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Abstract. The weak convergence of a consistent estimator of a 
monotonic dependence function of two random variables X and Y is 
studied. The mtimator is treated as a random element of D[O,  I] 
and of L2([0, 11, A), where 1, stands for the Lebesgue measure. Its 
asymptotic distribution is derived for the two spaces in the following 
cases: independence of X and Y, distributions contiguous to inde- 
pendence, and dependence of X and Y. Except for the case of 
independence the asymptotic distributions depend strongly on the 
marginals of X and Y. Therefore, the asymptotic distribution of rank 
counterpart of the estimator is also considered. The obtained results 
extend the possibility of practical applications of the measure of 
monotonic dependence and its consistent estimator. 

1. In&dw~on. Consider a two-dimensional random vector (X, Y )  with 
continuous marginal distributions and finite expectations. A functional 
measure of monotonic dependence px,r (p), p ~ ( 0 ,  I), was introduced and 
discussed in detail in [ll] and [9]. Under the above assumptions the 
monotonic dependence function pxDy(p) is defined as 

where 

and 

~ i , r  (PI = - ~ . 1 +  X.Y (PI, 
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while x, and y, denote the p-th quantiles of X and Y, respectively. The 
function px,y (p) can be estimated via p,(p), the analogue of px,,(p) for the 
sample distribution. Kowaluyk [9] proved that, for every fixed p ~ ( 0 ,  I), 
p.(p) + p x , ~  ( p )  a.e. The practical usefulness of the measure of monotonic 
dependence is conditioned by the possibility of calculation of asymptotic 
distributions of p, under various circumstances. The most important of them 
are: independence bf X and Y, alternatives contiguous to independence, and 
dependence of X and Y. The availability of the asymptotic distributions and 
their properties usually give the basis for construction of optimal tests and 
cbifidence. regions. In this paper we deal with the first bf the kntioned 
prqblems and stuay the asymptotic distributions of p:, a consistent es- 
timator of p;,,. 

(XI,  %I, . . . , IX,, YJ is a sample, then p: (P) = Ln(p)/M,(p), for 

and x,,,, y,,, are the p -  th quantiles of the empirical marginal distributions 
chosen as the k - th order statistics for k = [np] + 1 .  The function I [A]  stands 
for the indicator of the set A. We put additionally L,(1) = L,(1-) and M,(l) 
= Mn(l -). The estimator p i  of pi,y can be defined analogously. 

The asymptotic behaviour of d,  where p: is treated as a random 
element of D[O, 11, is (under independence of X and Y) given by the 
following three results (see [I]). 

LEMMA 1.1. If X and Y are independent and EX2 < + oo, then 

where G, stands for a consistent estimator of the standard deviation of X while 
- W O  denotes the Brownian bridge on D [0 ,  11. 

The convergence of M, is established by 
LEMMA 1.2. If the quantiles of X are uniquely determi-d, then 

n-'M, 3 f in D [0 ,  11, 

where f (p) = EX ( I  [X < x,l - p) . 
THEOREM 1.1. Assume X and Y are independent, E x 2  < +a, and the 

quanriles of X are uniquely determined. Then 

where EE(O, 1/2) and p+ is a Gaussian process such that 

EPp+ = 0 ,  EPp+ P: = ~ ( 1 - 4 ) l f  ( p ) f  (4) for P G 4, P, 4 E CE, 1-81. 
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In Section 2 of this paper we prove, using a central limit theorem in 
D[O, 11, that a suitably normalized L, converges to a Gaussian process 
under dependence of X and Y. 

In Section 3 we study the asymptotic behaviour of L, in D[O, 11 under 
sequence of distributions alternative to the hypoti~esis of independence of X 
and Y- As in [2], 13) and E131, [14] the sequence of alternatives is 

n 

= X P,, 
i= 1 

where dPJdP,, = 1 + n- !1-2.a, while Po is a fixed product distribution of X 
and Y, and {an)nzl is a convergent sequence of measurable functions having 
the property ja,d~, ,  = 0 for every a 3 1. We prove that if ( P i )  is contiguous 
to { P z ) ,  then Lj(n1j2aJ converges under Pq to the Brownian bridge shifted 
by a deterministic function a*(p) (a*(l) = a*(O) = 0). 

