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Abstract. This paper gives a characterization of the elliptically 
* contoured measures on infinite-dimeosional Banach spaces. The 

main results are Theorems 1 and 2 This characterization is not valid 
in the finite-dimensional Banach spaces. 

The elliptically contoured measures were studied by Das Gupta et al. [2] 
in the finite-dimensional case and by Crawford [I] in the case of the 
measures with the strong second order on infinite-dimensional spaces. In this 
paper we omit this assumption. 

By E we denote a real separable Banach space and by E* its dual. B(E) 
denotes the family of a11 Borel sets in E. If fi  is a measure on E, then by 

px;,..,,i we denote the n-dimensional measure defined by 

r.; ......; = r ( X E E  I (*W, ., x:?x))EA},- 

where A E $$?(R")nd x:, . . . , x: E E* are linearly independent. 
Definition 1. We say that p is a cylindrical measure on the Banach 

space E if p is a finite additive measure on cylinder sets in E and for every 
linearly independent set xt,  . . ., x: EE* the measure ~r,;,...,,; is o-additive on 
R". 

Defini t ion 2. We say that the measure y on R" is an elliptically 
contoured n-dimensional measure if there exist a function f :  [0, oo) + [0, a) 
and a positive definite, symmetric (n  x n)-matrix E such that 

m ' 

(i) 1 rn- ' f (r2) dr < CCI (which is equivalent to p(RA) < m) ; 
0 

{ii) ICI-1/2f ( X X - ~ X ~  is the density of the measure p. 
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We will use the notation p = $(f, E, n). 
Defini t ion 3. A measure p on the Banach space E is a i ~ i ~ t i c a l ~ ~  

contoured if for every natural number n and every linearly independent set 
x:, . . . , xz E E* the measure px;,...,x; is an elliptically contoured n-dimensional 
measure. 

In the paper we will consider only elliptically contoured probability 
measures. 

Examples. 1. The Gaussian measure on Rn with the density 
-- 

-. - .  ( Z I T ) - " / ~  exp { ~ E - C - ~ X ~  
. - 

1 
is obviously an elliptically contoured n-dimensional measure with 

-- 

f (r2) = (21~)- '1~ exp ( -+r2 ) .  

2. If the measure p on R" is invariant on the. rotations and has a density, 
then the density must be constant on the sets 

Then fi is an elliptically contoured measure on R" with the matrix I and 
some function f : 10, co) + [O, m). 

3. The n-dimensional Student distribution has a density 

where k is the number of degrees of fredom. Then it is an elliptically 
contoured a-dimensional measure. 

Let us recall some known properties of elliptically contoured measures on 
R". For details see [I] and [6] 

PROPERTY 1. Let p = b(f, Z, n), Z = BT B, a d  let C be a nansingular ( n  
x n)-matrix. Then : 

(i) if I ( A )  = p(AC- 'B)  for every A € g ( R n ) ,  then il =&'(f, cTC, n); 
(ii) $ A(A) = p(AC-I)  for every A ~ a ( R 9 ,  then A = &(f, CTCC, n). 
PROPERTY 2. Let p = b(f, Z, n). Then the characteristic function of p is of 

the form 
m 

ji (X) = J exp (i ( x ~ x ~ ) ~ / ~  y ) f, (y2) dy : = $ (3ZzT), 
- L@ 

where 
n- 1 

f i e 2 )  = 1. .. 1 f ( y +  + x: )~x~  .. . d ~ , - ~ .  
p- 1 i= l 



Elliptically contourd measures 49 

PROPERTY 3. Let p = b ( f ,  Z, n) and let the measure v on Rn-' be defined 
by 

V ( A )  = p [ x E R " ~ ( x ~ ,  ..., x & + ~ ,  ..., XJEA], A E ~ ( R " - ~ ) ,  1 G k G a. 

