INTERPOLATION ERROR OPERATOR FOR HILBERT SPACE VALUED STATIONARY STOCHASTIC PROCESSES

BY

ANDRZEJ MAKAGON (Wroctaw)

Abstract. In the paper a characterization of interpolation error operator for Hilbert space valued stationary stochastic processes is obtained.

1. Introduction. Let Z be the set of integers and let $X_{n}=\left(X_{n}^{1}, \ldots, X_{n}^{q}\right)$, $n \in \boldsymbol{Z}$, be a q-variate stationary stochastic process over \boldsymbol{Z}. Suppose that all random variables $X_{n}, n \neq 0$, are known. Then the linear predictor of X_{0} is given by the formula

$$
\hat{X}_{0}=P_{M_{0}(X)} X_{0}
$$

where $M_{0} \stackrel{\mathrm{df}}{=} \overline{\mathrm{sp}}\left\{X_{n}^{i}: n \neq 0, i=1, \ldots, q\right\}, P_{M}$ denotes the orthogonal projection operator onto M, and $P_{M}\left(X^{1}, \ldots, X^{q}\right)=\left(P_{M} X^{1}, \ldots, P_{M} X^{q}\right)$. An important problem in the prediction theory of such processes is to obtain a formula for the interpolation error matrix

$$
\Sigma_{0} \stackrel{\mathrm{df}}{=}\left[\left(X_{0}^{i}-\hat{X}_{0}^{i}, X_{0}^{j}-\hat{X}_{0}^{j}\right)\right]_{i, j=1}^{q} .
$$

A complete solution of this problem for $q=1$ was given by A. N . Kolmogorov in 1941. In 1960 Masani [4] extended Kolmogorov's result to the case of minimal full rank q-variate processes and later (1967) Salehi [8] proved that for any q-variate minimal process ($q<\infty$) we have

$$
\Sigma_{0}=\left[\frac{1}{2 \pi} \int_{0}^{2 \pi} P_{J}\left(\frac{d F^{a}}{d t}\right)^{\#}(t) P_{J} d t\right]^{*},
$$

where F^{a} is the absolutely continuous part of the spectral measure of the
process and J is a range of Σ_{0}. Finally, in 1976, Makagon and Weron [3] obtained a full description of the space $J=$ range Σ_{0}.

In the present paper a characterization of the interpolation error operator for Hilbert space valued stationary processes is given.
2. Preliminaries. Let H and K be complex Hilbert spaces. Unless otherwise stated, the following conventions and notation will remain fixed in this paper:
$L(H, K)$ - the set of all linear and continuous operators from H into K;
$L^{+}(H)$ - the set of all selfadjoint operators $T \in L(H, H)$ such that ($T x, x$) $\geqslant 0$ for every $x \in H$; we write $T \geqslant S$ if $T-S \in L^{+}(H), T, S \in L(H, H)$;
$\mathscr{N}(T)$ - the null space of an operator T, i.e.,

$$
\mathscr{N}(T)=\{x \in H: \quad T x=0\}, \quad T \in L(H, K)
$$

$\mathscr{R}(T)$ - the range of T, i.e., $\mathscr{R}(T)=\{y \in K: y=T x, x \in H\}$;
$T^{\#}$ - the generalized inverse operator of an operator $T \in L(H, K)$, i.e., a linear mapping from $\mathscr{R}(T)$ onto $\mathscr{N}(T)^{\perp}$ such that $T^{\#} y=x$ if and only if $T x=y$ and $x \in \mathscr{N}(T)^{\perp}$ (we observe that $T^{\#}$ is closed because $T^{\#}$ $=\left(T \mid \mathcal{N}(T)^{\perp}\right)^{-1}$;
P_{M} - the orthogonal projection operator onto M;
\underline{M}^{\perp} - the orthogonal complement of M;
$\mathrm{sp} L$ - the minimal closed linear subspace containing the set L;
G - a discrete Abelian group;
Γ - the dual group of \boldsymbol{G};
$\langle g, \gamma\rangle$ - the value of $\gamma \in \Gamma$ at a point $g \in G$;
$\mathscr{B}(\Gamma)$ - the Borel σ-algebra of Γ;
x - the normed Haar measure of Γ;
$L^{2}(\Gamma, x, K)$ - the Hilbert space of all K-valued x-square (Bochner) integrable functions on Γ;
C - the set of all complex numbers.
2.1. Definition. A function $X=\left\{X_{g}: g \in G\right\}$ from G into $L(H, K)$ is said to be an H-valued stationary stochastic process (SSP) if its correlation $X_{h}^{*} X_{g}$ $=K(g-h)$ depends only on $g-h$.

