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Abstract. In this paper we present a characterization of vector
stochastic processes with normal propagators and apply it to study
the regularity and singularity of vector stochastic processes.

0. Introduction. Let B be a Banach space, H a complex Hilbert space, and
X: R— L(B, H) a vector stochastic process. If the formula ¥, X(s) = X (t+5)
_ defines a group of continuous linear operators, we call this group the
propagator of X (cf. [5]). In particular, a process is stationary if and only if it
has a unitary propagator. Therefore, processes with propagators are a
generalization of stationary processes. The purpose of this paper is to study
processes with propagators and to investigate which properties of stationary
processes are true for processes with propagators. Processes with propagators
are not treated yet in the literature so well as stationary processes. Scalar
processes with propagators were studied in [3] and [10]. Some existence
conditions for propagators of vector processes were found in [5], [6], and
[12]. Vector processes with hermitian propagators were described in [9].
_Furthermore, some types of these processes were studied in [2] and [8].

In this paper we describe spectral representations of processes with
normal propagators. We extend a theorem of Getoor [3] to the case of
vector processes and give a different proof based on the dilation theorem.
The final part of the paper is devoted to description of singularity and
regularity of processes in terms of their propagators. For example, we prove
that a process is singular if its propagator ¥, satisfies the condition |[I— VH
<1 for some t < 0.

-

1. Let B be a complex Banach space with the dual space B* and let H be
a complex Hilbert space. We denote by L(B, H) the space of all continuous
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linear operators from B into H (by L(B, B*) the space of all continuous
antilinear operators from B into B¥). By a stochastic process of second order
with values in B (a vector stochastic process) we mean a mapping X: R
— L(B, H) (cf. [13]). If B=C, then X becomes the mapping X: R— H
which is said to be a scalar stochastic process. Clearly, if X: R — L(B, H),
then for each be B the process X (+)b is a scalar stochastic process. We shall
use the notation

H,(X)=sp (X (s)b: s<t, beB},
H,(X)=sp{X(s)b: seR, beB}, H__(X)=)H,
telR

where spA (sp A) denotes the linear space (closed linear space) spanned by
AcH.
By %, we denote the family of Borel subsets of the complex plane C.
We admit after [5] the following definition:

1.1, Definition. Let X: R—L(B, H). A famil'y of linear continuous
operators {V,: ueR}, V,: H, (X)— H,(X), ucR, is called a propagator of
the process X if ¥, X (1) = X(t+s) for each ¢, seR.

Note that a propagator of X is a one-parameter group of operators on
H (X) (cf. [5]), whence each operator V, is invertible.

1.2. Definition. A process X: R — L(B, H) is said to be of type () if X
has a propagator {¥,: ueR} and the following conditions hold:

(1) for each beB the process X (-}b is continuous;

(2) for each reR the operator V, is normal;

(3) there exist constants ¢ > 0 and M > 0 such that [|V}|| < M for each
te(—s, ¢).

1.3. Example. (i) Let B=H, AeL(H, H), and let A be normal. The
group of operators {¢": teR} is a vector process of type ().

(i) Consider the Lebesgue measure m on D ={AeC: |4 <1} and let H
= L,(D, m) be the space of all square-integrable functions on D. If we put
x(t) = ¢"* for teR and A€D, then the process {x(z): teR} is a scalar process.
of type () with the propagator given by (V,f)(4) = e*f(4), feH.

For the proof of the characterization theorem of the process of type (%)
we shall need the following lemma:

14. Lemma. Let {Q(t): teR} < L(H, H) be a one-parameter group of
normal operators satisfying the following continuity condition:
(a) im||Q(t)h—h|| = O for each he H.
oo ‘ ‘
Then there exists a closed normal operator A densely defined in H and such

that for some a, be R the spectrum o(A) is contained in {AcC: a < Red < b}
and. Q(t) = € for each teR.



Banach space valued processes 135

This lemma is an immediate consequence of Theorem 13.37 in [11].
The propagator {¥;: te R} of any process X of type () satisfies condition
(a). In fact, if ¢, — 0, then
V, X(s)b=X(t,+5)b— X(s)b
since X (‘)b is continuous and, therefore, ¥, h—h for hesp{X(t)b:
teR, beB}. If he H (X), then

h=lmh, and h,esp{X(t)b: teR beB}

({h., is a sequence approximating h). Thus we have '
WV h—Hil <1V, BV, hull +11V,, b — ol + 11— h|
\(”Vr,,”+1)”hm'—h“+”‘/;,,hm—hm”
< (M A+ Dby — |+ 1V, B~ hll < 6
for sufficiently large n.
1.5. Remark. Considér now a c-additive measure ¢ on %, with values
in L(B, H) (with strong topology) satisfying the following orthogonal

condition:
(o) [@(s)]*D(s;) =0 if §;nS, =0.

