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Abstract. This paper gives a characterization of the elliptically
. contoured measures on infinite -dimensional Banach spaces. The
main results are Theorems 1 and 2. This characterization is not valid

in the finite-dimensional Banach spaces.

The elliptically contoured measures were studied by Das Gupta et al. [2]
in the finite-dimensional case and by Crawford 1] in the case of the
measures with the strong second order on infinite-dimensional spaces. In this
paper we omit this assumption.

By E we denote a real separable Banach space and by E* its dual. #(E)
denotes the family of all Borel sets in E. If 4 is a measure on E, then by

U+ we denote the n-dimensional measure defined by
10n .

sy = WXEE | (19, ooy xE L))

where A€ #(R" and x§, ..., x¥cE* are linearly independent.

Definition 1. We say that u is a cylindrical measure- on the Banach
space E if u is a finite additive measure on cylinder sets in E and for every
linearly independent set x¥, ..., x* € E* the measure B’ is o-additive on
R".

Definition 2. We say that the measure u on R" is an elliptically '
contoured n-dimensional measure if there exist a function f: [0, 00) — [0, c0)
and a positive definite, symmetric (n xn)-matrix £ such that

@ [ (¢Hdr < o (which is equivalent to p(R") < ®);

o
(ii) |Z]”Y*f (xZ~'x") is the density of the measure pu.
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We will use the notation p = &(f, X, n). -

Definition 3. A measure g on the Banach space E is elliptically
contoured if for every natural number n and every linearly independent set
x%, ..., x* € E* the measure B, is an elliptically contoured n-dimensional

measure.

In the paper we will consider only elliptically contoured probability
measures.

Examples. 1. The Gaussian measure on R" with the density

T =T 2m T exp {3X2TIST)

is obviously an elliptically contoured r-dimensional measure with
£0%) = @ny " exp {—3r),

2. If the measure x on R" is invariant on thé rotations and has a density,
then the density must be constant on the sets

{xeR"| Y xt=r*}, r=z=0.

Then p is an elliptically contoured measure on R" with the matnx I and
some function f: [0, oo) — [0, ).

3. The n-dimensional Student distribution has a density
|T|'— 1/2 C(n) [1 +1fT— 1 f'l‘:l— (n+k)/z,

where k is the number of degrees of fredom. Then it is an elhptlcally
contoured n-dimensional measure.

Let us recall some known properties of elliptically contoured measures on

R" For details see [1] and [6]

PrOPERTY 1. Let p=&(f, 2, n), X = B'B, and let C be a nonsingular (n
x n)-matrix. Then:

() if A(4) = u(AC™ 1 B) for every Aec B(R"), then A = &(f, CTC, n),

(i) if A(4) = p(AC” 1) for every Ac B(R"), then i =&(f,C'ZC, n).

PrOPERTY 2. Let p = &(f, Z, n). Then the characteristic function of u is of
the form

o0

A® = § exp {i(RZXN2y} f,(y)dy := Y (XZX"),

where

LY =].. If(y+z )dxl...dx,,_rl.

Rnl
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ProPERTY 3. Let p = &(f, Z, n) and let the measure v on R"~! be defined
by
V(A) = pIXERM(X, «ovy Xye1s Xgt1s -+-» X)EA}, A€BRY,1<k<n

"Then v=©&(g, S, n—1), where S is a positive definite, symmetric matrix
obtained from X by removing the k-th row and the k-th column, and

g = Oj?f(r2+x2)d'x.

| ProperTY 4. If two _representations of the elliptically contoured n-
dimensional measure u are given, i.e., if p=&(f, Z, n) = &(g, S, n), then there
exists a number a > 0 such that

a’S=2% and g(rH)= a"'f(rz/az)
Sketch of the proof. Assume that X =1 and put S =(s;)i;=1- Now
we define
S=s'S and §@r?») =s"*g@r?s5y).
It is easy to see that u = &(§, S, n). Property 2 implies that for every xeR"

19 = T exp (3 50} £ (3 ) .. s

i=1 Rn—l J—
and, on .the other hand, '
i(® = [ exp{i(x8x")"2y,} .. Ig(Z y})dy, ... dy,dy,.
- RP— 1 Jj=1

Recall that §,,=1. If x=(x,0,...,0), then fj(X) is the characteristic
function of a probability measure on R. Consequently, we obtain the equality

oo SF(E 5Dy o = JT(S ) .