If X is an H-valued SSP, then there exists a unique Borel regular $L^{+}(H)$ valued measure (countably additive in the weak operator topology) such that for every $x \in H$

$$
(K(g) x, x)=\int_{\Gamma}\langle g, \gamma\rangle(F(d \gamma) x, x)
$$

F is called the spectral measure of the process X. By the spectral density of the process X we mean an $L^{+}(H)$-valued function $F^{\prime}(\cdot)$ on Γ such that, for every $x \in H,\left(F^{\prime}(\cdot) x, x\right)$ is x-integrable and

$$
(F(\Delta) x, x)=\int_{\Delta}\left(F^{\prime}(\gamma) x, x\right) x(d \gamma) .
$$

If H is separable and F^{\prime} exists, then it is unique up to the x-a.e. equality.
2.2. Lemma. Let H be a separable Hilbert space and let F^{\prime} be the spectral density of an H-valued SSP X. Then
(1) $\left[F^{\prime}(\cdot)\right]^{1 / 2} x \in L^{2}(\Gamma, x, H)$ for every $x \in H$;
(2) $\mathrm{sp}\left\{\langle g, \cdot\rangle F^{\prime}(\cdot)^{1 / 2} x: \quad g \in G, x \in H\right\}=\left\{f \in L^{2}(\Gamma, x, H): \quad f(\gamma) \in \overline{\mathscr{R}}\left(F^{\prime}(\gamma)\right)\right.$ \boldsymbol{x}-a.e.\};
(3) for every x-measurable function $f: \Gamma \rightarrow H$ such that $f(\gamma) \in \mathscr{R}\left(F^{\prime}(\gamma)^{1 / 2}\right)$ χ-a.e. the function $\varphi(\gamma)=\left[F^{\prime}(\gamma)^{1 / 2}\right]^{\#} f(\gamma)$ is χ-measurable.

Proof. The first part follows from the definition of F^{\prime} and the construction of an operator square. root (see, e.g., [5], p. 183).

To prove (2) it suffices to show that the right - hand side (RHS) of (2) is included in the left one (LHS) (the converse inclusion is trivial). Suppose that $f \in$ RHS and $f \perp$ LHS and let $\left\{x_{k}: k=1,2, \ldots\right\}$ be a countable dense set in H. Then for every $k=1,2, \ldots$ and $g \in G$ we have

$$
\int_{\Gamma}\langle g, \gamma\rangle\left(F^{\prime}(\gamma)^{1 / 2} x_{k}, f(\gamma)\right) x(d \gamma)=0 .
$$

Hence there exists a set $\Delta \in \mathscr{B}(\Gamma)$ such that $\varkappa(\Delta)=0$ and

$$
f(\gamma) \perp \overline{\mathscr{R}\left(F^{\prime}(\gamma)^{1 / 2}\right)}=\overline{\mathscr{R}\left(F^{\prime}(\gamma)\right)} \quad \text { for every } \gamma \notin \Delta
$$

Thus $f=0 \quad x$-a.e. since $f \in$ RHS.
Part (3) is a special case of Lemma 2.7 (2) in [2].
For any H-valued SSP X and $A \subset G$ we put

$$
\begin{gathered}
M_{A}(X)=\overline{\operatorname{sp}}\left\{X_{g} x: x \in H, g \in A\right\}, \quad M(X)=M_{g}(X), \\
N_{A}(X)=M(X) \ominus M_{A}(X) .
\end{gathered}
$$

