of 0.24, most single values between 0 and 0.35) and correlation coefficients (mean
value of 0.27, most single values ranging from O to 0.4) are obtained. The results
for the area probabilities are different. We get reasonably high correlation coeffi-
cients (significantly higher than for point probabilities with values between 0.1 and
0.6 for most areas), which shows that the proposed model indeed produces higher
probabilities in periods and areas where thunderstorms occur than in those where
thunderstorms do not occur. However, the biases show that area probabilities are
systematically too high (the mean bias is 3 %, single values reaching up to 7 %),
which makes the Cox germ-grain model inappropriate for applications to spatial
stochastic modeling of thunderstorm cells. Logarithmic skill scores show slightly
smaller values than for point probabilities (mean value of 0.2), with even having
negative values for a few test areas.

3. MODELING THUNDERSTORM CELLS BASED ON CLUSTER PROCESSES

3.1. Model description. As shown in Section 5, the modeling of thunder-
storm cells based on Cox processes is not appropriate. A probable reason for the
model’s failure to provide reliable area probabilities is that it generates thunder-
storm cells independently of each other. Observed thunderstorms, however, seem
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to occur in clusters, see Figure [ (bottom right). Therefore, a different approach
for the spatial modeling of thunderstorm cells is proposed in this section. In the
following, we again consider a fixed one-hour forecast period 1" as well as the
probability space (€2, F, P) and the random error E of the weather forecast mod-
els of DWD introduced in Section 1. Furthermore, s1,...,s, € W describe a
sequence of locations in the observation window W at which realizations of the
random o (F)-measurable point probabilities Ps,, ..., Ps, for the occurrence of
thunderstorms are available, see Section 2. Finally, {V'(s1),...,V (s,)} again
denotes the Voronoi tessellation of sq,...,s, in W as introduced in Section 23.
We start with the modeling of cluster centers. For that purpose, consider a spa-
tial Cox process {Y;,7 = 1,..., Zy } defined on (2, F, P) with random intensity
function {A{”),t € W} defined by

0) _ o= (0 "
AE ) = Z1A§ )]lv(sj)(t) forallt € 'U1 V(s;).
Jj= i=
The o(E)-measurable random variables A§°>, e A9 0 - [0,00) can be in-
terpreted as local random intensities for the formation of a thunderstorm clus-
ter. If £ € W is located on the boundaries of one or more Voronoi cells (i.e.,
t ¢ Ui, V(s:)), then AEO) is set to the minimum intensity of all adjacent Voronoi
cells (like in the definition of {A4,¢ € W} in Section I3). For the modeling of
the clusters themselves, some simplification is necessary again since the shapes of
observed thunderstorm clusters vary significantly across space and time and can
therefore hardly be determined. We suggest modeling these clusters as circular
discs around the points of the Cox process {Y;,7 = 1,..., Zy} as follows. The
centers of thunderstorms occurring in each cluster are also described using Cox
processes, where we assume that in different clusters they are (conditionally) in-
dependent of each other, given { £ = e}. In order to specify this mathematically,
we consider a sequence {Xi(l),i =1,....Zxw} {Xi@),i =1,....Zxo} ...
of identically distributed spatial Cox processes in W, which are (conditionally)
independent of each other and of the point process {Y;,7i = 1,..., Zy } of cluster
centers given that { £ = e}, and have a random intensity function {AEI), te W}
defined as
Agl) = A(l)]lb(oﬂu))(t) forallt € W.

Here, the o( F)-measurable random variable A" : Q — [0, 00) can be interpreted
as random cluster intensity, and the o'( E)-measurable random variable RV : Q —
(0, 00) describes the cluster radius. In order to give a proper representation of the
process of all thunderstorm, centers, we also consider the random counting mea-
sures {N(l), B e B(W)}, {N(2)7 B € B(W)},...that correspond to the Cox pro-
cesses {XZ-(I),z' =1,....Zxym} {XZ-(Q),z' =1,....Zx=»} ... le., Ng) (0 —
{0,1,...} with N9 = #{i : XU € B} forall B € B(W) and j € {1,2,...}.

7
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Based on this, we introduce the random counting measure { Ng, B € B(W)} de-
fined as

Zy )
Np =3 Ny forall B € B(W).

