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SEQUENTIAL E$TIMATIION FOB TME SPECTRAL DENSITY 
PARAMETER OF A STATIONARY GAUSSIAN PROCESS 

Abstract. In this paper we consider the problem of sequential 
estimation for the stationary zero-mean Gaussian process whose 
spectral density is of the form [2n(112+92)J-1, where 9 > 0 is an 
unknown parameter. We find the class of Markov stopping times 
determining optimal sequential estimation plans far a given function 
g(9). A sequential plan is optimal if the lower bound in the inforrn- 
ation inequality is attained. Moreover, the form of efficient sequen- 
tial estimators is derived and the class of &ciently estimable func- 
tions is investigated. 

1 R e .  Let ( ( t )  = t , ( t ) ,  t  E T = [0, CQ), be a separable stat- 
ionary zero - mean Gaussian process with the spectral density 

(1) 
1 " (4 = *r (2' + 8')' 

-cQ<a,<co, 

where  ED = (0, oo) is an unknown parameter. Such a process is a Markov 
one and has continuous sample functions with probability 1. The covariance 
function of the process ( , ( t ) ,  t~ T, is defined by 

m 

B, ( t )  = J e'" 'rp, (A)  dA = (29)- exp ( - 9 1tt) 
- CQ 

and the variance of this process is equal to 8,(0) = (29)-l. 
The processes {c,(t) ,  t ~ T j ,   ED, can be determined in the following 

way. Assume that W(t),  t~ T, is a Wiener process on a probability space 
( 8 ,  S, P) and X is a random variable on (8, 9, P), independent of W(t),  
t E T, and standard normally distributed. Let 5, = a W(s),  s < t ; X) be a 

3 - Prob. Math. Statist. 4 ( 1 )  
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family of a -algebras. Then, for every Q E D, a unique solution < (t) = {a (t), 
r~ T, of the stochastic integral equation ' 

t 1 
(21 e c t ) - t c o ~ = - $ ~ e ( ~ ) d ~ + ~ ( t ) ,  r(o)=- 

0 

considered with respect to W(t), t E T, and St, is the process with the above - 
mentioned properties. 

- In the sequel, if no ambiguity arises, we omit the index 9 and write 
simply t(t), t E T. - -  

LSdfkient statistics. An equivalent model of the processes (C,(t), t E TI,  
$ED, obtained by the canonical form will be useful in our considerations. 
Let C be the space of all continuous real - valued functions x = x(t ) ,  t E T, 
and let V = a [x = x(t), t E Tj denote the minimal a - algebra consisting of all 
cylinder sets of C. By p, we denote the measure on (C, .%') corresponding to 
the process l ,  (t), t E T :  

Let p8, be the truncation of the measure pa on 

Let us consider the sequential statistical space (C, V,, {pa,,, $ED)) ,  t E T, 
corresponding to the family of processes (<,(t), t~ T } ,  $ E D .  Let R be the 
real line and let BR denote the rr-algebra of Bore1 subsets of R. A function 
Z ( t ,  x): T x C -, Rk such that for every t E T the mapping Z ( t ,  -) is (W,, 91Rk)- 
measurable will be called a (k-dimensional) statistic on the space 
(C, gt, {P,,,, $ED)) ,  t E T. 

LEMMA 1. (a) The statistical space (C, V t ,  (pa,,, $ED)), t E T, is dominated . 

by a measure pa0,' for some Q O ~ D .  
(b) The densities dpa,,/dpa0,, are de$ned by 

- - 

where Z ( t ,  x) = (Z,(t, x), Z,(t, x)), and 

2, (t ,  x) = X2(0) + X=(t)-t, 



Sequential estimation 3 5 

(c) The statistic Z ( t ,  x) = ( Z l ( t ,  x), Z z ( t ,  x)) with Z , ( t ,  x) and Z2(t, x )  
deJined by (4)  and (51, respectively, is a (two -dimensionaE) suf$cient statistic on 
the s p a e  (C,  48,, (pa,i,    ED)), ~ E T .  