The following lemma was observed by Rosanov (see [7]):
2.3. Lemma. Let H be separable and let X be an H-valued SSP. Suppose that the spectral density F^{\prime} of the process X exists. Then the mapping V defined by the formula

$$
V\left(X_{g} x\right)(\cdot)=\langle g, \cdot\rangle F^{\prime}(\cdot)^{1 / 2} x, \quad x \in H, g \in G
$$

extends to an isometry from $M(X)$ onto

$$
L(F) \stackrel{\mathrm{df}}{=}\left\{f \in L^{2}(\Gamma, x, H): f(\gamma) \in \overline{\mathscr{R}\left(F^{\prime}(\gamma)\right)} x-\text { a.e. }\right\} .
$$

Moreover,

$$
V\left(N_{G-\{0\}}(X)\right)=\left\{f \in L(F): F^{\prime}(\gamma)^{1 / 2} f(\gamma)=\text { const } x-a . e .\right\}
$$

Proof. From Lemma 2.2 it follows that $Y=\left\{Y_{g}: g \in G\right\}$, where

$$
\left(Y_{g} x\right)(\cdot) \stackrel{\mathrm{df}}{=}\langle g, \cdot\rangle F^{\prime}(\cdot)^{1 / 2} x, Y_{g} \in L\left(H, L^{2}(\Gamma, x, H)\right)
$$

is an H-valued SSP with the same spectral measure as the process X. Moreover, $M(Y)=L(F)$. A simple calculation shows that the mapping V defined by $V\left(X_{g} x\right)=Y_{g} x$ extends linearly to an isometry from $M(X)$ onto $M(Y)$. To prove the remaining part of the lemma it suffices to observe that $f \in V\left(N_{G-\{0\}}(X)\right)$ if and only if

$$
\int_{\Gamma} \overline{\langle g, \gamma\rangle}\left(F^{\prime}(\gamma)^{1 / 2} f(\gamma), x\right) x(d \gamma)=\left(f, V\left(X_{g} x\right)\right)=\left(V^{-1} f, X_{\theta} x\right)=0
$$

for every $g \in G-\{0\}$ and $x \in H$. The last equality holds if and only if $F^{\prime}(\gamma)^{1 / 2} f(\gamma)=$ const x-a.e.
3. The main theorem. Let X be an H-valued SSP over an Abelian group $G, A \subset G$, and let g be a fixed element of G. Then the predictor X_{g}^{A} of X_{g} and the prediction error operator Σ_{g}^{A} are defined by the following formulas:

$$
X_{g}^{A}=P_{M_{A}(X)} X_{g} \quad \text { and } \quad \Sigma_{g}^{A}=\left(X_{g}-X_{g}^{A}\right)^{*}\left(X_{g}-X_{g}^{A}\right)
$$

First, we describe the prediction error operator using the Yaglom idea (cf. [9], p. 175). For convenience we introduce the following definition:
3.1. Definition. Let \mathscr{A} be a subset of $L^{+}(H)$. An operator $T \in L^{+}(H)$ is said to be the maximal element of \mathscr{A} (we write $T=\max \mathscr{A}$) if $T \in \mathscr{A}$ and T $\geqslant S$ for every $S \in \mathscr{A}$.
3.2. Lemma. Suppose that X is an H-valued SSP over an Abelian group G, $A \subset G$, and $g \in G$. Let \mathscr{A}_{g}^{A} be the set of all operators $T \in L(H, K)$ such that (i) $\mathscr{R}(T) \subset N_{A}(X)$,
(ii)

$$
T^{*} T=X_{g}^{*} T
$$

and let

$$
\mathscr{D}_{g}^{A} \stackrel{\mathrm{df}}{=}\left\{T^{*} T: T \in \mathscr{A}_{g}^{A}\right\} .
$$