Then, there is a uniquely defined point process {X;,i = 1,...,Zx} that satis-
fies Ng = #{i : X; € B} for all B € B(W) (see Lemma 9.1.XIII in [6]), which
is used as a model for the centers of thunderstorm cells in W within the fore-
cast period 7. In the literature, this kind of process is referred to as a (doubly-
stochastic) cluster process, see, e.g., Chapter 6.3 in [5]. Due to the Cox process
{Y;,i=1,..., Zy} of cluster centers being non-stationary, the process { X;,i =
1,..., Zx} of thunderstorm cell centers also has this property. Finally, the random
closed set M that models the union set of thunderstorm cells is represented as a
germ-grain model based on the cluster process { X;,i = 1,..., Zx}, i.e.,

Zx
M = U b(XZ',R),
=1

where the o (F)-measurable random variable R : @ — (0, 00) describes the ran-
dom radius of thunderstorm cells.

3.2. Model fitting: Intensities of cluster centers. Since the germ-grain model
M for the union of thunderstorm cells specified in Section Bl is based on a more
complex point process model than that one considered in Section O, there are also
more model parameters that need to be determined. In our approach proposed in
Section B for spatial stochastic modeling of thunderstorm cells, the conditional
distribution of M given {E = e} is completely characterized by the correspond-
ing realizations of the random local intensities Ago), RN A%O) for the formation of
thunderstorm clusters, the random cluster intensity A(l), the random cluster radius
R and the random cell radius R. Analogously to the model fitting described in
Section [Z4, we consider in the following a fixed realization e € S of the random
error E occurring in the weather forecast models of DWD and the point prob-
abilities ps, = E(P, | E = ¢€),...,ps, = E(Ps, | E = e) for the occurrence of
thunderstorms at sites sy, . .., s,. Furthermore, the corresponding realizations of
the model characteristics describing M are denoted by ago) = E(Ago) |E =e),
ad) =EAV |E=e),a) =EAD |E =¢), r® =ERY |E = ¢) and
r = E(R|E = e). Conditioned on {E = e}, the point process {X;,i =
1,...,Zx} of thunderstorm cell centers is a Neyman—Scott process (see, e.g., [4]
and [20]), with random intensity function {A;,t € W} defined by

Zy
Ar=aPy Lyy, py(t)  forallt € W.

=1
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Furthermore, given { E = e}, the point process {Y;,7 = 1,..., Zy } is a Poisson
process with intensity function {/\,EO),t € W} defined by Ago) = E(AEO) |E =e).
In order to provide comparability of simulated thunderstorm cells with observed
ones in applications as performed in Section B, we set » = 10 km in the follow-
ing. For the estimation of the intensity parameters a§0>, ey aq(f) we use a similar
approach to that in Section 4. At first, we derive a representation formula for
area probabilities according to the proposed cluster model. Due to the properties of
{Xi,i=1,...,Zx} being a Cox process and {Y;,i = 1,..., Zy } being a Pois-
son process conditioned on { ' = e}, the area probability 7(B) for the occurrence
of thunderstorms in B € B(W) can be computed by

7(B)=P(BNM #0|E =e¢)
=1-P#{i: X, e Bob(o,R)} =0|E =e¢)

Zy
=1- E(exp { — f a(l) Z ]lb(Yi,r(l))(t)dt})
B®b(o,r) i=1

=1- E(iﬁlexp { —aWuy ((B @ b(o,r)) Nb(Y;, 7“(1)))})
= 1exp{ i <exp{ — a(l)VQ((B @ b(o,r)) N b(t,r(l)))} - 1) A©) (t)dt}

R2

—1—exp {— Z:il al’ [ <1—exp {— (I(l)V2<(B @ b(o,r)) Nb(t, 7“(1))>}> dt},

Vi(s:)

where in the third equality we use the distributional properties of Cox processes
(see [8], Section 6.2), and in the fifth equality a representation formula for the gen-
erating functional of Poisson processes is applied, which can be found in [20], The-
orem 3.2.4. In particular, this implies a representation formula for point probabil-
ities by setting B = {t} for any ¢t € W. Accordingly, the intensities ago), . ,a%o)
should satisfy

n
0 .
Ps; :1—exp{—z:1a§ )I(si,sj)} forj=1,...,n
1=

and for fixed (), »™) and r, where

I(si,s5) =/ (1 —exp{ — a(l)ug(b(sj,r) N b(t,r(l))) })dt fori,j =1,...,n.
V(ss)

By rearranging the latter equation appropriately we obtain

1 n
log(1 )zZal(»O)I(si,sj) forj=1,...,n,
_ij

=1
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which describes a system of n linear equations with unknowns ago), ceey a%o) > 0.
Due to this constraint, there is no exact solution of this system of equations in
(0) (0)

general, which is why we compute a,’,...,a" in a non-negative least squares
sense according to

