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Abstract. In this paper we present a characterization uf vector 
stochastic processes with normal propagators and apply it to study 
the regularity and singularity of vector stochastic processes. 

O. Inrtaodoction. Let B be a Banach space, N a complex Hilbert space, and 
X: R -+ L(B, W) a vector stochastic process. If the formula KX(s) = X ( t + s )  
defines a group of continuous linear operators, we call this group the 
propagator of X (cf. [ 5 ] ) .  In particular, a process is stationary if and only if it 
has a unitary propagator. Therefore, processes with propagators are a 
generalization of stationary processes. The purpose of this paper is to study 
processes with propagators and to investigate which properties of stationary 
processes are true for processes with propagators. Processes with propagators 
are not treated yet in the literature so well as stationary processes. Scalar 
processes with propagators were studied in [3] and [lo]. Some existence 
conditions for propagators of vector processes were found in [5],  161, and 
6121. Vector processes with hermitian propagators were described in [B]. 
Furthermore, some types of these processes were studied in [2]  and [83.  

In this paper we describe spectral representations of processes with 
normal propagators. We extend a theorem of Getoor [3] to the case of 
vector processes and give a different proof based on the diIation theorem. 
The final part of the paper is devoted to description of singularity and 
regularity of processes in terms of their propagators. For example, we prove 
that a process is singular if its propagator I/; satisfies the condition 111- 1[/;11 
< 1 for some t < 0. 

# 

I. Let B be a complex Banach space with the dual space B* and let W be 
a complex Hilbert space. We denote by LIB, N) the space of a11 continuous 



linear operators from B into H (by Z(B, 8') the space of all continuous 
antilinear operators from B into B*). By a stochastic process of second order 
with values in B (a vector stochastic process) we mean a mapping Xr R 
+LIB, N) (cf. [13]). If B = 6, then X becomes the mapping X: R N 
which is said to be a scalar stochastic process. Clearly, if X :  R + LCD, N), 
then for each b E B the process X( . )  b is a scalar stochastic process. We shall 
use the notation 

where spA (sp A )  denotes the linear space (closed linear space) spanned by 
A c n. 

By .gC we denote the family of Bore1 subsets of the complex plane C. 
We admit after [5]  the following definition: 

1.1. Defini t ion.  Let X: R -+ L(B, N). A family of linear continuous 
operators {x: u E R)., 5/',: H ,  (X) 4 N, (X), u E $ is called a propagator of 
the process X if V,  X ( t )  = X (t + s) for each t ,  s E R. 

Note that a propagator of X is a one-parameter group of operators on 
H W ( X )  (cf. [ 5 3 ,  whence each operator is invertible. 

1.2 Defini t ion.  A process X: R + L(B, H) is said to be of type (*) if X 
has a propagator (&: u E R) and the following conditions hold: 

(1) for each b E B  the process X( - )  b is continuous; 
(2) for each t € 8  the operator Ic; is normal; 
(3) there exist constants E > 0 and M > 0 such that [lT/jle < M for each 

t E ( - E ,  E ) .  

13. Exam p ie. (i) Let B = M, A E L(H,  H), and let A be normal. The 
group of operators t E R )  is a vector process of type (*). 

(ii) Consider the Lebesgue measure rn on D = . [ /~EC:  1/11 < 1) and let H 
= L,(D, rn) be the space of all square-integrable functions on D. If we put 
x ( t )  = e'qor t E R and 1 ED, then the process {x( t ) :  t E R)  is a scalar process 
of type (*) with the propagator given by (v;S)(A) = er"f(, f EH. 

For the proof of the characterization theorem of the process of type (*) 
we shall need the following lemma: 

1.4. LEMMA. Let ( Q  (t):  t E R) c L ( N ,  H). be a one-parameter group of 
normal operators satisfying the foIIowing continuity condition: 

(a) lim 11 Q ( t )  h - hi 1 = 0 for each h E H. 
t -0 

Then there exists a closed normal operator A densely defined in R and such 
that for some a ,  ~ E R  the spectrum a(A) is contained in { A E  C:  a < Reit < b )  
and Q ( t )  = etA for each t E R. 
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This lemma is an immediate consequence of Theorem 13.37 in [Ill. 
The propagator IF: t E R) of any process X of type (*) satisfies condition 

(a). In fact, if t ,  --, 0, then 

since X( - )  b is continuous and, therefore, Kt,  h -+ h for h ~ s p  [X [ t )  b: 
~ E R ,  ~ E B ] .  If ~EIE,(X), then 

h =  lirnh, and h , ~ s p { X ( t ) b :  t ~ I t , b ~ B j  
m-r *, 

[{h,J is a sequence approximating h). Thus we have 

IIvnh-hll G IIKnh- ~ ~ h m l l + ~ I ~ , ~ m - ~ n r l l + l l ~ m - h l l  

6 (IFK,II + l)IIhm- hll+llKmhm-hmll 

~ ~ ~ + ~ ~ f l ~ , - Y I + I I ~ ~ h m - ~ m l l  < b 
for sufficiently large n. 