Sections 4 and 5 contain results analogous to those obtained in Sections 
2 and 3 but concerning the convergence in L2([0, 11, A). We obtain a- more 
convenient limiting distribution of L, under the hypothesis of dependence of 
X and Y. 

Practically, in all the already-mentioned cases the asymptotic distrib- 
ution has parameters strongly dependent on the distribution of the vector 
(X, Y). Therqfore, and also partly for the sake of completeness, in Section 6 
we study the asymptotic behaviour of p: where instead of ( X i ,  we put 
their respective ranks. This ensures independence of the limiting distributions 
on the marginals of X and Y. 

In the sequel, without additional reference, we shall deal with the random 
element 

which, practically in all of the considered situations, fulfills the conditior~ L,jn 
-R ,  3 0. The asymptotic results will be formulated for L,, the numerator of 
p:. If the distribution of (X, Y) is fixed, then by Lemma 1.2 the limit of p: 
can be established as in Theorem 1.1. In the case of contiguous alternatives 
one can prove an analogue of Lemma 1.2 and obtain the limit of p: in a 
similar way. 

2. The weak convergence of I,, in D [0, I] uder depdense of X a d  Y. 
Without loss of generality we assume EX = 0, for if EX = m, we have 

where the last term equals mn -1J2([np]-+l-np) and converges to 0 in 
DEO, 11. 

6 - Prob. Math. Statist. 4 (1)  
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Let 50, be a random element in DCO, 11 defined by q , ( p )  = F(yP,,J for 
P E  [0, 1) and put rp,(l) = 1. Here F stands for the distribution function of Y. 
We also define a function K on LO, 11 by 

and we denote by Koq,  the superposition of X and q,,. The main result of 
this section is the following 

THEOREM 2.1. Assume EX4 < +oo and suppose that Y has uniquely 
determined .quantiIes. Then 

-. - -  
. . n - 1 1 2 ~ , - n 1 / 2 K ~ ~ n 4 T '  in D[O, 11, 

where T is a Gaussian. random element of DCO, 11 such that-P(TEC[O, 11) 
= 1 , - E T ,  = 0 for all p€[O, 11, and ETT, is  given by 

The assertion of the theorem will follow from lemmas given below. 
Observe that for p E LO, 1 J we have 

where ' 

The monotonicity of cp, and the convergence of q, (p) -p  to 0 in pro- 
bability for every p~ [O, 11 imply 

LEMMA 2.1. If the quantiles of Y are uniquely determined, then 

(P,, 4 cp on D[O, 11, where q ( p )  = p .  

Therefore we have 

To find the asymptotic distribution of K we shall apply the standard 
random change of time argument. Let us first notice that K ( p )  = T,[rp,(p)] 
for 

Therefore, from Lemma 2.1 and [4], p. 145, we infer that if T, converges to a 
limit on D[O, 11, so does V,.  Next, let us notice that T, is a normalized sum 
of independent identically distributed random elements Zi(p) 
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= X , ( I [ x  < yJ-p) defined on D[O, 11. To derive the asymptotic distrib- 
ution of T, we shall use an appropriate central limit theorem (CLT). 