Then $\Sigma_{g}^{A}=\max \mathscr{D}_{g}^{A}$. Moreover, if $\Sigma_{g}^{A}=T^{*} T$ and $T \in \mathscr{A}_{g}^{A}$, then $T=X_{g}-X_{g}^{A}$.
Proof. First, we note that $Y_{g}^{A} \stackrel{d f}{=} X_{g}-X_{g}^{A}$ satisfies (i) and (ii). Hence $\Sigma_{g}^{A} \in \mathscr{D}_{g}^{A}$. Let now $T \in \mathscr{A}_{g}^{A}$. Since $\left(Y_{g}^{A}\right)^{*} T=X_{g}^{*} T=T^{*} T$, we have

$$
\begin{gathered}
\Sigma_{g}^{A}=\left(Y_{g}^{A}\right)^{*} Y_{g}^{A}=\left(\left(Y_{g}^{A}-T\right)+T\right)^{*}\left(\left(Y_{g}^{A}-T\right)+T\right)=\left(Y_{g}^{A}-T\right)^{*}\left(Y_{g}^{A}-T\right)+T^{*} T \\
\geqslant T^{*} T .
\end{gathered}
$$

Thus Σ_{g}^{A} is the maximal element of \mathscr{D}_{g}^{A}. Moreover, $\Sigma_{g}^{A}=T^{*} T$ if and only if $T=Y_{g}^{A}$.

We will be interested only in the case whence G is a discrete Abelian group, $A=G-\{0\}$, and $g=0$. For simplicity we write

$$
\hat{X}_{0}=X_{0}^{G-\{0\}} \quad \text { and } \quad \Sigma_{0}=\Sigma_{0}^{G-\{0\}} .
$$

33. Lemma. Suppose that H is separable, X is an H-valued SSP, and that F^{\prime} is its spectral density. Then $S \in \mathscr{D}_{0}^{G-\{0\}}$ (see Lemma 2.2) if and only if $S \in L(H, H)$ and for every $x \in H$:

$$
\begin{equation*}
S x \in \mathscr{R}\left(F^{\prime}(\gamma)^{1 / 2}\right) x \text {-a.e., } \tag{i}
\end{equation*}
$$

(ii)

$$
\int_{\Gamma}\left(\left[F^{\prime}(\gamma)^{\#}\right]^{1 / 2} S x,\left[F^{\prime}(\gamma)^{1 / 2}\right]^{\#} S x\right) x(d \gamma)=(S x, x)
$$

Proof. Let \mathscr{D}_{0} denote the set of all operators $S \in L(H, H)$ for which (i) and (ii) are satisfied. First we show that $\mathscr{D}_{0}^{G-\{0\}} \subset \mathscr{D}_{0}$. Let V denote the isomorphism defined in Lemma 2.3. Suppose that $S=T^{*} T$, where $T \in \mathscr{A}_{0}^{G-\{0\}}$. Then

$$
\begin{aligned}
(S x, y) & =\left(T^{*} T x, y\right)=\left(X_{0}^{*} T x, y\right)=\left(V T x, V X_{0} y\right) \\
& =\int_{\Gamma}\left((V T x)(\gamma), F^{\prime}(\gamma)^{1 / 2} y\right) \varkappa(d \gamma) \\
& =\int_{\Gamma}\left(F^{\prime}(\gamma)^{1 / 2}(V T x)(\gamma), y\right) \varkappa(d \gamma) \\
& =\left(F^{\prime}(\gamma)^{1 / 2}(V T x)(\gamma), y\right) \varkappa-\text { a.e. }
\end{aligned}
$$

since $V T x \in V\left(N_{G-\{0\}}(X)\right)$ and, by 2.3, $F^{\prime}(\gamma)^{1 / 2}(V T x)(\gamma)=$ const x-a.e. Thus $S x=F^{\prime}(\gamma)^{1 / 2}(V T x)(\gamma) x$-a.e. and (i) is satisfied. From the above equation it follows that

$$
(V T x)(\gamma)=\left[F^{\prime}(\gamma)^{1 / 2}\right]^{\#} S x \quad x \text {-a.e. }
$$