Proof.  Using the results on absolutely continuous substitution of 
measures [4] or the Skorohod theorems [6J we get (a) and the formula 

. -. 

where p,,(-;  9) denotes the distribution density of values of the process {,(t), 

E F T ,  at time t = O relative to this distribution for the pracess <,,(t);t E T. The 
function pa, (-; 8) is defined as p,, (. ; 8) = p ( .  ; 9) /p( -  ; so), where p ( .  ; 8) is the 
distribution density of values of the process (t),  t E T, at time t = 0. W e  
have 

where a: = (29)-' is the variance of the process {,(t), t E T. Thus 

From Ito's formula for processes satisfying equation (2) we obtain 

Substituting (7) and (8) into (6) we get 

t 

= exp {+[log 9 - log 9, - (9 - 3,) (5% (0) + 5$ ( t )  - t )  - (8' - 3;) 1 tio (s) ds]), 
0 

which is equivalent to (3). 
(c) follows from the Fisher-Neyman theorem on factorization (see, eg., 

121, Chap. II, Ej 2). 

3. AbIute  continuity of the measares generated by a Mhkov stoppirig 
time and 8 sllffieient statistic. Let T = z(x) be a finite Markov time with 
respect to the family Wt, t E T, i.e., T : C + [0, oo] so that ( x  : z (x) < t} E g, for 
e v e r y t ~ T a n d p ~ ( ~ x : . r ( x ) < o o ) ) = l f o r a 1 1 9 ~ D , L e t  U = T x R 2 a n d l e t  t 
= t(u) and z = z(u) = (z ,(u),  z2(u)) be the components of the point U E  U. The 



pair E ( x )  = (r ( x ) ,  Z (T (x),  x)) of W; -measurable functions generates for every 
Q E D  the measure pn, on {U, go) in the standard way: for every A E ~ , ,  

%(A)  = ~ 8 ( b - ' t A I )  = #((r(x), Z ( z ( x ) ,  + A ) .  

LEMMA 2. For every ,finite Markov time z there exists a a :finite measure m, 
on ( U ,  g,) independent of 8 and such that for every A E au and every 9 ED 

(9) m, ( A )  = J exp (4 [log 9 - $zz, (u) - 9' z2 (u)] ) m, (du). 
A 

Proof:"From the -modification of the Sudakov Ierntna obtained in [ 5 ]  for 
right.continuous functionals it follows that the measures m,, $ED, are 
absolutely continuous with respect to ma, and 

- 

i.e. (see formula (3)) 

dm, - (u )  = exp (i[log9-log 9,-(8-9,)zl(u)-(92-9~)~2(~)]).  
d h O  

Introducing the measure m, defined by 

q ( d u )  = exp {+[-log ~ o + 9 0 z l ( ~ ) + 9 ~ z 2 ( u ) 1 )  mgo(duj 

we complete the proof. 

4. Secguential plam. Let g(9) be a real-valued function of the parameter 
 ED. We observe the process ( ( t ) ,  t ~ 7 ;  up to time z and want to estimate 
the function g (3 ) .  A (a,, BE) -measurable function f : U -+ R will be called 
an estimator for g(9). 

D e fi n i t i  o n. By a sequential estimation plan for g ( 9 )  we mean any pair 6 
. = (7,  f )  consisting of a Markov time r satisfying, for a11 3 E D, the condition 

- and of an estimator f such that, for every Q E D ,  

(11) Esf ( 9 ( 5 ) ) =  I f  '(u) exp \'+Clog 9 -  f%(du) < co 
Cr 

and 

It follows from (10) that the observation of the process r ( t ) ,  t~ T, 
terminates in a finite time. Condition (12) means that f is an unbiased 
estimator for g(3 ) .  
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From (10) and Lemma 2 we have 

(13) j exp {i [log 9 - gz, (u) - 9' z2 (u)]) m, (du) = 1 
u 

for every $ E D .  
For simplicity, in the sequel we put Z,(s) = Z,(z(<), () and Zz(s) 

= z, ( m ,  e). 
Now, we formulate the following regularity conditions : 
(i) g(9) is differentiable and not identically constant on D; 

(iij 0 < E, [$-Z, IT)  - 2 9 ~ ,  ( t )y  < a, for every 9 E D  ; 
(iii) the differentiatiamand repeated differentiation of the integral with 

respect to 9 in identities (12) and (13), respectively, is allowed; 
(iv) E,Z,(r) is a differentiable function of the variable 9 ED. 
LEMMA 3. If the regularity conditions (i) -(iv) are snti;fied for a-sequential 

plan ( t ,  f), t k n  the following identities h i d :  

