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Abstract. A sequence {V,f of r.v.'s is asy1ptoticaIly guasi- 
deterministic (AQD) if there exist deterministic functions Bl(n) 
< J2 (IT) and a constant C > 0 such that (n) < V, < /I2 (P1) except 
for finitely many n with probability 1 and 

lim sup (D2 (4-fll (n)) d C .  
I'm 

A few surprising exampbs of AQD sequences are given. 

1. Intrduction. In 1975 P. Erdiis and the author- of the present paper * 
investigated [I] the length of the longest head -run of a coin tossing 
sequence of size N. In order to formulate the results, we introduce the 
following notation. 

The logarithms appearing in Sections 1 and 2 are meant to be the base 2. 
Let XI, X,, . . . be a sequence of i.i.d. r.v.'s with P ( X I  = 0) = P(X, = 1) 

=1/2 and let S , = O ,  S,=X,+X,+ ... +X, ( n = 1 , 2  ,... ), 
I(N, K) = max (S,,,-SJ (1 < K < N). 

O<n< N-K . - - 

Finally, let Z ,  be the largest integer for which I ( N ,  ZN) = ZN. This r.v. ZN is 
the length of the longest head-run up to N. The properties of ZN can be 
described by the following results: 

THEOREM A. Let E be an arbitrary positiue number. Then 

Z, 2 [log N-log log log N+log log e-2-E] = a, (N, E )  = a, 

except for $finitely many N with probability 1 .  

* This paper was read as a closing address of the 14-th Meeting of the European 
Statisticians (Wroclaw, Poland, September 2, 1981). 



THEOREM B. Let s be an arbitrary positive number. Then 

ZN < [Iog N-log log log N+log log e -  1 +&I = o?,(N, E) = o?, 

infinitely often with probability 1. 
THEOREM C.  Let a,(M) be a sequence of positive numbers for which 

Thes ZN > a,(N) infinitely &en with probability 1. 
THEOREM D. Let a4(A9 be o sequence of positive numbers for which 

-- 

Then Z,< a,(N) except for .finitely many N with probability 1. 
Theorems A and D clearly imply 
CONSEQUENCE 1. For any E > O we hue u, IN, E )  6 ZN < u4(w except for 

finitely many N with probability 1. 
Evaluating the value of .u,( lV, 0.1) and that of a,(N) =log N+ 

+ 1.1 log bg N for N = zZz0 - 1 0 ~ ~ ~ = ~ ~ ~ ,  we get 

u1=1,048,569, a,=1,048,598, and a*-al=29. 

This means that by flipping a coin 2'" times the length of the longest head- 
block "must ben between 1,048,569 and 1,048,598. The fact that the interval 
(al, a4) is very short means that the sequence (2,) is "almost deterministic". 
In this paper we collect some further nearly deterministic sequences. 

2. The area of the hrgrest had - square. Let {X,) ( i  = 0, 1,2, . . . ; j 
= 0, 1, 2, .. .) be a double array of i.i.d. r.v.'s with P ( X i j  = 0) = P(Xi j  = 1) 
= 1/2, let - - 

I(N,K)= max S(n,rn,K) ( IGKGN),  
O < n 4 N + 1 - K  
O G m b N +  1 -K 

and define YN as the largest integer for which I (N, Y,) = Y i .  Here Y$ is the 
area of the "largest head -squaren in the square [0, Nj x [0, m. In order to 
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describe the properties of the sequence {YN} we introduce the following 
notation : 

where 0 < s  < 1 .  .. - 

Then 'we have 
THEOREM 1. Let E be an arbitrary positive number smaller than 1 .  Then 

(I) fl1 (N, E )  < YN < 8 2  (N9 E) 

except for finitely many N with probability 1 .  
Observe that 

i 
3 if a ( N ) d ~ ,  

p 2 ( N ) - # l l ( N ) =  2 i f & < a ( N ) < l - s .  
3 if a(N) 2 I-&. 

Hence Theorem 1 can be reformulated as 
THEOREM I*. For any E (0 < E < 1) 

except for $finitely many N with probability 1. 
It is worth-while to introduce the following definitions: 
Defini t ion 1. A sequence (V,] of r.v.'s is asymptotically quasi- 

deterministic (AQD) if there exist deterministic functions 8, (N) < b2 ( N )  and 
a constant C > 0 such that f l ,  (N) < VN < #Iz (N) except for finitely many N 
with probability 1 and 

Defini t ion 2. A sequence of (I/N] of r.v.'s is mymptotically deterministic 
(AD) if there. exist deterministic functions fl, (N) < fl2 (N) such that #?, (N)  
< VN < BZ (N) except for finitely many N with probability 1 and 



It is trivial that our sequence (Y,) is not AD. Theorem 1 states that it is 
AQD. 

A well-known (but surprising) example of an A D  sequence is given by 
our 

THEOREM E. k t  N1, NZ7 . .- be a sequence of independent normal (0, 1) 
r.v.'s and let T, = max ( N , ,  N,, . . ., N,). Then 

Iim (T,-(2 log n)lI2) = 0 
r -m 

- .  
with probability 1, .i.e. { T,) is an AD sequence. 

, I -P roof  of Theorem 1. In order to prove the inequality YN > 8, (N) we 
show that among the squares - 

%j(N)=Ci, i+Pl(Nllx~,j+BIIN)l  ( i , j = 0 , 1 , 2  ,...,N-B1(N)) 

there exists at least one having heads at each of its lattice points. This 
implies the existence of integers i, j such that 

0<i , j<N+1-#l1(N)  and ~ ( i , j , j 3 ~ ( ~ ) + 1 ) = ( ~ ~ ( N ) + l ) ' .  