Therefore

$$
(S x, y)=(V T x, V T y)=\int_{\Gamma}\left(\left[F^{\prime}(\gamma)^{1 / 2}\right]^{\#} S x,\left[F^{\prime}(\gamma)^{1 / 2}\right]^{\#} S y\right) x(d \gamma)
$$

It remains to prove that $\mathscr{D}_{0} \subset \mathscr{D}_{0}^{G-\{0\}}$. Let $S \in \mathscr{D}_{0}$. Then $S \geqslant 0$ and from Lemmas 2.3 and 2.2 we deduce that $\left[F^{\prime}(\gamma)^{1 / 2}\right]^{\#} S x$ is a function defined x a.e. and belonging to $L(F)$ for every $x \in H$ (for the definition of $L(F)$ see Lemma 2.3). Let us note that by the Closed Graph Theorem a mapping R defined by the formula

$$
H \ni x \xrightarrow{\mathrm{R}}\left[F^{\prime}(\cdot)^{1 / 2}\right]^{\#} S x \in L^{2}(\Gamma, x, H)
$$

is continuous. In fact, let $x_{n} \rightarrow x_{0}$ in H and $\left[F^{\prime}(\cdot)^{1 / 2}\right]^{\#} S x_{n} \rightarrow g(\cdot)$ in $L^{2}(\Gamma, x, H)$. Without loss of generality one can assume that

$$
\left[F^{\prime}(\gamma)^{1 / 2}\right]^{\#} S x_{n} \rightarrow g(\gamma) \varkappa \text { - a.e. }
$$

By (i) there exists a set $\Delta \in \mathscr{B}(\Gamma)$ of x-measure zero such that $S x_{n} \in \mathscr{R}\left(F^{\prime}(\gamma)^{1 / 2}\right)$ for all $n=0,1, \ldots$ and

$$
g(\gamma)=\lim \left[F^{\prime}(\gamma)^{1 / 2}\right]^{\#} S x_{n}
$$

provided $\gamma \notin \Delta$. Since $S x_{n} \rightarrow S x_{0}$ and $\left[F^{\prime}(\gamma)^{1 / 2}\right]^{\#}$ is a closed operator for every $\gamma \in \Gamma$, we obtain $g(\gamma)=\left[F^{\prime}(\gamma)^{1 / 2}\right]^{\#} S x_{0}$ for every $\gamma \notin \Delta$. Since $F^{\prime}(\gamma)^{1 / 2}(R x)(\gamma)$ $=S x x$-a.e., Lemma 2.3 implies that

$$
\begin{equation*}
\mathscr{R}(R) \subset V\left(N_{G-\{0\}}(X)\right) . \tag{1}
\end{equation*}
$$

Moreover, we have

$$
\begin{align*}
\left(R^{*} R x, x\right) & =\int_{\Gamma}\left\|\left[F^{\prime}(\gamma)^{1 / 2}\right]^{\#} S x\right\|^{2} x(d \gamma)=(S x, x) \quad\left(\text { i.e., } R^{*} R=S\right) \tag{2}\\
\left(R^{*} R x, y\right) & =(S x, y)=\left(F^{\prime}(\gamma)^{1 / 2}(R x)(\gamma), y\right) \\
& =\int_{\Gamma}\left((R x)(\gamma), F^{\prime}(\gamma)^{1 / 2} y\right) x(d \gamma) \\
& =\left(R x, V X_{0} y\right)=\left(\left(V X_{0}\right)^{*} R x, y\right) x-\text { a.e. }
\end{align*}
$$

Let us put $T=V^{-1} R$, where V is the isomorphism defined in Lemma 2.3. Then, by (1)-(3), we have $T \in \mathscr{A}_{0}^{G-\{0\}}$, and hence $T^{*} T=R^{*} R=S \in \mathscr{D}_{0}^{G-\{0\}}$.