R 1 j=1

almost everywhere with respect to the Lebesgue measure. Now, it is easy to.

see that J = § =s;,'S, and then g(r?) = a~"f (r*/a®), where a > 0 and a*
= s71. If X 5 I, then there exists a nonsingular matrix B such that ¥ = B'B
and we can use the above argumentation to the measure

A=E&(f 1, n) =&(g, (B~ ' S(B™'), n)

(see Property 1).

THEGREM 1. If u is a cylindrical measure on an infinite-dimensional Banach
space E, then the following conditions are equivalent:

(1) u is elliptically contoured.

(2) There exists Q: E* x E* > R, an inner product on E*, such that the

4 — Prob. Math. Statist. 4 (1)




50 ‘ J. Misiewicz

characteristic function of p is of the form fi(x*) =y (Q(x* x*)), where yr: R*
— R is a function.

(3) There exist a Gaussian, cylindrical, symmetric measure y on E and a
probability measure A on (0, 0) such that

u(d) = Zv(A/\/f)l(dt)

for every cylinder set AcE.

“Proof. (1) 5(2). First we prove that if g is an elliptically contoured
measure on an infinite-dimensional Banach space E and for some linearly
independent set x¥, ..., x*c E* we have Bsl,onit = € (f, Z, n), then for every

linearly independent set yf, ..., y,, € E* there exists a positive‘de'ﬁnite, sym-
metric matrix S such that uy* =&(f, S, n).

Assume that x¥, ..., x¥ yl,. ., y¥ are linearly independent. From the
definition we know that there exist functions g, h and matrices 7, P such that

fers=6@, Tn) and s = x =& (h, P, 2n).

Now, from Property 3 we obtain

2172 (27 E) = [.. . J|PI" P (P~ ) dz, ... dz

Rn
- |P11l‘1/2j"'jh(fpl_ll )TT+ Z )d21
RP i=1
and
ITI"Y2g@T~1F) = [...[|P|" Y2 h(FP~* F)dx, ... dx,
Rn
= lezI—llzj‘...J'h(ZPz_le"' Z )dx1 ree dx,,,
RN i=1
where
— Pll P12>
=x,...,x,,,z,...,z, P= s
y=(x 1 o) - (le P35,

and P is an (n x n) - matrix. Now, by Property 4, there exists a number a>0
such thdl X =a?P,, and

j'...fh(r2+‘_il yd)dy, ...dy, = a~"f (r*/a?)

and there exists a number b > 0 such that T = b?P,, and

.- Jh(r*+ zn: yidy, ...dy, = b‘"y(r;zlbz).
i=1

R
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This means that g(r?) = ¢~ "f(r?/c?) for ¢ = a/b. It is easy to see that
sy = € (f, 2 T, m).

If x¥,..., x% y%, ..., y¥*eE* are not linearly independent, then we can
choose z%, ..., z¥ € E* such that x¥, ..., x¥, z§f, ..., z¥ are linearly indepen-
dent and y¥, ..., y¥ z¥, ..., z¥ are linearly independent.

Since p,,..,4 = é(f, Z,n)and x¥, ..., x}, z§, ..., z¥ are linearly indepen-
dent, according to the preceding considerations there exists an (n x n) - matrix
T such that _ ‘

Tl = E(f, T, 1),

and since y¥, ..., y¥ z¥, ..., z¥ are linearly independent, there exists an (n
x n)-matrix. § such that - o

;,...,y; = ‘g,(f’ S: n)'

Now, we can construct by induction the sequence { f,}-such that for every
x¥, ..., x* there exists a positive definite, symmetric matrix X such that

It is enough to fix an x* (0 # x* e E*) and fix one of the representations of
the measure pu,, = &(f;, 02, 1). We know that for every y*eE* there exists
o,.> 0 such that u, = &(f;, o7, 1). _

