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Abstract. In this paper we consider a discrete-time infinite
horizon zero-sum stochastic game with a bounded non-negative
reward function per stage. Under a natural integrability assumption
(cf. [9], assumption (P)), we show the existence of value and optimal
stationary (c-optimal semi-stationary, ¢ > 0) strategies for a mini-
mizer (maximizer).

- This paper is a continuation.of [9], so we follow all previous notation,
definitions and enumeration of sections. Here we deal with positive dynamic
programming (Section 6) and positive stochastic games (Section 7). The
comparison and discussion of the results obtained are given in Remarks 6.1
and 7.2. .

6. Positive dynamic programming. In this part of the paper we give some
auxiliary results on dynamic programming for models which satisfy the
condition (P) described in [9]. Throughout this section g'® is assumed to be
any stationary strategy of player II determined by ge p,. Let {B,} be a
sequence such that, foreach n2 1, 0< f,< f,+, <1 and B,—1 as n— .

For each nmell we set

[c2]

I,,(‘:'C, g(m)) = Z ﬁﬁ_l rk(n! g(w))’
1

k=

where r.(n, g'™) is the expected reward function at the k-th stage (see
Section 2). Further, let us put

v (g) =sup I,(n, g'*) and  v*(g) =sup V(m, g*).

nell rell




144 A. S. Nowak

LemMma. 6.1. We have
v*(g) = imv5 (g).

Proof. For each n>=1 we obtain v¥(g) < vf(g) < v*(g). Hence

- (6.1) lim v (g) < v*(9).

On the other hand, for each nell we get |
Vi(r, ") —hml (m, g'*) <11mv “(9),

whence

(62) - e <limui().

By (6.1) and (6.2) the lemma is proved.
Let ueM,(S). For each n>1 and pueP,(s) we set

L,(s, 1, g(9) () = j I [r(s, x, y)+ﬁn§ u(t)q(dils, x, y)]g(dyls)du
and
T, () (s) = S}l}l?)L o (8, #,Q(S))(u)

- The following two 1emmas may be easﬂy deduced from Theorems 5.3 and
54.

Lemma 6.2. For each of the models (Ml) (Mz), (M3) and for each n> 1
there is fell; such that vl (g) = L,(f, g')..

LEmMMA 63 For each of the models (Ml) (M), (Mg) and for each n = 1 we
have v¥(g) = Ty (07 (9)). .
The following theorem is one of the main results.of this section.

THEOREM 6.1. For each of the models (M,), (M,), (M) and for each ¢ >0
there is a semi-stationary strategy neHss of player 1 such that v* (g)

< V(n, g +e.
Proof. We define a sequence of sets

= {seS: v*(g)(s) < vi (@) (5) +¢}
and

) ‘ v coom—1 .
S, ={S<=‘Si v*(g)(s)<v:‘(g)(8)+8}— U S

It is clear that S, NSy —(D for n ;é m, and U S, = 8. Theorem 5.1 and
Lemma 6.1 imply that S,e % for each n > 1. Wlthout loss of generality we
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may assume that S, # @ for each n> 1. By Lemma 6.2, there is a sequence

A7, f57,... of stationary strategies of player 1 such that uv¥*(g)
:1,,( () g"‘“’), whence v¥(g) < V(f{*, ¢'*). Let seS,; then
(6.3) _ v*(g)(s) < V(™. g () +e.

Now, we define zell as n =(z, 1, 1,...), where ©(s,") =f, (") if seS$,,. By
(6:3) we obtain : : ‘

v* (g)(;f) < V(n, g)(s)+¢& for each seS§,

which ‘completes the proof.
- Let ueM_(S) and put :
T(u)(s) = sup L(s, p, g(s))(w) for each seS.
neP 4(s)
We prove now the next important result of this section.

TrEOREM 6.2. Assume (M,), (M,), (M,). Then v*(g) = T, (v*(g)), and v*(g)
is the smallest non-negative solution of this equation.

Proof. Under (P) we have V(zn, y)e M,(S) for all nell, yer, so Theorem
6.1 implies v*(g) e M, (S) for each ge &p,. Hence T,(v* (g)) is well defined. By
Lemma 6.3, for each n > 1 we have

- (64) "ok {g) = T, (v} (9))-
Hence v} (g) < T,y (v*(g)) < T, (v* (g)) for each n>1 and, by Lemma 6.1,
(6.5) - v*(g) < T(v*(9)-

On the other hand, (6.4) implies v*(g) > T, (v} (g)) for each nzl1. Thus we
get

v*(g) = Ly(s, #, g(s))(v¥(g)) for cach seS and peP,(s).
Using Lemma 6.1 and the monotone convergence theorem we obtain
v*(g) = L(s, p, g(s))(v*(s)) for each seS and peP,y(s)

and, consequently,

(6.6) v*(g) > T, (v* (9)).
Combining (6.5) and (6.6} we get 7
(6.7) . v*(g) = T,(v* (9)).