Recall that a 6)-valued random element Z distributed as 2, is said to . 

satisfy the CLT if there exists a D-valued random element T such that T is 
I 

the limit in distribution d the sequence n-'I2 C (Z, - EZi). Let U stand for 
i =  1 

Z-EZ and let 3 ( T )  denote the law of T. Sufficient conditions for U to 
satisfy the CLT are given by 

THEOREM 2.2. (see 161). Let EU2 (t) < oo for all t E LO, 11. Assume that t h e  
exist m ~ e c r e a s i ~ a g  continirous functions G* and F* on [O, 11 and numbers 
a >  1/2 a d  /3 > 1 such thatfor all s, t, u (0 6 s < t 6 u < 1) thefollowing two 
conditions hold : - 

(i) E[U(u)-U(t )J2 < [G*(d-G*( t )r  
[ii) E[U(u)- U(t)I2 [U(t ) -  U(s)I2 6 [F*(u) -F*(s)IP. 
Then U satisfies the CLT in D[O, I] and .Y4P(T) iC[O, 11) = 1. 
The random element Z(p)-EZ(p) fulfills conditions (i) and (ii) with P* 

and G* proportional to the identity function and with ar: = 3/4 and B = 3/2, 
respectively. To verify this, one multiplies all terms under the expectations 
and applies the HBlder inequality to the random variable XJLy, < Y < y,] 
for t < u, t, U E [ O ,  11. Indeed, for a ~ ( 1 / 2 ,  1) we have 

The above gives the following result which together with Lemma 2.1 implies 
the assertion of Theorem 2.1. 

LEMMA 2.2. If EX4 < + oo, then T, - E T, 9 T, where T i s  a Gaussian 
process such that P(TEC[O, 11) = 1, ET, = 0 fbr ~E[O, I], and ET, T, is 
given by (2.1). 

Remark 2.1. Observe that parameters of the Gaussian distribution given 
in the theorem depend on the distribution of (X, Y). Under the independence 
of X and Y the asymptotic distribution of Lj(n1/2a,J is free of this drawback. 

3. The weak convergeme of L,, io D[O, 11 nder alternatives contigmw to 
idpwlelmce. Assume Po is a product distribution on R' and let the 
sequence of distributions (c) be defined as n-products of P,, where 

It is assumed that the measurable functions a, are uniformly bounded and 
converge pintwisely to some function a(x ,  y) and SandPo = 0 for all n 2 1. 

n 

By Theorem 2.1 of [13J, the sequence of product measures PT = X P, is 
i= 1 

n 

contiguous to P", = X Po. This kind of alternatives ( (Pq) )  was considered, 
i= 1 
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among others, by Chbisov [S],Behnen [2], [3], and Neuhaus [14]. For the 
sake of completeness we recall some facts about contiguity (see [7], [8], and 
Cl2l). 

Let 9 be an arbitrary space and d, a sequence of u - fields of subsets of 
%. For each n let Q, and Qi be two probability measures defined on .dm. The 
sequence {QL] is said to be contiguous to (Q,) if, for every sequence A, of 
.1;4, -measurable sets, Q,(A,) 4 0 implies Q:(A,J * 0. The condition of con- 
tiguity is equivalent to each of the following statements: 

- (a) A sequence (T,) of &,-measurable random variables converges in 
Q: - probaljiliey to 0 -if it converges to 0 in Q,. 

(b) For every E > 0 there are an n (8) < + ao and B(E) > 0 such that if n 
2 n(e) and A,c,d,, then the inequality Q,(A,) < 6(&) implies - Qh(A,) < E .  

LEMMA 3.1. Let N, be a sequence of measurable muppingsfiom (.Fy d,,) to 
a measurable space (Y, a). If a sequence (Qk) is contiguous to {Q,), then the 
respective sequence of probability measures induced by distributions of N,, on 
(Y, a) are also conriguous. 

The lemma is a direct consequence of (a). 
Let (.T, d,J = (97, d) and let % be a metric space with Bore1 a-field d 

such that every probability measure on d is tight. Suppose {QJ is con- 
tiguous to {Q , ) ,  The following lemma is well known and can be easily 
proved by the application of (b). 

LEMMA 3.2. Under the above assumptions the tightness of {Q,) implies the 
tightness of (Q:) .  