Let /1 C— C be a Borel bounded function. We claim that the operator
.Zf: B —’H,

Z;b=| f(})[S(dA)b],
[

belongs to L(B, H). For beB, &(-)b is an orthogonal vector measure with
values in H, ¢,(') =||®(-)b]|* is a nonnegative finite Borel measure on C,
and

III f)[@Hb]I* = flflzdfpb (Sup!f(/l)lz)%’(c)
(Suplf(/l)l I (O)blI* < (Suplf(ﬁ)I 2) I (O)lI?11BI)2.

From now on we put
Z,=| f(H)D(dA)
L4

(cf. also [7]).

1.6. TueoreM. The process X: R— L(B, H) is of type () if and only if
there exists an operator measure @ on #B¢ with values in L(B, H, (X)),
satisfying condition (), supported in {AeC: a < Reld < b} (for some a, beR),
and such that

(B ' X@ziﬂ@@&
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Proof. We suppose that {V,: te R} is the propagator of the process X of
type (). Let A be a closed normal operator densely defined on H (X), such
that ¥, =¢" for teR and o(4) = {AeC: a<ReA <b} (Lemma 14). The
spectral measure E of the operator A4 is concentrated on o(4). If we define
the measure @ for a Borel subset S < C by &(S)=E(S)X(0), then
®(S)e L(B, H,(X)) and & satisfies condition (2). Now the equalities

X()=V.X(0)=¢*X(0)= [5 ¢ E(AN] X (0) = ( ¢ (E (d2) X (0))
= [ ¢ d(dA)
) [%

yield (B).
Suppose now that X is of the form (B) and @ satisfies the conditions of
the theorem. For a Borel subset § « C we put

4(5) = [X(0)T* 2(5) = [2(O)]* 2(S)

Then A(S)e L(B, B*) and (4(S)b)b = (@(5)b, B(C)b) = ||P(S)b||> is a non-
negative measure on C. By the dilation theorem (cf. [14], (2.1)), there exist
a Hilbert space H, a spectral measure E(-): H— H, and an operator
ZeL(B, H) such that

AS)=Z*E(S)Z.
We may assume that H is minimal, ie.

=\ E(S)ZB—sp{E(S)Zb Se B, beB).

SeBe
Then the Hilbert spaces
H,(X)=\ @®©)B and H=\/ E(S)ZB

SeB¢ Se@B¢

are isometric. In fact,

||i ES)zo)|? = » S o, (®(S; N S)by, B(S; A S)b)

i=1 j=1
= ||Z o P (S) bi|”.

Hence ¥: (b(S)b—»E (S)Zb has an extension to a unitary operator from
H_(X) onto H.
Consider now the following operator group on H:

V,=[e*Edd), teR.
c

Since supp £ = supp 4 = supp fP, the function e* is bounded on supp E and
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the operators ¥, are bounded and normal. Let

X(t) - v,z = J‘ e (EdA) Z).

Obviously, ¥(X())=X(), H is spanned by {X(1)b: teR, beB}, and
A teR} is the propagator of X. We claim that this process is of type (*).
Condmon (3) of Definition 1.2 follows from the equality

| IVjl| = sup {e*: AesuppE} = exp {tmax(a, b)!.
I t, — 1o, then
I1X(@t)b—X (o) bl = || i exp {t, A} (E(dA) Zb)— | exp {to A} (E(d2) Zb||?
) (4

= [ lexp {t, 2} —exp {to A}|2 |E (d4) Zb]?
) :

and the Lebesgue theorem implies that this sequence tends to zero, which "
proves the continuity of X(-)b, beB. Clearly, X (t) =%-1X(t) is also the
process of type (+) with the propagator ¥, = ¥~ 1 ¥, . The proof is complete.

The measure @ will be called the spectral measure of the process X.

1.7. Remark. Theorem 1.6 implies that x: R — H is a process of type (%)
if and only if there exists an orthogonal vector measure @ on %, with values
in H,(x), supported in {AeC: a < Rel < b}, and such that

x(t) = j e & (d)).