Now we state the main result of this paper.
3.4. Theorem. Let $X=\left\{X_{g}: g \in G\right\}$ be an H-valued $S S P$ over a discrete Abelian group G and let F be its spectral measure. Suppose that H is separable and the process X has the operator spectral density F^{\prime} (with respect to χ). Let \mathscr{D}_{0} be the set of all those operators $S \in L^{+}(H)$ for which

$$
S x \in \mathscr{R}\left(F^{\prime}(\gamma)^{1 / 2}\right) x \text {-a.e. }
$$

and

$$
(S x ; x)=\int_{\Gamma}\left(\left[F^{\prime}(\gamma)^{1 / 2}\right]^{\#} S x,\left[F^{\prime}(\gamma)^{1 / 2}\right]^{\#} S x\right) \varkappa(d \gamma)
$$

for every $x \in H$.
Then the prediction error operator Σ_{0} and the predictor \hat{X}_{0} are given by the following formulas:

$$
\begin{gather*}
\Sigma_{0}=\max \mathscr{D}_{0} \tag{1}\\
\hat{X}_{0} x=V^{-1}\left(F^{\prime}(\cdot)^{1 / 2} x-\left[F^{\prime}(\cdot)^{1 / 2}\right]^{\#} \Sigma_{0} x\right), \quad x \in H . \tag{2}
\end{gather*}
$$

Proof. Part (1) follows immediately from Lemmas 3.2 and 3.3. To prove (2) it suffices to observe that if $T=V^{-1} R$, where $(R x)(\cdot)=\left[F^{\prime}(\cdot)^{1 / 2}\right]^{\#} \Sigma_{0} x$, $x \in H$, then according to the proof of Lemma 3.3 we have $T \in \mathscr{A}_{0}^{G-\{0\}}$ and $T^{*} T=\Sigma_{0}$. Thus, by Lemma 3.2, $T=X_{0}-\hat{X}_{0}$, which completes the proof.

4. Final remarks.

4.1. First, let us note that for a finite-dimensional Hilbert space Theorem 3.4 contains the results stated in the Introduction. Suppose $H=\boldsymbol{C}^{q}(q<\infty)$.

Then, by Theorem 3.4, Σ_{0} is the maximal element of the set \mathscr{D}_{0} of all $q \times q$ Hermitian non-negative matrices S for which

$$
\begin{gather*}
\mathscr{R}(S) \subset \mathscr{R}\left(F^{\prime}(\gamma)^{1 / 2}\right)=\mathscr{R}\left(F^{\prime}(\gamma)\right) \varkappa \text {-a.e., } \tag{i}\\
S=\int_{\boldsymbol{F}} S F^{\prime}(\gamma)^{\#} S \varkappa(d \gamma)
\end{gather*}
$$

(here $A^{\#}$ denotes the generalized inverse matrix of a matrix A in the sense of Penrose; for its properties we refer to [6]). In that case one can find an explicit form of Σ_{0}.
4.2. Corollary (cf. [8] and [3], Theorem 4.5). Assume that $\left\{X_{g}\right.$ $\left.=\left(X_{g}^{1}, \ldots, X_{g}^{q}\right): g \in G\right\}$ is a q-variate stationary stochastic process over G and let F^{\prime} be its spectral density. Let J be the space of all $x \in \mathbb{C}^{q}$ (the elements of \mathbb{C}^{q} are regarded as column vectors) such that

$$
x \in \mathscr{R}\left(F^{\prime}(\gamma)\right) x \text {-a.e., } \quad \int_{\Gamma} x^{*} F^{\prime}(\gamma)^{\#} x x(d \gamma)<\infty .
$$

Then

$$
\Sigma_{0}=\left[\int_{\Gamma} P_{J} F^{\prime}(\gamma)^{\#} P_{J} x(d \gamma)\right]^{\#}
$$