Then v = b(g, S, n-  1), where S is a positive definite, symmetric matrix 
obtained 3 o m  Z by removing the k-th row and the k-th column, land 

- m 

PROPERTY 4: If two. _representations of the elliptically cuntoured n- 
dimensional masure p are given, i.e., ifp = b(f, Z, n) = d'@, S, n), then there 
exists a number a > ~ o  such that 

Sketch  of t h e  proof. Assume that 2 = I  and put S =(si,);ji=,. Now 
we define 

S=s;,'s and J ( rZ )=~;[ ' 2g ( r z s ;~ ) .  

It is easy to see that p = b(g, S", n). Property 2 implies that for every X f R n  

and, on the other hand, 
r,, n 

Recall that Z l 1  = 1. If R = ( x ,  0, . . . , 0), then ji(@ is the characteristic 
function of a probability measure on R. Consequently, we obtain the equality 

almost everywhere with respect to the Lebesgue measure. Now, it is easy to 
see that I  = 3 = s,;l S, and then g (r2) = a-" f (r2/az), where > 0 and aZ 
= s z .  If Z # I ,  then there exists a nonsingular matrix B such that C = B ~ B  
and we can use the above argumentation to the measure 

A = b{f, I ,  n) = d(g, (B- ' )TS(B- l ) ,  n) 

(see Property 1). 
T"EOREM 1. If p is a cylindrical measure on an inznite-dirnensiona1 Banach 

space E, then the following conditions are equivalent: 
(1) p is elliptically contoured. 
(2) There exists Q :  E* xE* -P R, an inner product on E*, such that the 

4 - Prob. Matb. Statist. 4 (1) 
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characteristic function of p is of the form f i (x* )  = t,b (Q (x*, x*)), where + : R+ 
+ R is a function. 

(3) There exist a Gaussian, cylindrical, symmetric measure y on E and a 
probability measure i on (0, a) such that 

for every cylinder set A E E .  ' 
- Proof. (1) +(2). First we prove that if p is an elliptically contoured 

measure an infinite-dimensional Banach space E and for some Linearly 
indepkdent set x?, . .., x: EE* we have ir,; ,...,.; = B ( f ,  Z, n)? then for every 
linearly independent set yf , . , . , y: E E* there exists a positive-definite, sym- 
metric matrix S such that k; ,,..,,; = B(f, S, n). 

Assume that x f ,  ..., xf, y;", ..., y,* are linearly independent. From the 
definition we know that there exist functions g, h and matrices T, P such that 

Now, from Property 3 we obtain 

( E l - 1 / 2 f ( ~ Z - 1 ~ ' )  = j . . . j I P I - 1 / 2 h ( P - 1 ~ T ) d z l  ... dz, 
~b n 

= (~,~I-"*j...jh(~P,-,lj~~+ C z;)dzl ... dz, 
Rn i =  1 

and 

and Pij is an ( n  x n) - matrix. Now, by Property 4, there exists a number a > 0 a 

such that'Z = a2  P l l  and 
n 

and there exists a number b > 0 such that T = b2P22 and 
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This means that g(rZj = c-nf (r2/c2) for c = a/b. It is easy to see that 

If xf, .. ., xb, y f ,  . .., ~ $ E E "  are not linearly independent, then we can 
choose zf, . . . , zd E E* such that xf , . . . , x:, z f ,  . . . , z: are linearly indepen- 
dent and y:, ..., yt, z:, .. ., z: are linearly independent. 

Since px; x; = 8 (f, E, n) and xf, . . . , x:, zf, . . ., z: are linearly indepen- 
dent, according to the preceding considerations there exists an (n x n) -matrix 
T such- that -- 

-- - 
. . pZ;, ...,z; = g ( J  T 4, 

and since yf, ..., yz, zf, .. ., z: are linearly independent, there exists an (n 
x 4-matrix S such that 

- 

Py; ,...,,; = #(f, s, 4. 
Now, we can construct by induction the sequence (S,j-.such that for every 

x:, ..., x: there exists a positive definite, symmetric matrix E such that 

It is enough to fix an x* (0 # x* EE*) and fix one of the representations of 
the measure px, = &(f1, a&, 1). We know that for every y* E E* there exists 
cry, > 0 such that p,,, = B(fl, a;, 1). 