@\, .., a®) = arg min{ 3 <log( ! > - ia;](si,sj)>2}.

aenaly 20 L j=1 L —ps; i=1

3.3. Model fitting: Cluster intensity and cluster radius. It remains to deter-
mine the cluster intensity a(!) and the cluster radius (1), Unfortunately, it does
not seem that these parameters can also be estimated based on the available point
probabilities. Thus, we suggest using the thunderstorm observations from Now-
CastMIX (see Section 3) for this purpose. In the presented fitting approach, clus-
ters of thunderstorm cells are first identified using an established cluster algorithm
and are then used to determine a(!) and (1) according to the sizes and intensities
of obtained clusters. Of course, when making a forecast for the one-hour forecast
period 7', the thunderstorm records for that period are not yet available. Thus, we
consider the latest one-hour period prior to I' for which records of NowCastMIX
are available and which can be represented as T' — d with some d > 60 minutes.
The best case (d = 60) is given when the forecast is made directly at the beginning
of period T'. While the total number and the positions of thunderstorm cells can
change quickly over time, we observe that typical sizes of thunderstorm clusters
and the number of storms per cluster only change gradually. Thus, we suppose
that both «(® and r®) (for period T") can be estimated based on NowCastMIX
records of period T' — d. At first, a cluster analysis is performed to identify clusters
of thunderstorm cell centers. For this purpose, we implemented the density-based
spatial clustering of applications with noise (DBSCAN) algorithm, see [[Z]. This
algorithm seems to be particularly suitable since it can recognize clusters of arbi-
trary shapes, it is possible to account for outliers (which are interpreted as noise)
and the number of clusters to be found does not need to be known a priori (as
required, e.g., in the k-means clustering algorithm). DBSCAN has two parame-
ters: the maximum neighborhood radius € and the minimum number min Pts that
is required to form a cluster. Comparisons of results for different parameter con-
figurations have shown that when applied to thunderstorm observations, € = 20
km and min Pts = 3 seem to be reasonable choices. An example for the Now-
CastMIX observations from July 11, 2016, 15-16 UTC is illustrated in Figure B,
where all thunderstorm cells of a given cluster have the same color; compare also
with Figure [ (bottom right). Let cy, ..., ¢, denote the clusters detected by the
DBSCAN algorithm. Next, in order to find cluster sizes, we determine for each
cluster c; the radius 7;"** > 0 of the smallest circle that contains all corresponding
thunderstorm cell centers. For modeling clusters with an approximately circular
shape, e.g., the cluster colored in light blue in Figure B, a disc with radius r;"**
seems suitable. For more elongated clusters, as, e.g., the green one in southern
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FIGURE 5. Results of the clustering algorithm
for July 11, 2016, 15-16 UTC, showing eight identified clusters.

Germany, however, it is unlikely that the cluster can be represented by a disc with
radius 7;"**. It seems more realistic that this cluster can be modeled by several
circular discs with smaller radii that are located directly next to each other. To ac-
count for this, we determine for each cluster ¢; the convex hull h; of the set of
all cell centers that belong to c; and determine the radius r?‘in > ( of the biggest
circle that is completely contained in h;, as also illustrated in Figure B. Then, to
each cluster ¢; a radius r; > 0 is assigned depending on the ratio of r?ﬁ“ and r;"**
according to the following algorithm:

1. The minimum cluster radius is supposed to be equal to 10 km. This implies
that if 7;"** < 10 km, then r; = 10 km.

2. If 10 km < r"#* < 20 km, then we always put r; = 7;"%.

3. If 20 km < 7;"®* < 35 km, then the following applies. If szin < 0.4 7%,
we put r; = rf‘in, otherwise r; = r;"%¥,
4. 1f 35 km < r8% < 50 km, then the following applies. If r™i* < 0.55 rmax,
we put r; = rlmi“, otherwise r; = r;"®.

5. If 50 km < 7;"®*, then the following applies. If rlmin < 0.65 "%, we put
i = rf“i“, otherwise r; = rj*.

6. The maximum cluster radius is assumed to be equal to 70 km. This implies
that if r; > 70 km, then r; is reduced to 70 km.

Finally, in order to find the typical cluster radius ), we compute the mean
value of the individual cluster radii 71, . .., 7y, i.€., r) = % 27;1 .