The remaining part of this section is the following generalization of 
Lemma 1.1 : 

THEOREM 3.1. If all the quantiles of Y a r e  uniquely determined and EX4 < 
+ ao, then under Pi we have 

L j(nl lZa,)  9 T* on D [O, 11, 

where T* is a Gaussian process with continuous sample paths and with 
moments - - 

--- - 

Proof. Recall that under f l  the element LJ(nlt2a,) has the same limiting 
distribution as RJ(n1t2a3,  where R, is given by (1.1). Moreover, similarly as 
in (2.3), we have R, - ',-, 0 in P; -probability. This is due to the contiguity 
of (Pq) to (P", and to Lemma 2.1. Since h ( p )  = T,[q,(p)]  for T, given by 
(2.4), the random change of time argument implies a further reduction. 
Therefore, we shall now study the limiting distribution of T, under the 
contiguous alternatives { Pq } . 

By Lemma 2.2 the sequence T, converges in distribution under P", It is 
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then tight. Lemma 3.2 yields tightness under P i .  To consider the conver- 
gence of finite-dimensional distributions of T, under Pq let us fix p, < p, 
< . . . < p,, pi E LO, 11, and define random vectors 

Then ( T , ( ~ , ) - E T , ( P , ) ,  . . , , T,,(p,)-ET,(p,)) coincides with 

Z ,  = n-'I2 C (@-Ew). 
i= 1 

If rp,,(t) stands--for the &aracteristic function of Z,,  then 

$="(t) = (E exp [n- ' l 2 i ( t ,  W l  - E W1)] )"  

= 11 - ( 2 n ) - ' E ( t ,  W l  -EWl)2+o(n-1))" - 

= (1 -(2n)-' J(w, -EW,, t)'(l + n 1 / 2 a & d ~ o + a ( n - 1 ) ] n  

The last expression tends to exp {(-1/2)E(Wl -EW,, t I2) ,  where the expec- 
tation is taken under Po;  and this is the characteristic function of the k- 
dimensional normal distribution with mean zero and covariance matrix with 
the i 3 - th element given by 

[x (1 l Y C ypil  - Pi)] [X (1 C Y C ypjl - -PI) ]  

= EX' pi( l  -pi) for i < j. 
4. The weak convergeme of n-'I2 L, in L 2 ( [ 0 ,  11,  A) under dependem. 

The results proved in this section are analogous to those obtained in Section 
2. We study the convergence of the random element L,(p), p € [ O ,  11, in the 
Hilbert space L2([0, 11, A), where A stands for the Lebesgue measure. It 
turns out that in the present case one obtains a more convenient formula, 
froni the practical point of view, for the limiting distribution under depend- 
ence of X and Y. As before we apply a CLT to the random element 

Let Zi(p) = X i ( I [ q  < y,] - p). Then Z i ( p )  - E Z i ( p )  is a random element of 
L2( [0 ,  11, A) and if EX: < +a, then by [15] ,  Chap. IV, there exists a weak 
limit of the expression 

R 

n- C [ z i ( ~ ) - E Z i ( P ) j  in L2([0, 11, A) 
i= 1 

and it is a Gaussian process T with expectation zero i n d  covariance kernel 
(2.1). Hence, 3s an analogue of Theorem 2.1, we shall prove 
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THEOREM 4.1. Assume EX: < +a, and suppose that the quantiles of Yare 
uniquely determined. Then 

n-'I2L,- nl/ '~Z1 9 T in L2([0, 11, A). 

Proof. Let (1.11 denote the norm in L2([0, 11,A). The theorem will follow 
if we prove . 

