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WITH G E m R A L  STATBE SPACE. D 
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Ahstxact. In this paper we consider a discrete-time infinite 
horizon zero-sum stochastic game with a bounded non-negative 
reward function per stage. Under a natural integrabihty assumption 
(cP. 193, assumption (PI), we show the existence of value and optimal 
stationary (&-optimal semi-stationary, E > 0) strategies for a rmni- 

- rnizet (maximizer). 

This paper is a continuation of [9], so we follow all previous notation, 
definitions and enumeration of sections. Here we deal with positive dynamic 
programming (Section 6)  and positive stochastic games (Section 7). The 
comparison and discussion of the results obtained are given in Remarks 6.1 
and 7.2. 

6. Positive dynamjlc program~ng. In this part of the paper we give some 
auxiIiary results on dynamic programming for models which satisfy the 
condition (P) described in 193. Throughout this section g(=' is assunned to be 
any stationary strategy of player II determined by g E Y,,. Let (P,) be a 
sequence such that, for each iz 2 1, 0 6 j, < j,,, < 1 and fl, -, 1 as n -+ co. 

For each  RE^ we set 

where rk(n, Q(")) is the expected reward function at the k-th stage (see 
Section 2). Further, let us put 

uX(g) = SUP I,(n, gI"" and v* (g )  = sup V ( n ,  g(")).  
REII RER 
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LEMMA. 6.1. lCVe have 

u* ( g )  = lim II a,* ( g ) .  

Pro  sf. Far each n 2 1 we obtain v$ ( g )  ,< v:+, ( g )  $ v* ($1. Hence 

(6.1) Iim v: ( g )  < u* (g) 
n 

On the other hand, for each ~r EL? -6ve get 

V ( x ,  gb9 = En1 A I , ( A ,  g(OD)) ,( lim FI v:(g), 

whence 

16-21 v* (g) < lirn #I ut  (g). 

I By (6.1) and (6.2) the blnma Is groved. 
Let ar E M4 (8). For each M 2 1 and y E PA (s )  we set 

and 

The following two lemmas may be easily deduced from Theorems 5.3 and 
5.4. 

LEMMA 6.2. For each; of the m d e b  (MI,), (M,), (M,) and for each n 2 1 
there is f,"") ELT, s t d ~  that v z  (g) = 1, ( fJa', glmJ)* 

LEMMA 6.3. For each of the models (MI), (M,), (M,) and for each n B 1 we 
h 2 v e  v: Cg) = T,, Ev: (g)). 

The following theorem is one of the main results. of this seetion. 
THEOREM 6.1. FOP each of the models (M,), (MI,), (M,) and for each E > 0 

there is a semi-stationmy strategy ~EII,, of pEayer 1 such that v* (g )  
< V ( n ,  g(=))+&. 

Proof. We define a sequence of sets 

s, = ( s  E S :  v* (g) (s) < v:: (g) (s)  + E) 
and 

n- 1 

sm = (sES: v * ( ~ ) ( s )  < v:(~)(s)+E)- U Sk. 
k =  1 

a, 

It is clear that S, nS, = (Zi for n # m, and IJ S, = S .  Theorem 5.1. and 
A =  1 

Lemma 6.1 imply that S,EY for each n 2 1. Without toss of generality we 



may assume that S, Z @ for each FI 1. By Lemma 6.2, there is a sequence 
f f T ) ,  f j a ) ,  .. OF stationary strategies of player li such that o$(& 
= I, ( & J ; l ' " r ) ,  g'")): whence uz (g) < V(f,'"{ gg'"'). k t  s E~F,; then 

Now, we define n~19,, as -n =(T, r, z ,... 1, where ~(s;) =fnl(.) if SES,,. By 
(6.3) we obtain 

v* (g) Is) < V ( n ,  gcm1) Is) +E for each s E S3 

which completes the proof. 
k t  u f Mq(S)  and put 

T,(td)(s) - sup L(s, y, g (s))(u) for each s E S. 
EPA(SJ 

We prove now the next imprtant result of this section. 
THEOREM 4.2. Assume (MI], (M,), (M3). Then u* (g) = T(u*  (g)), and v* (g )  

is the smallest nun-negative solantr'on r'g this equation. 
Pr  CI of. Under (P) we have V ( x ,  y) E Ma (S) for all a E n, y G $, so Theorem 

6.1 implies v* ( g )  E M ,  (S)  for each g E Y,, . Hence '1P,fu* (g)) is well diefind. By 
Lemma 6.3, for each ia 2 1 we have 

(4.4) ub $d= Tw (0: (d). 
Hence vX (g) d T, (v* (g)) 6 T,  (tr* (g)) for each n 2 1 and, by Lemma 6.11, 

(6.5) v* (14) s ;k, (v* (d). 
On the other hand, (6.4) implies v"(g)  2 T W ( v X ( ~ ) )  for each n 2 1. Thus, we 
get 

v* (g) 2 L, (s , p, g (s)) (u: (g)) for each s E S and p E & (s). 