1.5. Remark. Consider now a cr-additive measure @ on 9, with values 
in L(B, N) (with strong topology) satisfying the following orthogonal 
condition : 
(or) [@(s,)]*@(s,)=O if S,nS,=@. 

kt f: C -+ C be a Bore1 bounded function. We claim that the operator 
Z,: B + H ,  

belongs to L ( 3 ,  N). For ~ E B ,  @ ( . ) b  is an orthogonal vector measure with 
values in H, q b ( . )  = 11@(-) b1j2 is a nonnegative finite Bore1 measure on C, 
and 

From ROW on we put 

z, = f (4 @(d4 
C 

(cf, also [7]) 

1.6. THEOREM. The process X :  R -+ L(B, N) is of type (*) if aalrd onlj. if 
there exists an operator measure IIP on dc with values in L(B, H ,  (X)) ,  
satisfying condition (cl), supported in (2 E 6: a < Re 3, < b)  Cfor some a ,  b E R), 
and such that 



P r o  of. We suppose that : v: r E R} is the propagator of the process X of 
type (*). Let A be a closed normal operator densely defined e n  H , ( X ) ,  such 
that k: = e i A  for ~ E R  and a ( A )  c I ~ E C :  a G Rcll G bj (Lemma 1.4). The 
spectral measure E of the operator A is concentrated on o(A). If we define 
the measure @ for a Borel subset S r C by @IS) = E ( S )  XCO), then 
@ ( S ) e L ( B ,  H,(X)) and @ satisfies condition (a). Now the equalities 

X [t) = X (0) = er" X (0) = [j 6" E ( d l ) ]  X (0) = 1 et"E (&A) X (O)) 
C C 

= ( etA @ (dlb) 
;c 

yield (P). 
Suppose now that X is of the form (P) and @ satisfies the conditions of 

the theorem. For a Borel subset S s C we put 

d (S) = [X (O)] * @ ( S )  = [zti [C)]* @ (a. 
Tben ~ ( s ) E ~ ( B ,  B*) and ( d ( S ) b ) b  = ( @ ( S ) b ,  @ ( C ) b ) =  II@(S)bl12 is a non- 
negative measure on 6. By the dilation theorem (cf. 6141, (2.1)), there exist 
a Hilbert space g, a spectral measure E ( - ) :  A+B, and an operator 
Z E L ( B ,  g) such that 

We may assume that fi is minimal, i.e. 

Then the Hilbert spaces 

H , ( X ) =  V @(S)B' and f i =  V E " ( s ) z B  
S€lc SEBC 

are isometric. In fact, 

Hence ?P: @(S)b  - + E ( S ) Z b  has an extension to a unitary operator from 
H,(py)  onto @. 

Consider now the following operator group on B: 

Since suppE = supp d = supp @, the function eP"s bounded on supp and 



the operators are bounded and normal. Let 

8 (t) = R Z  = J e'7.E (da) z). 
C 

Obviously, "Y(x (~ ) )  = 8 ( t ) ,  l? is spanned by { X ( t )  b: t E $ ~ E B } ,  and 
{q: ~ E R )  is the propagator of 3. We claim that this process is of type I+). 
Condition (3) of Definition 1.2 follows from the equality 

1 1  Cll = sup {eSA: A csuppR] = exp (t max(a, b)j . 
If rt, -> to ,  then 

1lb(t,~b--8(t,)1~11~ = IIj exp { t t , I ) (E(d~)~b) - J  exp {t0/7.) ( E ( ~ J ) z ~ / ( ~  
C e: 

and the kebesgue theorem implies that tlvs sequence tends to zero, which 
proves the continuity of X( a )  b, b E B. Clearly, X(t) = Y- 3 ft) is also the 
process of type (*) with the propagator J/: = Y-' Y. The proof is complete. 

The measure 6, will be called the spectral masure of the process X.  

1.7. Remark. Theorem 1.6 implies that x: R 4 H is a process of type (*I 
if and only if there exists an orthogonal vector measure @ on .gc with values 
in H,(x),  supported in (AEC:  a G Re1 d b3, and such that 

x{t) = J d" (&I). 
G 

The measure q ( S )  ,= 1(@(S)1I2 is a nonnegative Bore1 measure on C. Consider 
the HiIbert space K = 6 {e'" : E W) c L, (C, 9) and the operator group 
f (A) = etAf (A). The operator 

Y: K+N,(x): f-,J f(il)@(dlj) 
C 

is unitary. We have Y(e'9 = x(t) and T: = YJ7;P-l, where ( K ]  is the 
propagator of x. Therefore, if x: R -, H is of type (*) and rP. is its spectral 
measure, then there exists a unitary isomorphism between H,(x) and K. 