Let w > 0 be another solution of equation (6 7) and suppose that w(sg) .
< v*(g)(so) for some soeS. By Theorem 6.1 we can find a strategy e,
such that w(sg) < V(f, g (s,). We note that ‘ "

VU, g so) = lim 7 () (s0), o o
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where u = 0, ie, u is the function which vanishes identically. Further, we
obtain

w(so) < V (£, ') (so) = lim Tf, (u)(so)

< lim T, (w) (so) < lim T5"(w) o) < w (so),

which is a contradiction.

Remark 6.1. Results related to Theorem 6.1 for Borel space models with
- some semi-continuity and/or compactness assumptions have been obtained
by Himmelberg et al. ([6], Theorem 1) and by Shreve and Bertsekas ([12],
Theorem 15). They have established, for any ¢ > 0, the existence of e-optimal
semi-Markov strategies. Theorem 6.2 is due to Strauch ([13], Theorem 8.2).
He studied only Borel space dynamic programming models and assumed
that, for some K > 0, V(zm, y)(s) < K whenever nell, yel, and seS.

7. The infinite horizon stochastic games satisfying the condition (P). Before
proving the main results of this section we give some notation and auxiliary
lemmas. Let {B,} be a sequence such that 0 < f, < f,.; <1 foreach n>1
and limf, = 1. Let us put

o

I,,(TE, V)= Z ﬁf,‘lrk(n, 'Y)

k=1

It is clear that I, (n> 1) satisfies the condition (D) from [9]. The value
function w¥ for the modified positive stochastic game with the reward
function I,, n > 1, exists by Theorem 5.1. Moreover, w¥ € B(S) for each n > 1
since r is bounded and 0< f§, < 1.

For any ue M,(S) and n > 1, we put

Ly(s, w, ) = [ [ [r(s, x, y)+ B, g u(t)q(dtls, x, y)duda,
Xy o

where seS, ueP,(s), A Pg(s), and
T,W(s) = sup inf L,(s, p, A)(w)= inf sup L,(s, p, H(u)
ueP 4(s) AePpg(s) AePp(s) ueP 4(s) :
if the last equality holds.
By Theorem 5.3 we obtain

Lemma 7.1. For all models (M;), (M,), (M,) and for each n > 1, T,(w}) is
well defined and w} = T,(w}).

We note that 0<wy < wf,; <v*<v*(g) for each ge¥p, and each
nz=1. Let w* =limw}. Then :
. n

(7-1), | 0 < w* <ot

i
Moreover, Theorem 5.1 and the condition (P) imply that w*e M,(S).
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LemMMA 7.2. For each seS and A€ Pg(s) we have

(i) lim sup L,(s, p, A)(wy) = sup L(s, u, H(w*),
" peP4ls) , neP 4(s)
(i) lim sup inf L,(s, g, H)(w¥) = sup lim inf L,(s, p, )(w}).
" pePy(s) AePg(s) pePy(s) " AePp(s)

Proof. Since, for each n = 1,

sup L,(s, u, AY(w¥) < sup L(s, u, 2)(w¥),

neP 4(s) peP 4(s)
we have
(7.2) lim sup L,(s, u, A(wy) < sup L(s, p, H(w*).
B ueP4(s) neP 4(s)

On the other hand, the monotone convergence theorem implies

L(s, p, A)(w*) = lim L,(s, p, A)(wy) < lim sup L,(s, u, 4)(wy

" peP 4(s)
for each seS, pePy(s), and Ae Pg(s). Thus, we obtain
- (7.3) sup L(s, p, Y(w¥) < lim sup Ly,(s, p, A)(wy).

peP 4(s) weP 4(s)

Combining (7.2) and (7. 3) we complete the proof of (i). The proof of part (ii)
is similar.

LemMMA 7.3. Assume (M,). Then for each n > 1 we have

(¥ sup Ly(s, u,-)(wE) e C(Py(s))
neP 4(s)
for each seS8, and
(if) sup Ly(-, p,")(w¥)eB(P(Y) xS).
neP 4(¢)

Proof. Since w¥eB(S), n > 1, we infer that L,(s,-,")(w}) is continuous
on P,(s)x Pg(s), being a compact metric space. Hence (i) follows im-
mediately. In order to prove (ii) we refer to (4.2).