Using Lemma 6.1 and the monotone convergence theorem we obtain 

v* (g) 2 ~ ( s ,  p, 9 (s)) (u* (s)) for each s E S and p E PA 4s) 

and, consequently, 

(6.6) v* (s) 2 a, (o* l(d)- 

Combining (6.5) and (6.6) we get 

(6.71 v* CsI = T,  (v* Cd) 
k t  w 2 0 be another solution of equation (6.7) and suppose that w(s,) 

< v* (g)(so) for some so ES. By Theorem 6.1 we can find a strategy f ( " ' ~ i T ~  
such that w(s,)  < F"(f(m), gs""')(so). We note that 
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where u = 0, i.e., u is the function which vanishes identically. Further, we 
obtain 

6 lip Th (w) (so) G lim v ( w )  (so) < w (SO), 
n 

which is a contradiction. 
Remark  6.1. Results related to Theorem 6.1 for Borel space models with 

some semi-continuity and/or compactness assumptions have been obtained 
by Nimmelberg et al, (C63, Theorem 1) and by Shreve and Bertsekas ([12], 
Theorem 15). They have established, for any E > 4 the existence of c-optimal 
semi-rvlarkov strategies. Theorem 6.2 is due to Strauch ([13], Theorem 8.2). 
Me studied only Borel space dynamic programming models and assumed 
that, for some K 3 Q, V ( x ,  y)  b) < K whenever R EII,  y E r, and s E S.  

7. The lilafiJIlite horizon stocll-astic games satisfying the condition (PI. Before 
proving the main results of this section we give some notation and auxiliary 
Lemmas, Let (8,) be a sequence such that O < p, < f i n + ,  < 1 for each n 2 1 
and limp,, = 1. Let us put 

n 
00 

. In(nr  Y) = rBk,- '~kIn,  711. 
k= l 

It is clear that In (n 2 1) satisfies the condition (D) from [9]. The value 
function w: for the modified positive stochastic game with the reward 
function I,, n 2 1, exists by Theorem 5.1. Moreover, w,* E B ( S )  for each n 2 1 
since s is bounded and 0 Q Pn < 1. 

For any u ~ w ( S )  and n 2 1, we put 

where s E S, PE PA (s), ;1 E PB (s), and 

T,(Es)(s)= sup inf Ln(s,p,/l)l(u)= id sup L, ( s , p ,A) (u )  
P G P A ~ S )  aePg[s) IEPB(s)  P . E ~ A ( S )  

if the last equality holds. 
By Theorem 5.3 we obtain 
LEMMA 7.1. For all models ( M , ) ,  (M,), (M,) and for each n 2 1, T,(w:) is 

well d@fined rand w,* = T,(wz).  
We note that O Q w: d w:+, < v* < v* ( g )  for each g E YP,  and each 

n 2 1. Let w* = l imw:. Then 
11 

(7-1) O <  w* dg*. 
I 

Moreover, Theorem 5.1 and the condition '(P) imply that W * E M ~ ( S ) .  



LEMMA 7.2. For each s f 5  and AEP,(s) we have 

(ii) hm sup inf L,,(s, p, &)[MI:) = sup Iim inf L,(s, p, d)(w,*). 
" @€PA(s) .?cPg(s) FEPA(S)  " tlsPg(s) 

Proof.  Since, for each n 2 1, 

we have 

On the other hand, the monotone convergence theorem implies 

L(s,  p, ;D)(w*) = lim k,(s, p, J.)(w:) < Jim sup L,(s, p, A)(w,*) 
n " fiaP..&) 

for each s ES, p € P A  (s), and li €P,(s). Thus, we obtain 

(7.3) sup L(s, p, A)(w*) < lim sup Ln(s ,  p ,  A)(w:). 
P ~ P A ( X )  " P S P A ~ S )  

Combining (7.2) and (7.3) we complete the proof of (i). The proof of part (ii) 
is similar. 

LEMMA 7.3. Assume (MI). Then for each n > 1 we have 

fop. each s E S ,  and 

(ii) sup L n ( . ,  P , * ) ( W ~ E B ( ~ ( Y ) X S ) .  
PEPA(-) 

P r o  of. Since wX E B (S), n > 1, we infer that L, (s, a ,  - )  (w:) is continuous 
on PA (5) x P, (s), being a compact metric space. Hence (i) follows im- 
mediately. In order to prove (ii) we refer to (4.2). 