To conclude model fitting, the cluster intensity a(!) has to be estimated. Let
k denote the total number of thunderstorms contained in all clusters cy, ..., Cp.
Foralli = 1,...,m we determine the minimal number /; of discs with radius r(!)
that is needed to cover all thunderstorm cell centers in cluster ¢;. The sum [ =
l1 + ...+ Iy can then be interpreted as the total number of circular clusters with
radius (1), and the ratio k/I denotes the mean number of thunderstorm cells per

cluster. Accordingly, the intensity a*) can be computed as o) = k / (l 77(7’(1))2).
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In periods with very weak or no thunderstorm activity it may happen that no thun-
derstorms are observed or that no clusters are detected by the DBSCAN algorithm
(i.e., all thunderstorm cells are considered to be noise) in period 1" — d. In these
cases, we recommend to put a(!) = 4/(7(r1))2) and () = 11 km. These are the
mean values of a(Y) and () from all one-hour periods with no detected thunder-

storm cluster in the previous period according to the dataset considered in Sec-
tion B3.

3.4. Conditional simulation of thunderstorm cells. In this section we sug-
gest realizing the cluster-based germ-grain model of thunderstorm cells condition-
ally with respect to previously detected thunderstorm cells from the NowCastMIX
data. Using this additional data can further increase forecast quality. In order to
do so, area probabilities of thunderstorms are estimated based on repeated (con-
ditional) Monte Carlo simulation of the underlying germ-grain model M instead
of being computed according to the formula derived in Section B2. Let T again
denote the one-hour time period for which the forecast is made and 1" — d with
d > 60 minutes is the latest one-hour period for which thunderstorm observations
from NowCastMIX are available. We denote by x1,...,x, € W the centers of
all thunderstorm cells recorded by NowCastMIX for period 1" — d. If d is small,
then there is a chance that some of these cells still exist (with changed positions)
during period T'. For that purpose, the distribution of lifetimes of thunderstorm
cells has been estimated, which depends on the thunderstorm’s hail flag given in
the NowCastMIX data, see Figure B and [XT]. At first, the total lifetime of each

@ Hail Flag 0 Hail Flag 1 @ Hail Flag 2
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FIGURE 6. Distribution of the lifetimes of thunderstorm cells for different hail flags.
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cell x; is generated based on the estimated distributions (depending on the storm’s
hail flag). Then, the remaining lifetime of x; (from the time it was observed un-
til its death) is simulated by multiplying the total lifetime with a realization of a
standard uniformly distributed random variable. Knowing the exact time when x;
was observed, we can now easily determine whether x; still exists during period
T or not. Let {Z1,...,Z4} C {z1,...,2,} with ¢ < p denote all thunderstorm
cell centers from period 7" — d that still exist in period T'. As Z1, ..., T, represent
their positions in the interval 7' — d, the random movements of these cells have
to be simulated next. Since NowCastMIX also provides the movement speed and
the movement direction at the time of observation, we can determine the area of
all possible positions z; can have between the beginning of period 7" and its death
(similar to the warning cones in Figure [, bottom right). This area is computed
using a propagation angle of 7.5° in NowCastMIX, making it a triangle or a trape-
zoid, within which we uniformly generate the new location y; € W of the i-th
surviving cell. Thus, {y1,...,y,} can be interpreted as a possible set of thunder-
storm cell centers that were observed in period 1" — d (at different locations) and
still exist in the forecast period 7.

We propose the following algorithm to generate a realization of the germ-grain
model M given the surviving cell centers y1, .. ., yq.

1. LetU = UL, b(ys, r(1)). Compute the expected numbers \j, = fU A§°) dt
and Aoyt = fW\U /\go) dt of cluster centers inside and outside of U, respectively.

2. Generate two realizations x;, and x.y of two Poisson distributed random
variables with parameters A, and Aqy¢, respectively.
3. If possible, simulate zj, cluster centers inside U independently according

to the intensity function { )\go),t € U} under the condition that each of the discs
b(y1, 7“(1)), o b(Ygs r(l)) contains at least one cluster center. If this is not possible
(i.e., if x;;, is too small), generate more than x;, cluster centers (as many as neces-
sary) but reduce z,y; accordingly by the additional number of simulated centers>.

4. Simulate z, cluster centers outside U independently according to the

intensity function {Ago),t € W\ U} If 2out < 0 due to a possible reduction in
step 3, then skip this step and go to step 5.

5. Put a disc with radius #(!) around all cluster centers generated in steps 3
and 4 in order to generate the cluster discs.