Given a process X: R -+ E(B, H), one may consider, after Weron CI.37, 
associated processes of the form 5 = Pt X,, where P, E L(N, N). We can 
prove now that a process of type (*I is associated with a stationary psocesk 
Let us recall that a process X: W -, L(B, HI is stationary if X has a unitary 
propagator (cf. [14], Cb.6)). 

18. TNEOREM. A process X: W -+ L(B, IP) with the propagator f K: t E R) is 
of type (9) if and only if for each t E l we have t; = P, U,, where 

(i) Pt"irI%,(X) + H , ( X )  is hermitian, 
(ii) U,: HI, ( X )  4 M, ( X )  is uunifary, 



(iii) {P,: t E R)  and SU,: t E R)  are one-parameter groups of linear con- 
tinuous operators, 

(iv) Pt U,  = Us P, fir  each t, s E Pi,  
(v) the processes Y (t) = U, X ( 0 )  mzd Z ( t )  = Pr X (0) are of type (*). 

Proof.  The "if' part is rather obvious: if P, is hermitian and U ,  is 
unitary, then = U, P, is normal. Furthermore, 1 1  Flj = IIU, P,lj d llPtEl. Hence 
condition ( 3 )  of Definition 1.2 holds. Since ( P , )  and (U,]  are the strong 
continuous operator groups (this follows from (v); cf. Lemma 1.4 and the 
remarks after this lemma), the operator group (16;)  is also strong continuous, 
which implies continuity of the process X(t)h, ~ E B .  

Let now X: R + L(B,  N) be of type ($1 with the propagator [v: t E R) 
and let E be the spectral measure of A such that 1G: = efA, t G R. Then 

= j etQ (dA] = 1 exp { t i l  c Itl, ]. E jdA) = j cxp (tA, ). E (d?,) 1 exp'[ it& 1 E ( d l )  
C C C C 

= j exp [tA,)E,(dJ.,) exp (itl,) E , ( ~ A ~ )  = Pf UU,, 
a R 

where A, =RelZ,A,=lmA, and E,(S)=E(SxR), E , ( S ) = E ( R x S ) I  for a 
Borel subset S c R. 

Clearly, for any t, S E R  the operator P, is selfadjoint, the operator U ,  is 
unitary, and P, and W ,  commute. Putting 

A,  = 1 vE,(dv) and A, = j vE,(dv) 
R W 

we have P, = exp [ tAR)  and U,  = exp (tAij. Thus ( P , :  t E 8gj and {U,: t E Rj 
are one-parameter groups of bounded operators. Moreover, since suppE, is 
bounded, A,  is continuous, which in turn implies that the representation 
{P , :  ~ E R )  is continuous in the operator norm. Therefore, the process Z ,  
= P, X(O) is of type (9). Since U, = .PY1 5, the process I: = U, X (0) is also of 
type (4. 

1.9. COROLLARY. Let X: R -+ L(B, If) be a process of type (*) with the 
propagator ((: t ~ d g j  and the spectral measure cP. Then 

X(t) = P,  Y(t) = U,Z(t), 

where Y( t )  = U,X(O) is stationary, Z(t) = P z X ( 0 )  is of type (*) with the 
hermitian propagator. Moreover, 

P(t) = J e"'"Ql,(dA) and Z ( t )  = J etQR(dll), 
R R 

where a, ( S )  = @ ( R  x S )  ~ n d  @,(S) = @(S  x W) for any Bore/ subset S c R. 

2. In this section we study regularity and singularity of stochastic 
processes with propagators. RecaIl that a process X: Id! -. k(B, N) is regular 
if N- , (X) = (0) and it is singular if W, ( X )  = M- , (X). 
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2.1, LEMMA. The process X :  W -t L(B, W) is singular $ and onlj~ if there 
exist t 0 and s E R such that H, (X) is the invaria~t subspace of the operotor. 
K -  

Pro  o f  The ""only if" part follows from the fact that the singularity of X 
implies the equality Hs(X) = N, (X) for each s E R. 

If t > 9 s F R, and q H, ( X )  c Hs(X), then t; H, ( X )  = 6E, (X) (because 
I( H, (X) = H, +, (X) for all t , s e R and I;T, (XI e H ,  +, (XI for t > 0). Hence 
V-, %(X) = q- W,(X) = HSy(X) .  For any natural number k we have 

Consequently, H,(X) = H g ( X )  far each H E R ,  which is equivalent to singula- 
rity of X. 