(14) 2g2 Es ZZ (t) = 1 - 9Es Z1 (z), 

(D,(.) denotes the variance evaluated at 9). 
A simple proof of Lemma 3 is omitted. Identity (18) is obtained from (14), 

(15), and (17). 
Using (14)-(16) and the Schwarz inequality we obtain 
THEC~REM 1. For every sequential plan (7, f )  satisfying conditions (i) - (iii) 

the inequality 

holds for all 9 ED.  The equality holds at a particular value of-9 if and only if 

(20) f (u) = c(9) [1/3-z, (u) - 29z2(u)] + g(9) m, - a.e, where c (9) # 0. 

Condition (i) implies that a sequential estimation plan (z, f )  for g(8) 
cannot consist of the estimator f (u) = const q - a.e. Indeed, if f (u) = const 
q - a.e., then E, f (z, Z(T)) = const = g (9) for all 9 ED, which contradicts the 
assumption. 

A sequential estimation plan ( t ,  f )  for g(9) is said to be dficient at (a 
fixed value) 9 if (19) becomes equality at 9. The estimator ,f is then called 
dficient at this value 9 and the function g(9) is eficiently esiimdie at the 
point 9. 
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A sequential estimation plan (z, f )  for g (9 )  is said to be eSficient if it is 
efficient at each 3~ D. The estimator f is then called ejjficient and the function 
g (9) is eficient ly estimable. 

It follows from Theorem 1 that a sequential estimation plan I t ,  .f) for 
g (9 )  is efficient at a point 9 if and only if the estimator f is of the form (20). 

THEOREM 2. If (T, f) is an ej$cient sequential estimation plan for g(9h then 
there exist constants a,, rt2 not both equal to zero and u constant ot3 such that 

(21) a l z , ( u ) + a 1 ~ 2 ( u ) + u 3  = 0 rq-a.e. 

Proof.' By assumption we can choose points 9, and in D (9, # 3,) 
an& then we write equality (20) in the form 

, f (u )=~(8~) [1 /Q~-z~(~) -29~z~(u ) ]+g(9~)  &-a& 
and 

f b) = d Q 2 )  [ l /Q2 - Z I  (4 - 2 9 2 ~ 2 1 ~ ) 1  +g(QZ) ~ 1 ,  - a.e., 

where ~ ( 9 , )  and ~ ( 9 ~ )  are both different from zero. 
Subtracting one equality from the other we obtain 

which completes the proof. 
THEOREM 3.  In a given sequential plan (z, f )  the function g (9 )  is efficiently 

estimable at a point 9 = 8' if and only i f  it is cf the form 

Proof. By Theorem 1 the only efficient estimators at a point 9 = 8' are 
those which take the form 

with probability 1, where ~ ( 9 0 )  # 0. Thus the function g(8) is efficiently 
estimable at 3 = 9' if and only if it is equal to the expected value of the 

- - 
estimator defined by (23). Therefore , 

Hence, making use of (14) we obtain (22), which completes the proof. 
THEOREM 4. If in a given sequential plan (z, f )  the finction g (9 )  is 

efficiently estimable, then it must be of the form 

where ko # 0, and kl, k,, i l ,  I ,  are arbitrary constants. 
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Proof. Suppose that 9, and 9, belong to D and 9, # 9,. Since the 
function g($ )  is efficiently estimable at these points, it fo1lo~-s from Theorem 
3 that the equalities 

019) = cCgl)(l/sl-1/9-2(91-~)E,CZ2(~)l',+s(gt) 
and 

9 (8) = c (92) ( 1/92 - - 2('% - 9) E, C Z ;  (211 1 + g (92) 

must hold. Eliminating E,[Z,(r)] horn these equalities we get 

Since neither c(9,) nor. ~ ( 9 , )  can be equal to zero, the coefficients 1, 
= 9, c (9 , )  - c (a2) and 1, = c (8,) - c (9,) cannot vanish simultaneously and 
k, = c ( 8 , ) ~ ( 9 ~ ) ( 8 ,  - 9,) #'O. Thus the function standing by g(9) in the 
above-given equality cannot vanish and, consequently, by a proper choice of 
coefficients we obtain formula (24). 