If fly . . . ,f, are given and xf, . . ., x,* E E* are linearly independent, then 
we take some representation H;,,..,~:,, = b ( g ,  E ,  n+ 1). By assumption there 
exists a matrix T such that H;,...,~; = b(f,, T, n). Then 

where (see Property 3) the matrix S is obtained from E by removing the 
(n+ 1)- st row and the (n + 1) -st column. By Property 4 there exists a number 
a > 0 such that 

m 

s = a2 T and fn(r2) = a-" g ( r 2 a - 2 + y 2 ) d y .  
- m 

Now, it is enough to put 

fn+l (r2) = a-"-' g ( r 2 a - 2 )  and X' = u - ~ C .  

Let x*, y* EE*. We define Q(x*, y*) by 

Q (x*, y*) = aa2 if y* = ax* and px, = 8 ( f l y  a', 1) 
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and by 

Q (x*, Y*) = a12 

if x*, y* are linearly independent and 

From Property 2 it follows that the characteristic function of the measure 
p. is of the from 

w 

. . i i x * )  = J- exp ji (Q (x*, x*))"' yJ f, (y2) d y  : = $ (Q (x", x*)). 
-03 

(2) + (3). From the Kuelbs theorem (see [4]) it follows that the function $ 
in the above formula must be absolutely monotonic. Then there .exists a 
finite measure A on [ O ,  m) such that 

Ti 

ji(x*) = @(Q(x*, x*)) = J exp -+Q(x*, x*) t )  R(dt)  
0 

if Q(x*, x*) # 0. Obviously, R must be a probability measure and i ( { O j )  = 0. 
Now, we construct a Gaussian, symmetric, cylindrical measure y on E. 

Let x:, . . . , x: E E* be linearly independent and write E = (Q(xF, x,*)XJ= 
We define y,;,.,,,,; as the symmetric Gaussian measure on Rn with the 
covariance matrix Z. It is easy to see that the family 

I 1 y,;,. , .,,; I n E N,  xi* E E* are linearly independent] 

defines a symmetric, Gaussian, cylindrical measure on E such that 

y,; ,..,,,; (A) = y {x E E ( (x: (x), . . . , X: (x))E A )  for every A E (R7. 

We now construct a cylindrical measure v on E by the formula 

for every cylinder set A c E. For every X*E E* we have- 

V*(X*) = j exp {ix* (x)} v (dx) 
E 

= 1 e'Y 1 [2.nQ (x*, x*) t ] -  
- m  0 

Then, obviously, p = v on every cylinder set in E. 
(3) =) (1). We have only to show that the finite-dimensional distributions 
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of p are elliptically contoured n-dimensional measures. Let xf, . . . , x: EB* be 
linearly independent. Then for every A E B(R")e have 

m 1 
= I I.. . I jS~-ll2 (2n)-n12 exp { - 32- X']dx~(dt) 

Q At-112 

m 

= J . . .I IZI- 'I2 J (2~c t ) -~ / '  exp 
-- A 0 

{- i (dt) dx, 
--  - - 

where E is the covariance matrix of y,; ,,..,, ;. Then px; ,..,,, ;: is elliptically 
contoured since its density is of the form 

- 
m 

1Z1- ljz 5 ( 2 1 4 -  "I2 exp 
0 {-";; xT]A(dtl .  

LEMMA. k t  p and v be cylindrical measures on the Battach space E a d  let 
1 be a probability measure on R such that 1 ( [ 0 ] )  = 0 ;  let 

m 

~ ( 4  = 1 v (At)  1 ( d o  
- F 

for every cylinder set A c E. Then p can be extended to a Radon measure if 
and only if v can be extended to a Radon measure. 

Proof.  If v can be extended to a Radon measure, then so can p since E 
is a Polish space. 

Assume that p can be extended to a Radon measure and suppose that v 
cannot be extended to a Radon measure. Then there exists E > 0 such that 
for every compact set K c E there exists an n-dimensional projection n :  E 
+Rn such that 

v(7t-l (KK)) < 1 - E .  