The measure @ (S) = Ilq?)(S)H2 is a nonnegative Borel measure on C, Consider

the Hilbert space K =sp{e"*: reR} = L,(C, ¢) and the operator group
T, f(4) = e*f(4). The operator

¥: K- Hq(x): fﬁif,(l)@(di)

is unitary. We have ¥Y(¢*)=x() and V,=¥YT, ¥ !, where {V} is the
propagator of x. Therefore, if x: R— H is of type () and @ is its spectral
measure, then there exists a unitary isomorphism between H, (x) and K.

Given a process X: R— L(B, H), one may consider, after Weron [13],
associated processes of the form Y, = P,X,, where P,eL(H, H). We can
prove now that a process of type (+) is associated with a stationary process.
Let us recall that a process X: R — L(B, H) is stationary if X has a unitary
propagator (cf. [14], [1.6)). '

1.8. TueoreM. A process X: R — L(B, H) with the propagator {V,: te R} is
of type () if and only if for each te R we have V, = P,U,, where

() P;: Ho(X)— H,(X) is hermitian,
(i) U,: Hy(X)— Hy(X) is unitary,
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(iii) {P,: teR} and {U,: teR} are one-parameter groups of linear con-
Hnuous operators,

(iv) P,U,=U,P, for each t, scR,

(v) the processes Y(t) = U,X(0) and Z(t) = P, X (0) are of type (*).

Proof. The “if” part is rather obvious: if P, is hermitian and U, is
unitary, then V, = U, P, is normal. Furthermore, ||V]| = ||U, P,|| < ||P,||. Hence
condition (3) of Definition 1.2 holds. Since {P,} and {U,} are the strong
continuous operator groups (this follows from (v); cf. Lemma 1.4 and the
remarks after this lemma), the operator group {¥,} is also strong continuous,
which implies continuity of the process X ()b, beB.

Let now X: R— L(B, H) be of type (*) with the propagator {V,: reR]}
and let E be the spectral measure of 4 such that V, = ¢4, teR. Then

V,= [ e*E(d2) = | exp {tA; +itd,} E(dA) = [ exp {tA,} E(d) [exp'{ith,} E(dA)
c c , € c
= f exp {t4,} Er(dA) f exp {itd,} E;(d4,) = P, Uy,
R R

where 1, =Rel, 4, =Im4, and Eg(S)=E(SxR), E;(S)=E(RxS) for a
Borel subset S = R.

Clearly, for any t, seR the operator P, is selfadjoint, the operator U is
unitary, and P, and U, commute. Putting

Ag = [ vEg(dv) and A; = | vE(dv)
R 4

we have P, = exp {tAg} and U, = exp {tA;}. Thus {P,: teR} and {U,: teR}
are one-parameter groups of bounded operators. Moreover, since supp Ep is
bounded, Ay is continuous, which in turn implies that the representation
{P,: teR} is continuous in the operator norm. Therefore, the process Z,
= P, X (0) is of type (%). Since U, = P, ' V,, the process Y, = U, X (0) is also of
type (%).

1.9. CoroLrLARY. Let X: R— L(B, H) be a process of type () with the
propagator {V,: te R} and the spectral measure @. Then

XO)=PY®)=UZ(,

where Y(t) = U,X(0) is stationary, Z(t) =P, X(0) is of type (x) with the
hermitian propagator. Moreover,

Y(O) = [ &4 ®(dd) and Z(t) = | e Prldl),
R R

where @,(S) = ®(RxS) and Px(S) = ®(S xR) for any Borel subset S < R.

2. In this section we study regularity and singularity of stochastic
processes with propagators. Recall that a process X: R — L(B, H) is regular
if H_,(X)={0} and it is singular if H,(X)=H_ ,(X).
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2.1. Lemma. The process X: R — L(B, H) is singular if and only if there
exist t > 0 and se R such that Hy(X) is the invariant subspace of the operator
7. |

Proof. The “only if” part follows from the fact that the singularity of X
implies the equality H(X) = H_ (X) for each seR.

If t>0, seR, and V,H,(X) < H(X), then V,H(X)= H,(X) (because
V,H(X) = H,,(X) for all t,seR and H (X) < H,,,(X) for t > 0). Hence
V. Hy(X)=V,"' Hy(X) = H,(X). For any natural number k we have

Hys(X) = VFH(X) = Hy(X), H_p4s(X) =V, *H(X) = Hy(X).
Consequently, H,(X) = H,(X) for each ue R, which is equivalent to singula-
rity of X.

2.2. THEOREM. Suppose that {V.: teR} is the propagator of X: R
—~ L(B, H). If 1=V, |l <1 for some sq <0, then X is singular.