It folllows from Theorem 2 that one should seek the effi6ient sequential 
plans for a given function g(9) from the class described in Theorem 4 among 
the plans determined by Markov stopping times for which (21) holds. 

Let us consider the Markov times 

(25) 4') (x) = inf { t  : Z1 ( t ,  x) = a ) ,  

(26) T ( ~ ) ( x )  = inf { t  : Z , ( t ,  x) = b)? 0  < b < oo, 

(27) 2c3)(x) = inf ( t :  Z 2  ( t ,  x) = c ,  Z1 ( t ,  x) -kc,), 

where a, b, e l ,  c,, are boundaries given in advance and Z , ( t ,  x), Z 2 ( t ,  xj are 
defined by (4), (5), respectively. A sequential plan determined by 21') will be 
called a $xed - energy plan. 

Observe that from Ito's formula for processes satisfying the stochastic 
integral equation (2) it follows that the relation 

(28) 21 ( t ,  t) = 2t2  (0) - 2922 ( t ,  t) + 21 ( t ,  5)  

holds with probability 1, where l ( t ,  5) denotes the stochastic -integral 

LEMMA 4.  I f  -q < a s O ,  then 

P9) E 9( 2 ( l ) n  I < c o  
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Proof. observe that (see formula (4) and Fig 1) 

~( ' ' ( 8  = inf ( t :  < 2 ( 0 ) + c 2 ( t )  = t + a )  

and 
Pk"'(5)  > t) < P(<2(0)f t 2 ( t )  3 t + u )  

Fig. 1 

Since the process l(t), t E T, is stationary, the terms on the right-hand side of 
the above inequality are equal. Thus 

(30) P ( T ( ~ ' ( < )  > t )  < 2P 

Taking into account the fact that the randon variable c(0) is normally 
distributed with mean zero and variance (29)-' and using the inequality 

for the standard normally distributed random variable X, from (30) we 
obtain 

for t  > la(. Consequently, putting k = 4 ( 2 ~ 9 ) - ' ~ ~ e x p  (-4%) we have 

(3 1 )  P(.t(l)(<) > t )  < k ( t + ~ ) - ' / ~ e x p  ( - $ s t ) ,  
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which implies 
(0 

Stn- '~(2") (5)>t )dt<co  
la l  

for all 9eD. Thus the lemma is proved. 
In particular, it follows from Lemma 4 that for - m < a < 0 condition 

(10) of the closedness of a sequential plan (t(l), f) is satisfied. Henceforth, we 
shall suppose that - ao < a < 0. 

THEOREM 5. A sequential plan = (dl), ft13 with 
.. . 

(32) . .- f "1 = Rl 2, (dl') + A2 

is efficient for 
- - 

where A1 # 0 and I ,  denote arbitrary constunts, The variance of the estimator 
f(') is equal to 

Proof. First we show that E,2;(.sc1)) < ca for all  ED. 
Using the Schwarz inequality we get 

where 1, denote the indicator function of the set A and I = (E, t4(s))'" is a 
positive and finite constant. Thus, by (31), we obtain E,Z,(z(')) < m for all 
 ED. Then it follows from the properties of stochastic integrals with random 
upper limits (see, e.g., 131, Part I, 5 4) that E,l(z(ll) = 0 and 

- -  - 
(35) E!, I2 (~ ( l ) )  = E, 2* (T(l)). 

For the sequential plan 6"' we have Z,(r(')) = a with probability 1, and 
formula (28) implies that for this plan the relation 

is valid with probability 1. Taking into account (35) we obtain 

Eg p9z2 ( ~ ( l q +  a]' < 8~~ t4 (0) + 8Eg l2 ( ~ ( l ) )  

= 8E8 r4 (0) + 8E8 2, (dl)). 
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Since Eo t4(0) < cn and E, Z2 (dl)) < rn for all 9 ED, 'we have E, 2: (s'l)) 
< a for  ED. 

Taking into account the finiteness of E , Z ~ ( T ( ~ ~  it is easy to verify that 
regularity condition (iii) is satisfied for the plan 6"'. 