FO; the measure 1 we can find T > 0 such that A ( { - T ,  T)) = 0 and 
A(- T, 7') > 1-&/2. Since p can be extended to a Radon measure, there 
exists a compact set KO c E such that a K ,  c KO for every la! d 1 and 
p(Ko)  > 1-~/4.  If we take now such a projection x: E - + R n  for which 
v [n-  (n (KO T))] < 1 - E, then we obtain the following contradiction : 

m 

1-~ /4  <p(KO)<p(n-l(xKo))= j ~ [ n - ~ ( n ( ~ ~ t ) ) ] 1 ( d t )  
- m  

T 

Therefore, v must be a Radon measure. 
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THEOREM 2. if p is a Rdon measure on on infinite-dimensional Battach 
space E, then the following conditions are equivalent: 

( 1 )  p is elliptically contoured. 
(2) There exist a Gaussian, symmetric, Radon measure y on E a d  a 

probability measure A on (0, oo) such that, for every A €@(a, 

(3) There exist a Gaussian, zero mean, random vector X on E and a real 
pbsitive ranrdom variable @ on (0, a) such that X and 6r are independent and 
p is .- ihe law of the-iandoa vector Y = x$. 

Proof. The equivalence d conditions (1) and (2) follows easily from 
Theorem 1 and the Lemma. - 

(2) =)(3). For the measures y and A we can construct a Gaussian, zero 
mean, random vector X on E and a positive random variable 8 such that X 
and 8 are independent, y is the distribution of X, and L is the distribution of 
8. Then we have only to prove that p is the distribution of Y = x*. Let 

where x?, . . ., x,* EE* are linearly independent and AEB(R*) .  Then 

m m 

= j P (xEc/&) ~ ( d t )  = y ( ~ / f i ) ~ ( d t )  = p ( q .  
0 0 

(3) =)(I). It is sufficient to prove that the finitedimensional distributions 
of the random vector Y are ellipticaIIy contoured. Let C be defined as above. 
Then we obtain 

where E is the covariance matrix of the random vector (xf (X) ,  . .., e(X)). 
This means that (x: (Y), . . . , x: (Y)) has the distribution C (L, 2, n), where 
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From now on we denote the ellipticalIy contoured measures on infinite- 
dimensional Banach spaces by C(y, A) or b(X, @). 

THEOREM 3. If F is a linear maswable subspace of the Baltach space E a d  
p = &(y ,  A) is the measure on E, then p is concentrated on F g a d  only i f  so is 

This theorem follows easily from the equality F/& = F for every t > 0. 
THEOREM 4. For every elliptically contoured masure & ( y ,  1) on E the 

following conditions are equivalent for every p > 0: 

(i) E,llxllP'<oo. - 

(ii) 'E, Ix* (x)lP < oo for every xs E E*. 
m 

(iii) S tN2 l, (dt) < KC. 
- 

0 

This follows immediately from Theorem 2 (3). 
Remarks. 1. Let us note that Theorems 1 and 2 are not valid in a finite- 

dimensional space (cf, [6]). But for every symmetric Gaussian measure y on 
Rn and every probability measure 1 on (0, GO) the measure p = b ( y ,  A) is 
elliptically contoured on Rn. 

2. Crawford (cf. [I]) proved Theorem 1 for the elliptically contoured 
measures with the strong second order. Our representation coincides in this 
case with that of Crawford if 

3. It is easy to see that for each symmetric Gaussian measure y on E and 
for every (p/2)-stable measure A on (0, a), where p < 2, the measure p 
= b(y, A) is p-stable on E ([3], Chapter VI, p. 167). Moreover, elliptically 
contoured measures occur in the Random Central Limit Theorem: 

Let {X,) be independent symmetric, identically distributed, random variables 
such that (XI + . . . + XJ/& conuerges in distribution to o symmetric 
Gaussian variable X .  If 8 Ja, 4 8, where 8, are nonnegative random vari- 
ables, a, -, CQ, and 8 is a nonnegative random variable, x and 8 being 
independent, then (XI + . . . +X@J/& connerges in distribution to x@. 
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