PROBABILITY AND MATHEMATICAL STATISTICS Vol. 4, Fasc. 1 (1984), pp. 1–12

LIMIT THEOREMS FOR EMPIRICAL PROCESSES INDEXED BY CLASSES OF SETS ALLOWING A FINITE-DIMENSIONAL PARAMETRIZATION

Peter Gaenssler

Abstract: Let ξ_1, ξ_2, \ldots be independent identically distributed random variables defined on some probability space (Ω, \mathcal{A}, P) and taking their values in a measurable space (X, \mathcal{B}) according to the probability distribution μ on \mathcal{B} defined by $\mu(B) := P(\xi_1 \in B), B \in \mathcal{B}$. Let

$$\mu_n := n^{-1} (\epsilon_{\xi_1} + \ldots + \epsilon_{\xi_n})$$

be the empirical measure on \mathcal{B} based on $\xi_1, \ldots \xi_n$ and, given a class $\mathcal{C} \subset \mathcal{B}$, let

$$\beta_n(C) := n^{1/2} (\mu_n(C) - \mu(C)), \quad C \in \mathcal{B},$$

be the empirical C-process, considered as a stochastic process indexed by C. Various properties of β_n as $n \to \infty$ are studied.

2000 AMS Mathematics Subject Classification: Primary: -; Secondary: -; **Key words and phrases:** -

THE FULL TEXT IS AVAILABLE HERE