Proof. Notice that for any operator Te L(H, H) such that ||I-T}|| <1
and TH, < H, for some closed subspace H, = H we have T"'H, < H,. In
fact,

-1 = Z (I__ T’)H
‘ n=0
(the series convergent in the operator norm). Hence

T 'h=() I-TY)h=3 (I-T)"heH, for any heH,.
. n=0

n=0

Suppose now that there exists s, < 0 such that ||[I— Vool < 1. For each s
<0 and teR we have‘ V,H,(X) =H,,,(X) < H,(X). Thus

H(X) = H(X) and V., H/(X)=V,"H(X)<H/(X)

for any teR. Consequently, for u = —s, >0 we get V,H,(X) < H,(X) for
each t, and Lemma 2.1 implies singularity of X.

t 2.3, CoroLLARY. If the propagator of a process X considered as a represen-
tation is continuous in the operator norm, then X is singular. In particular, X is
singular if V, = e for each teR and AeL(H(X), H,(X)).

24. CoroLLARY. Let X: R— L(B, H) be a process of type (x). If the
Spectral measure @ of X has a bounded support, then X is singular.

Proof. We have supp @ = supp E, where E is the spectral measure of the
operator A such that ¥, =e" is the propagator of X. Hence o(4) is a
bounded subset of C and the operator A is bounded. It follows from
Corollary 2.3 that X is singular.

25. Remark. Note that the process Z(t) =P, X(0) (Z, X, P,, U, as in
Theorem 1.8) is singular since its spectral measure @ has a bounded

2 — Prob. Math. Statist. 4 (2)
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support. Therefore, the conditions U ! Hy(X) < Hy(X) and Us H(Z) < H/(Z)
for seR are sufficient for singularity of X because U ! H (X) < H(X)
implies H.(Z) « H(X), while U H (Z) < H,(Z) gives H(Z) < H,(X), and
hence.

Ho(X)=Ho(Z)=H_,(2) = H_,(X).

2.6. Example. We show that the condition given in Theorem 2.2 is not
necessary. Let x: R— H be a stationary (scalar) process. Then x has a
unitary propagator {U,: reR} and

X0 = j e ddl),

‘where @ is an orthogonal. vector measure with values in H,(x). It follows
from Remark 1.7 that o
U, —Udl = sup {Ieml 'S‘I Aesupp @} = sup[2—2cos ((t 5) /1) 1z,

. supp®-
If s =0, then
) HU Ill = sup (2— 2COS(tA))1/2

supp®
Let now & be an orthogonal vector measure on R supported in R\ [a, b],
— <a<b<ow, () =||®(-)|% and let @, be the absolutely continuous
{(with respect to the Lebesgue measure on R) part of the measure ¢. We have

then ‘
. d(Pa
: i( (t)) 1 +t2

and it is well known (cf. [15]) that in this case the process x is singular. On.
the other hand, frpm (1) we get ]IU —I|} = 2 for each teR.

i 27. Remark. By Theorem 1.8, 2 process X of type () takes the form
X (1) = P, Y (), where the process Y is stationary. Singularity and regularity
of vector stationary processes are studied in [1]. The relations between
r‘egulanty (singularity) properties of processes X and Y such that X ®
= P, Y(2) are found by Weron [13] and for scalar processes by Mandrekar
[4]

2.8. Proposrion. Let x: R—>H be a scalar process of type (*) wzth the
propagator {V;: teR), V; UP, for {U: teR} and {P;: teR} given by

— o0

Theorem 1.8, and y(t) = P, x(0). Suppose that P,H,(y) < H,(y) for teR. If the .

spectml measure @ is absolutely continuous wzth respect to the Lebesgue
measure m on the complex plaine C and
fdll I
g dm

{u+w)dv > 0
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for #i-almost every veR (it denotes the Lebesque measure on R), then the
process x is regular.

Proof. In this case @ is a vector measure with values in the Hilbert
space H, (x). If ® is absolutely continuous with respect to m, then &,, the
projection @ of an imaginary axis (®;(S) = ®(RxS)), is absolutely con-
tinuous with respect to m. The nonnegative measure ¢,;(S) = ||®;(8)]|> has
_ density of the form

d¢1 dH¢H2

(}-I ( +iv) du

whose right-hand side is positive #i-a.e. by assumption. Since @; is the
spectral measure of the stationary process y (cf. Corollary 1.9), it follows
from the theory of stationary processes that y is regular (cf. [15]). The
relation P, H,(y) = H,(y) implies H,(x) = H/(y) for each t and H_ _(x)
cH__ ()= {0} which completes the proof.
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