6. Generate a realization ' of a Poisson distributed random variable with
parameter (i, 4 Zou)aV7w(r(V)2, Put x = 2/ — ¢, which can be interpreted as
the number of thunderstorm cell centers to be simulated.

> According to the properties of Poisson point processes, the number of cluster centers #{i :
Y; € U} in U and the number of cluster centers #{: : Y; € W \ U} outside U should be indepen-
dent random variables. However, if 2ot is not reduced accordingly if more than zi, cluster centers
are needed to get one of them in each disc b(y;, r(l)) fori =1,...,q, we will generate too many
clusters on average. This will introduce a model bias that leads to significantly too high area proba-
bilities in applications.
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7. Repeat x times the following. Choose one cluster generated in step 3
or 4 at random and generate a uniformly distributed thunderstorm cell center in
the corresponding cluster disc.

8. Put a disc with radius r around each point generated in step 7 and around

each remaining cell center y; for i = 1,..., q. The union of all these discs can be
interpreted as a realization of M under the conditions that
(i) the realization contains the thunderstorm cells with centers y1, . . ., y, and

(i1) the expected number of generated thunderstorm cells is not changed com-
pared to unconditional simulation.

The entire procedure described in this section can also be applied using not
only observed thunderstorm cells from period T' — d but also from earlier periods
(depending on how big d is chosen) since thunderstorms, in particular those with
hail flag 2, have a good chance to exist two hours or even longer.

3.5. Application and model validation. In this section we perform a valida-
tion of the proposed cluster-based germ-grain model for thunderstorm cells. For
this purpose, we again consider the forecast periods, point probabilities, test areas
and thunderstorm records from NowCastMIX that were introduced in Section 5.
When estimating the cluster parameters as described in Section and using the
conditional simulation algorithm stated in Section B4, we assume that forecasts
are always made directly at the beginning of the corresponding forecast period and
that NowCastMIX data are available for the one-hour period before the forecasting
period, which means that d = 60 minutes. When applying conditional simulation,
NowCastMIX data is used for the condition and for validation. However, for the
condition only data prior to the start of the forecast period is used, whereas for
validation data is considered to be not available when the forecast is made. In Fig-

FIGURE 7. Typical realizations of the cluster-based germ-grain model for July 11, 2016, 15-16
UTC generated by unconditional simulation (left) and conditional simulation using NowCastMIX
data (right).
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ure [1, two typical realizations of the germ-grain model M are shown. The image
on the left-hand side shows a realization of M as described in Section B, whereas
for the image on the right-hand side the conditional simulation algorithm stated
in Section B4 is used. Both realizations resemble the corresponding thunderstorm
observations shown in Figure 0 (bottom right) much better than the realization of
the Cox germ-grain model in Figure I (bottom left), with the conditionally sim-
ulated realization being even more similar to the NowCastMIX data. Also, when
comparing area probabilities, we observe significant differences among the various
approaches considered in this paper. Figure B illustrates the test areas By, . .., Bggg

FIGURE 8. Area probabilities of By, . .., Bggg computed (unconditionally) according to the cluster-
based germ-grain model for July 11, 2016, 15-16 UTC.

FIGURE 9. Thunderstorm probabilities for July 11, 2016, 15-16 UTC estimated by conditional
simulation of the cluster-based germ-grain model using NowCastMIX data: point probabilities of
S1,...,81575 (left), area probabilities of Bl, ey Bogg (I’ight).
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colored according to the corresponding area probabilities 7w(By), . .., m(Bggg) for
the forecast period July 11, 2016, 15-16 UTC, where all area probabilities are
computed by means of the formula derived in Section BZ2. We observe that the
area probabilities in Figure B correspond well to the underlying point probabilities,
see Figure [ (top left), and also resemble the area probabilities in Figure 0 (top
right) with the only difference that they are considerably lower now. Estimation of
point and area probabilities based on conditional Monte Carlo simulation of the
proposed model leads to clearly different results, compare Figure B (left) with Fig-
ure [ (top left), and Figure B (right) with Figure B. Both point and area probabilities
look much sharper now, forecasting a high probability for a few points/areas, in-
stead of low or medium probabilities in the entire south and east of Germany. We
also observe that the estimated probabilities correspond particularly well with the
thunderstorm observations for this period, compared to Figure 0 (bottom right).
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FI1GURE 10. Comparison of area probabilities computed according to the cluster-based germ-grain
model with thunderstorm indicators from NowCastMIX: biases (top left), logarithmic skill scores
(top right) and empirical correlation coefficients (bottom).
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FI1GURE 11. Comparison of point probabilities estimated using conditional simulation of the cluster-
based germ-grain model with thunderstorm indicators from NowCastMIX: biases (top left), logarith-
mic skill scores (top right) and empirical correlation coefficients (bottom).