By (14) and (18X for the plan Siil we have 

and 

and formula (34) follows from (37). - 
Now we shall prove that an efficient sequential estimator f (ttl), 2(z1'))) in 

the plan Stl) is indeed of the form defined by (32) and the funcfion (33) is the 
only efficiently estimable one in this plan. 

Let f (dl), Z(T('))) be an efficient estimator in the plan 8"). Then it is 
efficient at a certain point g1 ED and, by Theorem I, takes the form 

with probability 1, where ~ ( 8 , )  # 0. Hence, if f (zfl), 2(d1))) is an efficient 
estimator, then there exist constants I, # 0 and 1, such that 

Moreover, only the function 

is efficiently estimable in the plan 6(l). By (36), from (38) we obtain (33), 
which completes the proof of the theorem. 

In particular, it follows from Theorem 5 that 
r ( l )  

Z2(z('))= j t2(s)ds 
0 - - 

is an efficient sequential estimator for g(8)  = (1 -a9)/2&J2. 
Let us now consider the fixed - energy plan. From the ergodic theorem we 

obtain the following lemma : 
LEMMA 5. We have 

(39) , p(zt2)(C,) < m) = 1 for all 9 ED. 

THEOREM 6. A sequential plan St2) = (d2), ffZ)) with 
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is dficient for 

wLre A, # 0 and 1, are arbitrary constants. The variance of the estimator f'2) 
is given by 

P r o  of. In the plan --S12) we have 2, ( ~ ( ~ 9  = b with probability 1 ,  and 
relation (28) takes the form 

Since 
z( 2)  

E ~ Z , ( T ( ~ ~  = E, t2(s)ds = b < m, 
0 

using the properties of stochastic integrals with random upper limits 'and 
relation (42), we infer in an analogous way as in Theorem 5 that E, 22(d2)) 
< a, for all 8 k D  and the regularity conditions for the sequential plan are 
satisfied- 

By (14) and (lg), for the plan ~ 5 ' ~ )  we have. 

and 

Let f (T(~), Z (r('))) be an efficient estimator in the plan 6"). Theny similarly 
as in Theorem 5 we infer from Theorem 1 that it is equal with probability 1 
to the estimator defined by (40). By (43) we have 

Thus the fixed-energy plan 6'') is efficient and g(9.) defined by (41) is the 
only efficiently estimable function in this plan. 

By Theorem 6 we conclude that, e-g., 2, (2")) = cZ (0) + CZ ( T ( ~ ) )  - T ( ~ )  is an 
efficient sequential estimator for g (8) = ( 1  - 2M2) 9- ' . 

LEMMA 6. If c1 > 0 and c2 > 0, then 

(44) ~ ( z ( ~ ) ( t , ) < o o ) = l  for all GED. 
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Proof. Let us observe that, by (28), 
t t 

~ ' ~ ' ( t ~ )  = inf (t: ( 1 + 2 ~ , 9 ) j ~ ~ ( ~ ) d ~ - 2 ~ ~  Jt(~)dW(s) = 2 ~ ,  C2(0)+ca]. 
0 0 

Put m = 1 + 2c,9 and #i = k, . It is easy to see that condition (44) is satisfied 
if, for all 9 E D ,  

Let - -  .. . 

. . 
lim sup [ a j t 2 ( s ) d s - B S < ( s ) d W ( s ) ] = q .  

T o + c ~  OGt<TO o 0 - 

Then for every K > 0 and all  ED we have 

Let To = K~/'. Then 

and by the ergodic theorem this probability tends to 1 as K -+ a. Moreover, 
from the well-known inequality for stochastic integrals (see, e.g., [I], 
Theorem 5.1.1, or [3], Part I, $ 3) we get 

- - 
I 82 ~ 3 1 2  

sup / j c ( s ) d ~ ( s ) l < -  21-- BY 
B 

E,T2(s)ds = I-- 
O S t S T o  0 +k ' 

where y = E, t2(s) = (28)-I. Thus the second probability on the right-hand 
side of (45) tends aIso to 1 as K + oo. We then have P(q = a) = 1, for all 
$ED, which proves the closedness of the plan. 

I wish to thank Dr. L. Partzsch for his helpful comments and discussions. 
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