Proof. Write

$$
S_{0}=\left[\int_{\Gamma} P_{J} F^{\prime}(\gamma)^{\#} P_{J} \varkappa(d \gamma)\right]^{\#}
$$

and observe that, according to the results of [6], S_{0} satisfies (i) and (ii) of 4.1. In fact, we have
(i) $\mathscr{R}\left(S_{0}\right)=\mathscr{N}\left(\int_{\Gamma} P_{J} F^{\prime}(\gamma)^{\#} P_{J} x(d \gamma)\right)^{\perp}$

$$
=\mathscr{R}\left(\int_{\Gamma} P_{J} F^{\prime}(\gamma)^{\#} P_{J} \varkappa(d \gamma)\right) \subset J \subset \mathscr{R}\left(F^{\prime}(\gamma)\right) x \text {-a.e., }
$$

(ii)

$$
S_{0}=S_{0} S_{0}^{\#} S_{0}=S_{0}\left(\int_{\Gamma} P_{J} F^{\prime}(\gamma)^{\#} P_{J} d x\right) S_{0}=\int_{\Gamma} S_{0} F^{\prime}(\gamma)^{\#} S_{0} \varkappa(d \gamma)
$$

We shall prove that $S_{0} \geqslant S$ for every S satisfying (i) and (ii) of 4.1. Since

$$
\begin{aligned}
S & =\left[\int P_{S Y(S)} F^{\prime}(\gamma)^{\#} P_{S R(S)} d x\right]^{\#}=\left[P_{\mathscr{Y}(S)}\left(\int P_{J} F^{\prime}(\gamma)^{\#} P_{J} d x\right) P_{S(S)}\right]^{\#} \\
& =\left[P_{\mathscr{Y (S)}} S_{0}^{\#} P_{\mathscr{R}(S)}\right]^{\#},
\end{aligned}
$$

the proof will be completed if we show the following fact:
If S_{0} is a $q \times q$ Hermitian non-negative (complex) matrix and M is a subspace of $\mathscr{R}\left(S_{0}\right)$, then $S_{0} \geqslant\left(P_{M} S_{0}^{\#} P_{M}\right)^{\#}$.

To see this we put $S=\left(P_{M} S_{0}^{\#} P_{M}\right)^{\#}$ and $T=\left(S_{0}^{1 / 2}\right)^{\#} S$. Since

$$
\mathscr{R}(S)=\mathscr{R}\left(P_{M} S_{0}^{\#} P_{M}\right) \subset M \quad \text { and } \quad S^{*}=P_{M} S_{0}^{\#} P_{M}
$$

we have

$$
\begin{aligned}
\left(S_{0}^{1 / 2}-T\right)^{\#} T & =S_{0}^{1 / 2} S_{0}^{1 / 2 \#} S-S S_{0}^{\#} S=P_{\mathscr{R}(S)} S-\left(S P_{M}\right) S_{0}^{\#}\left(P_{M} S\right) \\
& =S-S\left(P_{M} S_{0}^{\#} P_{M}\right) S=S-S S^{\#} S=0
\end{aligned}
$$

Thus

$$
\begin{aligned}
S_{0} & =\left(S_{0}^{1 / 2}\right)\left(S_{0}^{1 / 2}\right)=\left[\left(S_{0}^{1 / 2}-T\right)+T\right]^{*}\left[\left(S_{0}^{1 / 2}-T\right)+T\right] \\
& =\left(S_{0}^{1 / 2}-T\right)^{*}\left(S_{0}^{1 / 2}-T\right)+T^{*} T \geqslant T^{*} T=S S_{0}^{*} S=S
\end{aligned}
$$