We have 

Therefore - - 

where i (p, n) is the index of the ([np] + 1) -st order statistics of Y, , . . . , Y,. 
Clearly, the last expression converges to 0 with probability I. The second 
term of (4.1) converges to 0 by the following argument: 

where F is the distribution function of Y and F,, is the empirical distribution 
for the sample Yl, . . ., Y,. Since sup IF (x) -F,(x)l converges to 0 in pro- 

X 

bability, we obtain the convergence of I(Rn - T,JI. This completes the proof. 
COROLLARY 4.1. Under the assumptions of 17heorem 4.1, if in addition X and 

Yare independent, then rke process T has tk covariance k&ml of the Brownian 
bridge multipIied by EX2. 

5. Tb weak convergewe of n- L, in L2 ([0,  11, A) rider altermaives 
contiguoos to independence. As in Section 3 we consider sequences of pro- 
bability measures ( P y )  given by n-fold products of the probabilities p,,, 
where dPJdPo = 1 +n-112a, and Po is a product distribution on RZ. Since 
arguments used to prove our basic result do not differ much from those 
presented in Section 3, we shall simply state the result. 
THEOREM 5.1. Let the quantiles of Y be uniquely determined and EX2 < 

+ m under Po. Suppose a, is a positive consistent estimator of the standard 



EmpiricaI monotonic dependence function 87 

deviation of X. Then u d e r  the sequence n - l f 2  a; L, converges weakly in 
L2([0, 1],4 to a Gaussian random element T*, where 

6. The weak eonvergeme of kn ire D[O, 11 under idepdeme a d  alter- 
natives comtigsrpus to idegedeme. To avoid influence of marginal distrib- 
utions on px,, (p) and on the distribution of p, a grade monotone dependence 
function and its consistent estimator k, were introduced in [ID]. This 
estimator, being a function-of ranks R1, ..., R, of XI, .. ,, X, and S,, ..., S, 
of Yl, . . . , Y,, is defined as follows : 

k f l ( ~ ) = 4 , ( ~ ) / ~ , n ( ~ ) ,  P E ( O , ~ ) ,  - 

where 

wbile k(p) is that element of I ,  . . ., n for which = [ n p ]  + 1 .  Since 
K(p)/n+(p-l)p/2 as n+ m, we shall concentrate on the asymptotic 
distribution of b,, where for p = 1 we put L,,(p) = 0. 
THEOREM 6.1. Under the independeke of X and Y we have 

where W O  stands for the Brownian bridge on D [0, 11. 
Proof. Let us first note that Rkbl(np- [np])/(n+ 1)nlf2 2 O in D[O, 11. 

Then observe that under the independence of X and Y the finite - dimensional 
distributions of the process 

coincide with the corresponding finite - dimensional distributions - of the sim- 
pier process 

Therefore, we can consider the asymptotic distribution of (6.2) instead of (6.1) 
and our theorem follows from Theorem 24.1 of [4]. 

Let W* be a Gaussian process on D[O, 11 such that 

EWZW? = p(1-q) for p $ q ,  
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i 
! while U = G ( X ) ,  V = F(Y), and let G and F stand for the marginals of X 
I 

and Z: respectively. The asymptotic behaviour of (12/n)112~S, under P",s 
given by 

THEOREM 6.2. Under { P I )  we haue 
I 

Proof. By Theorem 6.1 the distributions of (12/n)I/'L+, are tight under 
{P",), and hence by Lemma 3.2 they are tight under {P!) .  To prove that 
finite-dimensional distributions of (12/n)112 L,, (or, equivalently, of 12~/"~,) 

converge, we use the- result of Ruymgaart [I61 on asymptotic normality of 

I some rank test statistics. 
I Recall that - 

and introduce 

vhere Ui = G(Xi) ,  = F ( x ) ,  i = 1, ..., n.  
In particular, by Ruymgaart [16], for every fixed p~ [O, 11, R,,(p)-Z,(p) 

tends to 0 in P",nd, consequently, in Pi-probability. Since by Theo- 
rem 3.1 we have the convergence of Z,-Epr Z ,  in D [0, 1) under Pi,  the 

above implies the convergence of the finite-dimensional distributions of 
R,, - E,; 2,. This completes the proof. 
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