To conclude this example of our application and to show formally the perfor-
mance of the model, we compute the biases, logarithmic skill scores and empir-
ical correlation coefficients of estimated probabilities and observed thunderstorm
indicators. In Figure [ the test areas By, ..., Bggg are colored according to the
corresponding scores for area probabilities computed by means of the formula de-
rived in Section B7. The results reveal that the cluster-based germ-grain model is
much more suitable for the modeling of thunderstorm cells than the Cox germ-
grain model considered in Section . Compared to Figure O (right), biases were
reduced drastically (the mean bias is —0.4 %, single values are between —3 % and
2 %). The lowest and highest biases occur in those regions where similar biases are
also present in the underlying point probabilities, see Figure [ (left). Logarithmic
skill scores are positive for all test areas over land (mean value of 0.28, single val-



Point process models for thunderstorm cells 493

FIGURE 12. Comparison of area probabilities estimated using conditional simulation of the cluster-
based germ-grain model with thunderstorm indicators from NowCastMIX: biases (top left), logarith-
mic skill scores (top right) and empirical correlation coefficients (bottom).

ues ranging between 0.15 and 0.4), and thus clearly higher than for the Cox germ-
grain model of Section [, see Figure B (right). Correlation coefficients have similar
values to those for the Cox germ-grain model (mean value of 0.4, most single val-
ues between 0.25 and 0.6), compare to Figure B (right). Finally, we observe that
forecast quality can be improved significantly when point and area probabilities are
estimated based on conditional simulation of the cluster-based germ-grain model.
In Figures [ and [ the considered score functions for point and area probabilities
are shown. When comparing estimated point probabilities with those probabilities
from the available data, see Figures -2 (left), we find that logarithmic skill scores
(mean value 0.51, single values reaching up to 0.7) and correlation coefficients
(mean value 0.63, single values reaching up to 0.8) are considerably higher when
using conditional simulation. Furthermore, no model bias is introduced. The re-
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sults for area probabilities are even more convincing. A comparison of scores with
those in Figure [0 shows drastically increased logarithmic skill scores (mean value
of 0.49, single values up to 0.65) and correlation coefficients (mean value of 0.71,
almost all single values between 0.55 and 0.8) together with a mean bias of less
than 1%. This shows impressively that estimation of both point and area proba-
bilities (conditioned on past thunderstorm observations) according to the method
presented in this section has a very high precision and thus is a valuable tool in the
forecasting of thunderstorm events for short lead times.

4. CONCLUSION

In the present paper we considered two different approaches for spatial stochas-
tic modeling of thunderstorm cells with the purpose of estimating point and area
probabilities of the occurrence of thunderstorms. In both approaches thunderstorm
cells were represented by germ-grain models that are based on different types of
spatial point processes. For the developed models, formulas for the computation
of point and area probabilities were derived. The first approach, where cell centers
were modeled using Cox processes, turned out to be inappropriate due to intro-
ducing systematic biases to computed area probabilities. The second approach in-
volved the utilization of spatial doubly-stochastic cluster processes for modeling of
thunderstorm cell centers. In contrast to the Cox germ-grain model, which can be
fitted relying solely on available point probabilities, the cluster-based approach also
requires thunderstorm records of past periods to determine statistically all model
parameters. The benefit of using this more complex model is its ability to provide
reliable area probabilities, which perform even better (according to computed val-
idation scores) than the underlying point probabilities. The forecast quality can be
considerably increased even more if realizations of the model are generated con-
ditionally on thunderstorm records from past periods, leading to a very high cor-
respondence of simulated model realizations and thunderstorm observations for
short forecast lead times. In this way, nowcasting data based on radar and lightning
observations is seamlessly combined with forecast probabilities from numerical
models and statistical postprocessing. The model does neither assume spatial nor
temporal stationarity, and model fitting does not require any observations from the
period the forecasts are made for. This, together with the reasonable computation
time, makes the model suitable for applications in operational weather prediction.
A certain limitation is that the model is designed for short lead times only (up to
six hours maximum), whereas the conditional simulation algorithm only makes
sense for lead times up to two hours. A possible topic of future work could be, e.g.,
the incorporation of elliptic clusters, spatially varying cluster parameters or even
the integration of precipitation produced by single thunderstorm cells in order to
provide meteorologically more realistic thunderstorm realizations.
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