Using (4.2) and Lemma 1.5 we can prove the following 
LEMMA 7.4. Assume (M,) or (M,). Then for each n 2 1 we have 

(9 sup L, ( s ,  p11, ' 1 Iw;) E C ( P B  ($1) 
s ~ P A ( s )  

for each S E S  and, moreover, (ii) of .Lemma 7.3 holds. 
LEMMA 7.5. For each of the models (MI), (M,), (M,) we have w* = T(w*). 
Proof.  It is clear that, for each' s E S and A E P,(s), the sequence 

sup L,(s, p, R)(w$), ra > 1, is non-decreasing and bounded. Using Lemma 
I I S ~ A ( ~  
1.1 and Lemmas 7.2, 7.3, and 7.4 for the models (M,), (M,), and (M,), 
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respectively, we obtain 

1 w s = l i  i n  sup L,#(s ,p,A)(wz)  
II " ;.SPB(h) .EEPA(s) 

= inf lim sup L,(s, p, jl)(w,*) = inf sup L(s, p, L)(w*) 
LEP~(L] " PEP,&) izPB(s) B E P ~ ( s )  

and, similarly, 

lim j[;l(wt)(s) = lim sup inf LJs ,  p, A)(wt) = SUP in€ L(s, j,t, il)(w*). 
n #EPA(s)  .i~PgIs) B S P ~ ( S )  A ; C E ~ B ~ I  

Consequently, by Lemma 7.1, we get w*(s)  = T(w*)(s)  for each ~ E S ,  which 
completes the proof. 

LEMMA 7.6. For each of the mdels  [MI), (M,), (M,) t h r e  is g~ Y,, such 
that, for each s E S, 

Proof.  By Lemmas 7.2, 7.3, and 7.4 we have 

17-41 sup L(- ,  P ; ) ( W * ~ E A + ~ ( P ( ~ ~ )  
BEPA(')  

in all the cases (M,), (M,), M )  Moreover, since the sequence 
sup L,(s, p;)(w:) is non-decreasing, we get 

BE PA^^) 

for each SES. 
I Now, for each SES, we define 

It follows from (7.4) and (7.51, Lemma 1.11 and Theorem 3.5 of C41 that in aEi 
the cases (M,), (M,), (M,), the set D(s)  is compact and non-empty, and D has 
a measurable graph. In the cases (M,) and (M,), D is also measurable by 
Lemmas 1.8 and 1.7, respectively. Now we prove the measurability of D in 
the case (M,). 

For each n 2 1 and S E S  we define 

Clearly, D,(s) is non-empty and mmpact for each n 2 1 and SES. From 
Lemmas 1.10, 1.11, and 7.3 we infer that D,, n 2 1, is measurable. From 
E e m a  7.2 it follows that 

m 

D (s) = n D,(s) for each s E S. 
n= 1 
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Moreover, by Theorem 4.1 of 143, D is a measurable multifunctian. Now, the 
lemma follows (in all the cases (M,), (M,), (M,)) from the Kuratowski and 
Ryll-Narkewski theorem on selectors ([81 Theorem I). 

We are now ready to state the main result of this section: 
THEOREM 7.1. For each of the nwdeb (MI), (M,), (Ebd,) the unluefuraction v* 

exists and u* = T(u") = w*. Moreover, fbr any E > 0, pEcl~'er I has an ~ q p t i r n a i  
senzi-stationary stralegy and player II has an optimal stationary strategy. 

Proof.  By Lemmas 7.5, 7.6, and Theorem 6.2, we have 

(7.6) 'CV* = Tlw*) = T,(w*) 2 sup V ( n ,  Q'~]) 
~ s n  

m for some y E Y,,. Hence w* 3 P, which together with (7.1) and (7.6) implies 

W* = tr* = T(v*) = sup V ( n ,  L J ( ~ ) ) ,  
E E ~  

i.e., the value function v* exists and player If1 has the optimal stationarjr 
strategy Q'"). By Theorem 5.4 there is a sequence (f:")] c IT3, n 3 1, such 
that 

Hence 

Since v* = lirnw$, the construction of &-optimal (far any E > 0) semi- 
n 

stationary strategies for player I is similar to that from the proof of Theorem 
6.1. 

Remark  7.1. Van der Wal has given an example {[ lq ,  Example 2.26) 
satisfying the assumptions of Theorem 7.1, where a stationary (even Markov) 
&-optimal strategy for player I does not exist. The optimal strategies for 
player I need not exist as the same example shows (cf. also [I] and [IQ]). 