Using (4.2) and Lemma 1.5 we can prove the following

LemMa 7.4. Assume (M,) or (Ms). Then for each n>1 we have
(l) Sup L,,(S, ﬂ,)(W:)EC(PB(S))
ueP 4(s)
for each s€S and, moreover, (ii) of Lemma 7.3 holds.
Lemma 7.5. For each of the models (M,), (M,), (M3) we have w* = T(w*).

Proof. It is clear that, for each’ seS and AePg(s), the sequence

sup L,(s, u, A)(w¥), n> 1, is non-decreasing and bounded. Using Lemma
peP 4(s)

1.1 and Lemmas 7.2, 7.3, and 7.4 for the models (M;), (M,), and (M;),
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respectively, we obtain
lim T,(w$)(s) =lim inf sup L,(s, 1, ) (w)
B AePpg(s) ueP4(s) .
= inf lim sup L,(s, u, )(w¥) = inf sup L(s, u, A(w¥)
iePpls) T peP4(s) AePpg(s) peP 4(s) ‘
and, similarly,

hm T,(wf)(s) =lim sup inf L,(s, u, A(w}) = sup inf L(s, u, J)(w¥).
B neP 4(s) iePp(s) neP 4(s) iePpl(s)
Consequently, by Lemma 7.1, we get w*(s) = T(w*)(s) for each seS, which
completes the proof.
LemMma 7.6. For each of the models (M,), (M,), (M) there is ge &p, such
that, for each seS8,

w¥(s) = T,(w*)(s) = sup L(s, u, g(s))(w*).
HEP 4(s)

Proof. By Lemmas 7.2, 7.3, and 7.4 we have

(74 sup L(:, p,")(w¥)e M(P(Y)xS)
ueP 4(-)
in all the cases (M,), (M,), (M;). Moreover, since the sequence
sup L,(s, #,")(w¥) is non-decreasing, we get
neP 4(s)
(7.5) sup L(s, p,")(w*)e C(P(s))
neP 4(s)

for each seS.

+ Now, for each se8, we deﬁne

D(s) = {AePy(s): sup L(s, p, H(w*) < T(w*)(s)}.
ueP 4(s)

It follows from (7.4) and (7.5), Lemma 1.11 and Theorem 3.5 of [4] that in ail
the cases (M,), (M), (M3), the set D(s) is compact and non-empty, and D has
a measurable graph. In the cases (M,;) and (M3), D is also measurable by
Lemmas 1.8 and 1.7, respectively. Now we prove the measurability of D in
the case (M,).

For each n>1 and seS we define .

D,(s) = {Ae Pg(s): sup L,(s, B AwH < T(w*)(s)}.
ueP 4(s)

Clearly, D,(s) is non-empty and compact for each n> 1 and seS. From
Lemmas 1.10, 1.11, and 7.3 we infer that D,, n > 1, is measurable. From
Lemma 7.2 it follows that

D(sy= () D,(s) for each seS.
n=1 ;
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Moreover, by Theorem 4.1 of [4], D is a measurable multifunction. Now, the
‘lemma follows (in all the cases (M,), (M,), (M3)) from the Kuratowski and
Ryll-Nardzewski theorem on selectors ([8], Theorem 1).

We are now ready to state the main result of this section:

THEOREM 7.1. For each of the models (M,), (M,), (M3) the value function v*
exists and v* = T(v*) = w*. Moreover, for any ¢ > 0, player 1 has an e-optimal
semi-stationary sirategy and player 11 has an optimal stationary strategy.

Proof. By Lemmas 7.5, 7.6, and Thcorem 6.2, we have

(7.6) w¥ = T(w*) = T,(w¥) = sup V(n, g
nell
for some ge &p,. Hence w* > v*, which together with (7.1) and (7.6) implies
w* = p* = T(v*) =sup V(n, g'°),
nell

ie, the value function v* exists and player Il has the optimal stationary
strategy ¢g®. By Theorem 5.4 there is a sequence {f{*} < 1II,, n> 1, such
that _ :

wi =inf L(f;®, ), n>=1l

yel’
Hence

<iof V(f;<, 7, n=1

'yel'
Since v* =limw¥*, the construction of e-optimal (for any &> 0) semi-
n .

stationary strategies for player I is similar to that from the proof of Theorem
6.1.

Remark 7.1. Van der Wal has given an example ([14], Example 2.26)
satisfying the assumptions of Theorem 7.1, where a stationary (even Markov)
g-optimal strategy for player I does not exist. The optimal strategies for-
player I need not exist as the same example shows (cf. also [1] and [10]).

Fmally, we prove the following

THEOREM 7.2. Suppose one of the assumptions (M,), (Mz) or (Mj) is
satisfied and assume that v* e B(S) and the set

@) gl x ) seS, xeA(s), yeB(E)

is relatively compact in the s-topology in P(S). Then wi — v* uniformly on S as
n— 0.