If f;,...,f, are given and x{, ..., x¥cE* are linearly independent, then
we take some representation Beyniipy = £(g, =, n+1). By assumption there

exists a matrix T such that Bl = &(f,, T, n). Then
[TI72f,(XT 12 = [ |Z7Y2g (X271 2T dxpsy
=|8|""2 | g(xS™' X" +y?dy,

where (see Property 3) the matrix S is obtained from X by removing the
(n+1)-st row and the (n+1)-st column. By Property 4 there exists a number
a > 0 such that

S=a’T and f,(r)=a" | gt*a ?+y?dy.
Now, it is enough' to put
for1)=a""'g¢*a"?) and X =a"2Z.
Let x*, y*cE*. We define Q(x*, y*) by
Q(x* y*) =as? if y* =ax* and pu, = &(f;, 62, 1)



52 J. Misiewicz
and by :
Q(x*, y*) =04,

if x* y* are linearly independent and

Gi11 012
=& 2}
Jux*.),* (fz! (0_21 0'22), )

From Property 2 it follows that the characteristic function of the measure
i is of the from , -

A0 = [exp Q0 x) 1} 0D dy == ¥ (<", ).

(2) =(3). From the Kuelbs theorem (see [4]) it follows that the function ¥
in the above formula must be absolutely monotonic. Then there exists a
finite measure 4 on [0, oo) such that

A(e*) = YO (%, x¥9) = [ exp {—30(x*, x¥)1} A(dr)

if Q(x*, x*) # 0. Obviously, 4 must be a probability measure and 4({0}) = 0.

Now, we construct a Gaussian, symmetric, cylindrical measure y on E.
Let x{, ..., xy €E* be linearly independent and write X = (Q(xF, xj")),f:j= i
We define V),.xl @S the symmetric Gaussian measure on R" with the
covariance matrix X. It is easy to see that the family

{?x’;,....x; | neN, xfeE* are linearly independent}
defines a symmetric, Gaussian, cylindrical measure on E such that
Vot (A) =V {(x€E | (xf (), ..., x}(x))e A} for every AcB(R").
We now construct a cylindrical measure v on E by the formula
() = [ (A0 00
- for every cylinder set A = E. For every x*cE* we have"

7(x*) = fexp {ix* (0} v(dx)
E

= _}; & :j? [2nQ (x*, x*)£]~ Y2 exp {_E(—i%;ﬁ} A(dt)dy

= Jexp {—3Q(x" ¥} 4D = A(*)

Then, obviously, u =v on every cylinder set in E.
(3) = (1). We have only to show that the finite-dimensional distributions
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of u are elliptically contoured n-dimensional measures. Let x¥, ..., x7 € E* be
linearly independent. Then for every Ae%(R") we have

et (A) = [ 91,y (41D A (1)
0
T f...f1Z17 2 2n)~ "2 exp {——lz—fz‘lf}dxl(dt)
0 44—1/2
j'”.“z'l—lﬂT(znt)—n/zexp{_-_fz_l)_ﬂ
1]

A

}l(dt) dx,
where T is the covariance matrix of Ve Then le';,....,;; is elliptically
contoured since its density is of the form

x- 15T

12|~ ”ZI(2Trt)‘"’2exp{ xEZt }A(dr)

LemMa. Let u and v be cylindrical measures on the Banach space E and let
A be a probability measure on R such that A({0}) =0; let

a0

u(A)= [ v(ADA(ds)

for every cylinder set A < E. Then u can be extended to a Radon measure if
and only if v can be extended to a Radon measure.

Proof. If v can be extended to a Radon measure, then so can yu since E
is a Polish space. '

Assume that p can be extended to a Radon measure and suppose that v
cannot be extended to a Radon measure. Then there exists ¢ > 0 such that
for every compact set K < E there exists an n-dimensional projection n: E
— R" such that ‘ ‘

' v{n~1(nK)) < 1—¢.

For the measure 4 we can find T >0 such that A({—T, T})=0 and
A(=T, T) > 1—¢/2. Since u can be extended to a Radon measure, there
exists a compact set K, < E such that aK, = K, for every |a| <1 and
p(Kq) > 1—¢/4. If we take now such a projection n: E — R” for which
v[n ' (n(K,T))] < 1—¢, then we obtain the following contradiction:

1-¢/4 < p(Ko) < pu(n~ ' (nKo)) = _? v[r ™ (m(Kot))] A(dt)
<g/2+ } vz (r(¢t T~ K, T))] A(d1)
°r

<e24v[n  (m(KoT)JA(-T, T) < 1—¢/2.