Finally, we state a generalization of Theorem 3.4 to the case of processes without spectral densities. The following proposition will take place of Lemma 2.3 in our considerations.
4.3. Proposition ([1], see also [2]). Let X be an \boldsymbol{H}-valued SSP over G with the spectral measure F and let $H_{2, F}$ denote the set of all H-valued measures m on $\mathscr{B}(\Gamma)$ such that

$$
\begin{aligned}
& m(\Delta) \in \mathscr{R}\left(F(\Delta)^{1 / 2}\right) \quad \text { for every } \Delta \in \mathscr{B}(\Gamma), \\
& \sup _{\sigma \in \mathscr{F}} \sum_{\Delta \in \sigma}\left\|\left[F(\Delta)^{1 / 2}\right]^{\#} m(\Delta)\right\|^{2} \stackrel{\mathrm{dr}}{=}\|m\|_{F}^{2}<\infty,
\end{aligned}
$$

where \mathscr{F} is the set of all finite Borel partitions of Γ. Then
(a) $\left(H_{2, F},\|\cdot\|_{F}\right)$ is a Hilbert space;
(b) the mapping U defined by

$$
U\left(X_{g} x\right)(\Delta)=\int_{\Delta}\langle g, \gamma\rangle F(d \gamma) x, \quad \Delta \in \mathscr{B}(\Gamma),
$$

extends linearly to an isometry from $M(\mathbb{X})$ onto $H_{2, F}$;
(c) for every $A \subset G$

$$
U\left(N_{A}(X)\right)=\left\{m \in H_{2, F}: \dot{\hat{m}}(g) \stackrel{d r}{=} \int_{\Gamma} \overline{\langle g, \gamma\rangle} m(d \gamma)=0 \text { for all } g \in A\right\} .
$$

Using this proposition and the same arguments as in Theorem 3.4 one can show the following
4.4. Theorem. Suppose that X is an H-valued SSP with the spectral measure F. Then Σ_{0} is the maximal element of the set \mathscr{D}_{0} of all operators $S \in L^{+}(H)$ for which

$$
\begin{gathered}
S x x(\Delta) \in \mathscr{R}\left(F(\Delta)^{1 / 2}\right) \quad \text { for every } \Delta \in \mathscr{B}(\Gamma), \\
\sup _{\sigma \in \mathscr{F}} \sum_{\Delta \in \sigma}\left\|\left[F(\Delta)^{1 / 2}\right]^{\#} S x x(\Delta)\right\|^{2}=(S x, x)
\end{gathered}
$$

for every $x \in H$.
We point out that according to the results of [1] (or [2]) a Hilbert space H in Theorems 3.4 and 4.4 can be replaced by any linear topological space (under adequate definitions of $\left[F^{\prime}(\cdot)\right]^{1 / 2}$ and $H_{2, F}$).

REFERENCES

[1] A. Makagon, On the Hellinger square integral with respect to an operator valued measure and stationary processes (to appear).
[2] - Remark on the extrapolation of Banach space valued stationary processes, p. 196-207 in: Probability theory on vector spaces. II, Lecture Notes in Math. 828 (1980).
[3] - and A. Weron, q-variate minimal stationary processes, Studia Math. 59 (1976), p. 41 52.
[4] P. Masani, The prediction theory of multivariate stochastic processes. III, Acta Math. 104 (1960), p. 141-162.
[5] W. Mlak, Introduction to Hilbert space theory (in Polish), BM 35, Warszawa 1972.
[6] J. B. Robertson and M. Rosenberg, The decomposition of matrix-valued measures, Michigan Math. J. 15 (1968), p. 353-368.
[7] Ju. A. Rosanov, Some approximation problems in the theory of stationary processes, J. Multivariate Anal. 2 (1972), p. 135-144.
[8] H. Salehi, Application of Hellinger integrals to q-variate stationary stochastic processes, Ark. Mat. 7 (1967), p. 305-311.
[9] A. M. Yaglom, On the problem of linear interpolation of stationary stochastic sequences and processes (in Russian), Uspehi Mat. Nauk 4 (4) (1949), p. 173-178.

Institute of Mathematics
.Technical University of Wrocław
Wybrzeże Wyspiańskiego 27
50-370 Wroclaw, Poland

Received on 10. 9. 1981