Proof. By Lemma 7.1, for each n>1 we have w* = T,(w}) and, by
Theorem 7.1, v* = T(v*) and w} —v* pointwise as n— .
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It is easy to check that

sup [v* (s)—wy (s)] = sup |T@*)(5)~ T, (wk ()]

<sup sup sup || o*(t)g(dtls, x, y)

seS xcA(s) yeB(s) §

— B, g wi(t) q(dtls, x, y)|

<(1—B)llv¥l|+sup sup sup [ [v*(t)—w}(Dlq(dtls, x, y).
568  xeA(s) yeB(s) S

Since v* —w¥* monotonically decreases to 0, by Lemma 1.2, we obtain '

lim sup |[v* (s)—w} (s)|
n se8
< lim sup sup sup [ [v*())—wk (D)l g(dtls, x, y) =0,
" seS xeA(s) yeB(s) §

which completes the proof.

CoroLLArY 7.1. Under the assumptions of Theorem 1.2 player 1 has an -
optimal stationary strategy for each & > 0.

Remark 7.2. Positive stochastic games with finite sets of states and
actions were examined by Parthasarathy [10]. Everett has given an example
([2], Example 1) of the positive stochastic game with finite state space in
which player I has no optimal strategy, stationary or any other. Kamerud
studied a positive (unbounded) stochastic game with a countable state space
and finite action spaces and showed that such a game has a value, player II
has an optimal stationary strategy, and player I has an e-optimal semi-
stationary strategy for each ¢ > O (cf. [7], Theorem III.6, or [11], Theorem
1.5). Theorem 7.1 generalizes that result. Moreover, Theorem 7.1 generalizes
Theorem 1 of Frid [3] and Theorem 2 of Himmelberg et al. [5], where § is
assumed to be an SB-space and X and Y are assumed to be finite sets.

We close this section with the following example which shows that the
relative compactness of the set (7.7) in the s-topology in P(S) is an essential
assumption in Theorem 7.2: :

Example. Let 5, =1, 0 <s,,; <s,<1 for each n> 2, and

lims, = 0.

Let $=(0,1), X = A(s) =[0, 1], and Y= B(s) = {1} for each seS. Assume
that g(-|s, x, y) = q(-|s) for each se 8§, xe X, yeY and, moreover, g(|s) < m
for each seS, where m is the Lebesgue measure on (0, 1). For each seS§,
denote by h(-, s) the Radon-Nikodym derivative of g(-|s) with respect to m
and suppose that

(s,—s)~' for each re[s, s,) and SE[Sp+1> Su)

h =
o S), {O for other t€(0, 1).
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‘By Lemma 1.2 it can be easily verified that.the set {g(-|s): .SES} is not
relatively compact in the s-topology in P(S).

Recall that v} (see Section 4) denotes the value function in the one-stage
stochastic game. Under our assumptions we get

v¥(s)=supr(s, x, 1) for each seS§.
xeX

Let the reward function r be non-negative and such that

: 1 (s,—s)l"
7.8 )=
( ) vy (S) n (S,,'—‘S,H.I)l/"
whenever se[s,., 5,).

Observe that

(7.9) 0<v¥(s)<1/n for each se[s,4q,S,), n=1,
and
(7.10) v¥(5,+)=1/n, n=1

By a simple calculation, we obtain the following value function v*:
(711 o*(®) =0 ()(n+1)  if s€[Syuy, sy, B 1.

Consequently, by (7.9), v* is bounded. Taking ény sequence {f;} such that
0<pf.<Pis1 <1 for each k=1 and hm B = 1, we obtain the following

value functions wy¥, k > 1, for the modlﬁed pos1t1ve stochastic games de-
scribed above:

(7.12) wiE(s) = v‘f(s)(n+1);a—:%:)~;—l if se[Sy41, 8., n2=1.
By (7.10) and (7.11) we get

limv*(s,+1) =1,

and by (7.10) and (7. 12) we have

hmwk Spr1) = for each k > 1.

Therefore, wif does not converge uniformly on S to v* as k — co. It is proper
to add that the stochastic game presented above satisfies also the condltlon
(D) from Section 2.

Added in proef. The models (M) and (M;) studied in parts I and II of
this paper are more general than the so-called Borel model considered by
‘P. R. Kumar and T. H. Shiau in the paper Existence of value and randomized
strategies in zero-sum discrete-time stochastic dynamic games (SIAM J.
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Control Optimization 19 (1981), p. 617-634). Dynamic games with a stan-
dard Borel state space, which include the positive games and the absorbing
or discounted stochastic games under semi-continuity assumptions similar to
(M,), have been studied by U. Rieder in the paper On semi-continuous
dynamic games (to appear).
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