PROBABILITY AND MATHEMATICAL STATISTICS Vol. 4, Fasc. 2 (1984), pp. 185–196

STOPPING GAMES FOR SYMMETRIC MARKOV PROCESSES

J. Zabczyk

Abstract: Let \mathcal{E} be a Dirichlet form corresponding to a symmetric Markov process $M = \{Q, \mathcal{M}, x_t, P^x\}$ acting on a state space X. Let g and $h, g \leq h$, be quasicontinuous elements of the corresponding Dirichlet space \mathcal{F} , and ν a quasi-continuous solution of the variational inequality

$$\mathcal{E}_{\alpha}(\nu, u - \nu) \ge 0$$
 for all $u \in \mathcal{F}, g \le u \le h$,

where $\alpha > 0$ and $\mathcal{E}_{\alpha}(u, \nu) = \mathcal{E}(u, \nu) + \alpha(u, \nu)$ for all $u, \nu \in \mathcal{F}$. It is shown in the paper that if $J_x(\tau, \sigma)$ is defined for all $x \in X$ and all stopping times τ and σ by

$$J_x(\tau,\sigma) = E^x(e^{-\alpha\tau\wedge\sigma}(I_{\tau<\alpha}h(x_t) + I_{t>\sigma}g(x_{\sigma}))),$$

then for quasi-every $x \in X$ we have

$$\nu(x) = \inf_{\tau} \sup_{\sigma} J_x(\tau, \sigma) = \sup_{\sigma} \inf_{\tau} J_x(\tau, \sigma)$$

Moreover, for quasi-every $x \in X$ the pair $(\hat{\tau}, \hat{\sigma})$ such that

$$\hat{\tau} = \inf\{t \ge 0; h(x_t) = \nu(x_t)\}, \ \hat{\sigma} = \inf\{t \ge 0; g(x_t) = \nu(x_t)\}$$

is the saddle point of the game

$$J_x(\hat{\tau},\sigma) \le J_x(\hat{\tau},\hat{\sigma}) \le J_x(\tau,\hat{\sigma})$$

for all stopping times τ , σ and quasi-every $x \in X$.

2000 AMS Mathematics Subject Classification: Primary: -; Secondary: -; Key words and phrases: -

THE FULL TEXT IS AVAILABLE HERE