2.2. THEOREM. Suppose that [q:  t ER) is the propagator of X :  R 
-+ LIB, N).. If 111 - &.',,(I < 1 fbr some so < 0, then X is singular. 

Proof. Notice that for any operator T E L ( H ~  HI such that 111- TI1 < 1 
and T H O  c W, for some closed subspace W, cl: H we have T -  ", c Ro. In 
fact, 

(the series convergent in the operator norm). Hence 
OD 00 

~ - l h = ( C  ( I - v ) h =  (I-T)"~ER, for any ~ E H , .  
n= 0 n= 0 

Suppose now that there exists so < 0 such that ))I - 5,JI < 1. For each s 
< O  and ~ E R  we have T/,H,(X) =&,,(x) cH,(X). Thus 

for any t E W. Consequently, for u = -so > 0 we get FI; H, ( X )  c H, (X) for 
each t, and Lemma 2.1 implies singularity of X. 

23. COROLLARY. If the propagator o f a  process X considered as a represen- 
tation is continuous in the operator norm, then X is singular. In particular, X is 
singuhr if K = rYA for each t~ R and A E L(N, (XI, H ,  ( a ) .  

2.4. COROLLARY. Let X: R -+ L(B, hP) be a process of type (*). If the 
spectral measure $ of X has a bounded support, then X is singular. 

P r o  of. We have slrlpp IP = supp E, where E is the spectral measure of the 
operator A such that K = e" is the propagator of X. Hence a[A) is a 
bounded subset of C and the operator A is bounded. It follows from 
Corollary 2.3 that X is singular. 

23. Remark. Note that the process Z ( t )  = Pt XX(O) (2, X,  Pi),, Us as in 
Theorem 1.8) is singular since its spectral measure YPdP has a bounded 

2 - Bob. Math. Statist. 4 (2) 



support. Therefore, the conditions U; l hP, (a c: Pl, (lr) and U s  H, ( Z )  c Ifs(%) 
for s E R are sdficient far ~ingalarity of X because U;  H ,  (X) c H, (X) 
impls;es Ha (Z,i c H s [ X ) ,  while Us Hs EZ) cr H",(Z) gives Hs (Z) c H,(X) ,  and 
hence 

2.6. Example. We show that the condition given in Theorem 2.2 is not 
necessary. Let x: R -. W be a stationary (scalar) process. Then x has a 
ynitacry propagator {U,:  t E R }  and 

where @ is an o~tlmogonal. vector memwe with values in H,(x) .  It follows 
&om Rernmk 1.7 that 

If s = 0, then 

Let now @ be an orthogonal vector measure on R supported in R\ [a, b], 
- rn < a < b < m, sp ( -1  = I(@ 4 .)(I2, and let qa be the absolutely continuous 
(with respect to the Lebesgue measure on Hdl) past of the measure q. We have 
then 

and it is well known (d. 115)) that in this case the process x is singular. On. 
the other hand, fpgrn .(I) we g t  J J  U, - IJI = 2 for each t E R. 

1 2.7. Remark. ' I B ~  Theorem 1.8, a process X of type I*) takes the farm 
X(t) = B, Y( t ) ,  where the process Y is stationary. Singularity and regularity 
of vator  stationary processes are studied in C1). The relations between 
regularity (sirmgul~ity) properties of processes X and I.' such that X(t) 
Pf P,Y(t) are found by Weron [13], and for scalar processes by Mandrekar 

K41. 
233. fiomsmora. Let x: R -+H be a scalar process of type I*) with the 

aropagator {v: t E R), F: = U ,  $: for {U,: t E W) a d  (P,: t E R) given by 
$heorem 1.8, and y ( t )  = 9, xo. Suppose that P, &(y)  c &(y )  for t E R If the 
s;pec@calB measure @ is atPsoIuteIy continuous with respect to the hbesgrue 
masure m on the complex piaine C and 
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for G-almost svmy v E R (65 denotes the Lebesgue masure on RjP then the 
process x is regular. 

Proof. In this case @ is a vector measure with values in the Hilbfl 
space H ,  (x). If @ is absolutely continuous with respect lo m, then @,, the 
projection @ of an imaginary axis ( ! P I @ )  = @ ( R  x S)), is absolutely eon- 
tinuous with respect to m. The nonnegative measure ~ ~ ( 5 )  = (I@r(S)lj2 has 
density of the form 

whose right-hand side is positive 7%-a.e. by assumption. Since is the 
spectral measure of the stationary process y (cf. Corollary 1-91, it follows 
from the theory of stationary processes that y is regular fcf. [15]). The 
relation P, HI ( y )  c H, Cy) implies (x) c H, ( y )  for each t and H -  , (x) 
c H - ,  (y) = {O), which completes the prod 
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