Finally, we prove the following 
THEOREM 7.2. Suppose one of the assumptions (M,), (Mz) or (M,) is 

satisjed and a s s u m  that vh EB(S)  and the set 

is relatively compact in the s-topology in P ( S ) .  Then w: --+ v* uplifornaly on S as 
n- tw .  

Proof.  By Lemma 7.1, for each n 2 1 we have w: = T,(w,*) and, by 
Theorem 7.1, v* = T(u*) and w,* --+ v* pointwise as ra 4 m. 
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11 is easy to check that 

Since uS-w,* monotonically decreases to 0, by Lemma 1.2, we obtain 

lirn sup Iv* (s) - W: ($1 
" s& 

6 lim sup sup sup j Iv* (t) - w,O (t)J q (dtls, x, y) - 0, 
SES XEA(S) PEB(S) S 

which completes the proof, 
COROLLARY 7.1. Under the wssumptions of Theorem 7.2 player I has an c- 

optimal stationary strategy for each E > 0. 
Remark  7.2. Positive stochastic games with finite sets of states and 

actions were examined by Parthasarathy [lo]. Everett has given an example 
{[2], Example 1) of the positive stochastic game with finite state space In 
which player I has no optimal strategy, stationary or any other. Kamerud 
studied a positive (unbounded) stochastic game with a countable state space 
and finite action spaces and showed that such a game has a value, player I1 
has an optimal stationary strategy, and player I has an &-optimal serni- 
stationary strategy for each E > 0 (cf. 171, Theorem 111.6, or Ell], Theorem 
1.5). Theorem 7.1 generalizes that result. Moreover, Theorem 7.1 generalizes 
Theorem 1 of Frid [3] and Theorem 2 of Himmelberg et al. [ 5 ] ,  where S is 
assumed to be an SB-space and X and Y are assumed to be finite sets. 

We close this section with the following example which shows that the 
relative compactness of the set (7.7) in the s-topology in P ( S )  is an essential 
assumption in Theorem 7.2: 

Example.' Let s,  = I., 0 < s,,, < s, < 1 for each n 3 2, and 

lim s, = 0. 
n 

Let S = (0, I), X = A (s) = KO, 11, and Y = B(s) = (1) for each s ES.  Assume 
that q ( . Is, x, y )  = q ( -  1s) for each s E S, x E X, y E Y and, moreover, q ( .Is) < m 
for each SES, where m is the Lebesgue measure on (0, I). For each S E S ,  
denote by h( -, s) the Radon-Nikodym derivative of q ( -1s) with respect to m 
and suppose that 

for each ~ E [ s ,  s3  and SE[S,+~,  s,), 
h(t, S) = 

for other t ~ ( 0 ,  I). 



Zero-slam srochustir: games. 151 

-By Lemma 1.2 it can be easily verified that .the set (q (  -1s): s ES) is not 
relatively compact in the s-topology in P(S) .  

Recall that UT (see Section 4) denotes the value function in the one-stage 
stochastic game, Under our assumptions we get 

u? Is) = sup r (s, X, 1) for each s E S . 
xaX 

Let the reward function r be non-negative and such that 

whenever s E [s,+ sd.  
Observe that 

(7.9) O < v f ( s ) < l / n  foreach S E [ S , + ~ , S , ) ,  n.2 1, 

and 

(7.10) 

By a simple calculation, we obtain the following value function v g :  

Consequently, by (7.91, u* is bounded. Taking any sequence (18,) such that 
0 < /3, c Pk+ C: l for each k 1 and limp, = 1, we obtain the following 

k 

value functions w,*, k 2 1, for the modified positive stochastic games de- 
scribed above: 

By (7.10) and (7.11) we get 

l i r n v * ( ~ ~ + ~ )  = I ,  
n 

and by (7.10) and (7.12) we have 

lim w: (sn+ ,) = 0 for each k 2 1. 
n  

Therefore, w,* does not converge uniformly on S to v* as k -, m. It is proper 
to add that the stochastic game presented above satisfies also the condition 
(D) from Section 2. 

Added in proof. The models {MI) and (M,) studied in parts I and II of 
this paper are more general than the socalled Bored model considered by 
P .  R. Kurnar ind T. H. Shiau in the paper Existence of value and randsmized 
strategies in zero-sum discrete-time stochastic dynamic games (STAM J .  
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Control Optimization 19 (1981), p. 617-634). Dynamic games with a stan- 
dard Borel state space, which include the positive games and the absorbing 
or discounted stochastic games under semi-continuity assumptions similar to 
(M,), have been studied by U. Rieder in the paper On serni-conrimsous 
dynamic games (to appear). 
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