Therefore, v must be a Radon measure.
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THEOREM 2. If u is a Radon measure on an infinite-dimensional Banach
space E, then the following conditions are equivalent:

(1) u is elliptically contoured.

(2) There exist a Gaussian, symmetric, Radon measure y on E and a
probability measure A on (0, o0) such that, for every Aec #(E),

p(4) = jv(A/J t) A(dt).

(3) There exist a Gaussian, zero mean, random vector X on E and a real
positive random variable © on (0, o) such that X and € are mdependent and

p is_the law of the ‘random vector Y = X JO.

Proof. The equivalence of conditions (1) and (2) follows easily from
Theorem 1 and the Lemma. -

(2) = (3). For the measures y and A we can construct a Gaussmn, zero
mean, random vector X on E and a positive random variable @ such that X
and © are independent, y is the distribution of X, and 4 is the distribution of

©. Then we have only to prove that y is the distribution of ¥ = X \/5 . Let
C={xeE|(x}(x), ..., x}¥(x))e A4},
where xf, ..., x¥eE* are linearly independent and 4 #(R"). Then
P{YeC}=P{(x}(Y), ..., x¥*(Y))e 4}

= P00, .. D) AN/E} 200

8

= [P{XeC/\/t}r@dn) = | ?(C/\/?)Z(dt)#ﬂ-(c)-

(3) =(1). It is sufficient to prove that the ﬁnite-dimensional distributions
of the random vector Y are elliptically contoured Let C be defined as above.
Then we obtain

P{YeC} = TP{XeC/ﬁ}A(dr)
’ 0

<

={J. j(zn)_"lzll'l_”zexp{—lic'Z"fT}dxA(dt)
0 4—1/2 2

-1 T

= j...jlzl"’zuj? (2nt)" "2 exp {— X }A(dt)dx,
4 0 2t

where X is the covariance matrix of the random vector (x§(X), ..., x¥(X)).
This means that (x§(Y), ..., x}(Y)) has the distribution &(f,, Z, n), where

XX

£} = ]3 (2rt)~ "2 exp { - ﬁ} A(dt).
! %
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From now on we denote the elliptically contoured measures on infinite-
dimensional Banach spaces by &(y, 1) or §(X, @).

TueoREM 3. If F is a linear measurable subspace of the Banach space E and
1= &E(p, A) is the measure on E, then u is concentrated on F if and only if so is
7.

This theorem follows easily from the equality F /\/; = F for every t > 0.

TueorReM 4. For every elliptically contoured measure &(y, A) on E the
following conditions are equivalent for every p > 0: :

() E P <oo. -

(ii) E,|x*(x)P < oo for every x*eE*.

(i) Tt’“}l(dt) <.

(4]

This follows immediately from Theorem 2 (3).

Remarks. 1. Let us note that Theorems 1 and 2 are not valid in a finite-
dimensional space (cf. [6]). But for every symmetric Gaussian measure y on
R" and every probability measure 4 on (0, co) the measure u=é&(y, 4) is
elliptically contoured on R".

2. Crawford (cf. [1]) proved Theorem 1 for the elliptically contoured
measures with the strong second order. Our representation coincides in this
case with that of Crawford if

uftit(dt) =1.
Y

3. Tt is easy to see that for each symmetric Gaussian measure y on E and

for every (p/2)-stable measure 4 on (0, o0), where p <2, the measure p

= &(y, 4) is p-stable on E ([3], Chapter VI, p. 167). Moreover, elliptically
contoured measures occur in the Random Central Limit Theorem:

- Let {X,} be independent symmetric, identically distributed, random variables

such that (X;+ ... +X,,)/ﬁ converges in distribution to a symmetric

- Gaussian variable X. If ©,/a,5 ©, where @, are nonnegative random vari-

ables, a,— oo, and O is a nonnegative random variable, X and © being

independent, then (X,+ ... +x.,n)/\/5,", converges in distribution to X \/5
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