In fact, we prove a bit stronger statement. Namely, the existence of integers 
p., v such that 0 6 p, v < I and 

s (P(BI ( N )  + I), ~(81 (N) + I), B1 (N) + 1) = (81 (N)+ I)', 

where I is the largest integer for which 1(/3,(N)+1) < N-#ll(N). Since 

p ( s ( i , j ,  B 1 ( ~ ) + l )  = ( B ~ ( N ) + ~ ) ~ }  = 2- 
u~(N) + l j 2  

and 

Bl(W < (2 log N)lI2- 1 - E ,  

we have 

if N is large enough and C is a suitable positive constant. Now, the first part 
of Theorem 1 follows from the Bore1 - Cantelli lemma. 

In order to prove the inequality YN < B,(N) ,  we have to show that 
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Since /3, ( N )  2 (2 log N)lt2 + E, we get 

= (p, (N)Y for at least one i, j (0 < i ,  j < N+ 1 - B2 (N))} 
< ( ~ + 2 - 8 , ( ~ ) ) ' . 2  - (f12(N)b2 

< ~ 2 .  2 ( ( 2 1 0 p ~ ) 1 / 2 + ~ ) 2  < 2 - 2 ~ ( 2 h p ~ ) ' / ~  
\ 

if N is large enough. 
Let N,  = 2k1/2. Then; obviousIy, 

cC 

C p,, < . -- 
k =  1 

and the Borel - Cantelli lemma implies that YNk < PZ ( N k )  except for finitely 
many k with probability 1. Let N ,  < N < N, ,  , . Then our statement follows 
from the trivial inequalities 

YN YYNlt+l < Bf(Nk+19 4 6 Pf(Nk, 2) 6 82(N, 28). 

We note that Theorem 1 does not give the best possible result. We can 
get a sharper result replacing the E in (1) by a sequence (8,) tending to 0. In 
fact, without any new idea one can prove 

THEOREM 2. We have 

except for $finitely many N with probabiiity 1, where 
* 

log log N 1 
EN = C and C > -  

(2  log N)'j2 2' 

We do not claim either that Theorem 2 is the best possible result. 

3. On the 1eWA of the longest increasing run. Let U 1 ,  U, ,  . . . be a 
sequence of independent r.v.'s uniformly distributed on the interval (0, 1). We 
are interested in the length of the longest increasing run of the sequence 
U,, U,, . . ., U,. More formally, let Q ,  be the largest integer for which there 
exists an integer R, such that 

1 < 2 < a - - < U ~ N + ~ N  and R N + Q N d N ,  

where Q, is the length of the longest increasing run. From here on log means 
the natural logarithm. In his recent paper [3] the author proved 

THEOREM F. Let 

log n 1 
f ( n )  = T - j  and a(n) = f (4  - Cf(n) l ,  

8 - Proh. Math. Statist. 4 (1) 



where bn is the unique solution of the equation b,,dn = e-I bg n. Fw any e (0 
< E < 1 )  put also 

and 

Then for uw s (0 < 8 < 1) we have IN < QN < UN except for Jnitely many N 
with probability 1. 

We note that - 

b,, = log log 11-log log log n- 1 +o( l ) .  

Since U,(E)- I , ( & )  < 6 (0 c E < 1 ; 11 = 1, 2, . . .), Theorem F means that 
[Q,] is an AQD sequence. Clearly enough, it is not an AD sequence. 

In this case it is also not clear how far is this result from the best possible 
one. However, another theorem of [3] shows that one cannot get a much 
sharper bound. 

I Oo the denwest imtewal of s Poisson pmwis. kt {nA (t)  - i ( t ) ,  t 2 0) be 
a Poisson process of parameter 1 > 0. Consider the process 

Q T ( A ) = Q T =  max (x( t+l)-n( t ) ) .  
O G t G T - 1  

Following the method of proof of Theorem F one can prove 
THEOREM 3. Let 

log t 1 
f (t)  = --- 

bl 2 
a( t )= f ( t ) -L f ( t l l ,  

where b, = b , ( l )  is the unique solution of the equation 

log t 
b, ebt = - - .. 

8 

For any 8 (0 < E < 1) put also 

and 

Then for any E (0 < E < 1) and I > 0 we have an r.v. T, = To ( E ,  A, w) suclz that 
P ( T ,  < oo) = 1 an8 I, < Q, < U, provided that t 3 T,. 
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We note that ' . 

b, = log log t-log log 1og.t-log A - 1 + 0 ( 1 )  

and 

log t log t tog log log t + 
(2) f(t) = log log t (log log t)2 

+ 
log t + 

(log log tI2 
(1 +log A+o(l)). 

.. - - 

- , ~heoiern 3 states that (Q,, t 2 0) is an AQD process (clearIy, not an AD). 
It is worth -while to mention that its lower and upper bounds ( 1 , ( ~ ,  A) and 
UI(E, A)) do not depend very strongly on the value of I. (13. (2))- 

5. On the cmtinuity mdullss of the Wiener process. Let { W(t), t 2 0) be 
a Wiener process and consider the continuity modulus 

c(h) = sup 
W(t+h)- W(t) 

hit2 
O S t G l - h  

I 

The well- known result of P. Lkvy is the following 
THEOREM G. We have 

with probability 1. 
This theorem means that the process (2 log l/h)-1t2.~(h) is an AD pro- 

cess. A stronger result (see [a])  states that the process c(h) itself is an AD 
process : 

THEOREM H. We have 

lim (c(h)-(2 log l/h)112) = 0 
n-0 

with probability 1. 
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