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ON S O m  REPRESENTATIONS 
COIY6ERMPtiG TNE STOCHASTIC IWEGWALS 

Abstract. Some additive functionals concerning the Cauchy's 
principal value or the Hadamard's finite past are investigatd. 
A decomposition of additive functionals is proposed by using the 
Hilbert transform theory. 

L Introdradon Let T be a distribution which belongs to the class 9:dIoc. 
Let Bt be a one-dimensional Brownian motion. Fukushima has proposed 

t 

n defi$tion of the integral J T(B,)ds (cf. [I] and [2]).  The definition is given 
0 

so that Pto's formula 

remains still valid, where F belongs to 922,1M1 a d  d2 ~ / d x '  = T in the sense 
of Schwartz's distribution. Fukushima showed that the integral is a con- 
tinuous additive functional of zero energy. 

The additive functional defined by the Cauchy's principal value is an 
, important example w h i ~ h  belongs to the class of the integrals introduced in 
' the above. In this paper, we are ~oncerned with some properties af this 

functional. 
In Setion 1, Fukuskma's d h i t i o n  will be introduced. In Section 2, 

some representations for integrals such as 

etc, will be investigated. In Section 3, a relation between the continuous 
additive functional corresponding to an L2-function and the functional de- 



fined by the Cauchy's principal value will be discussed. In the section, the 
Hilbert transform theory of L2-functions will play an important role. 

1. Bre l i~na~ies .  Let (9, .F, P: Ft) be a complete probability space with 
right continuow increasing family (Pi)t3o of sub-cr-fields of 9. Let B, be a 
continuous Ft-martingale such that 

( 1  - J 2  s For r a s 3 0 ;  
(ii) the initial distribution p has a compact support; that is to say, B, is a 

one-dimensional FL-Brownian motion with a compact initial distribution p. 
Defin i t ion  1.1. A distribution T belongs lo 9:i,,F if there exists a 

function ~EL$,(R') such that dfldx = 7; where the derivat~ve is considered in 
the sense of Schwartzk distribution. 

f 

Defin i t ion  1.2 (M. Fukushima). We define j T(l3,)d.s ( T ~ 9 i t , , ~ ~ )  as 
0 

t i 

j T(B,)  = 2JF (4) - 2.F (B,) - 2 j f (B,) dB, (l$, 
0 0 

where F(x) is an absolutely continuous function such that 

dF Ex1 d 2 ~  df = f ( x ) ,  ~ ( ~ ) E L ! ~ ~ ( R ' ) ,  and - - T .  
dx  dx2  dx 

We give some examples of distributions which belong to 9L:,,m. In the 
following we denote by 9 the set of all C"-functions with compact support. 

E xa rn p le 1.1 (Dirac measure). 6 ((p) = q(O) ,  cp E 9. Let F be defined by 

Q for x < 0, 
F(x )  = 

x f o r x > 0 .  

Then 

dF O fo r .xG0 ,  
-= f (x )=  
dx 1 for x > 0 

and f ( x )  belongs to I$,,(R1). 
Example  1.2. We have 

Let F be defined by 

for x < 0, 
F ( x )  = 

xlogx-x for x > 0. 
L 

(9 The stochastic integral f f (B,)dB, is understood in the sense of Ito. 
0 



Then 

dF for x < 0, 
- = f ( x ) =  
dx l o g x  for x  0, 

where f (xf belongs to GO, (R') and 

d I 
-- f ( x )  = v.p. --. 
dx x+ 

E x a m p l e 1.3 (Cauchy's principal vahe). We have 

Let P; be defined by F ( x )  = xlog 1x1 - x .  Then dF/dx = f (x) = log 1x1, where 
f (x) belongs to L?o,(R1) and 

2. Some reprmmtatiom. N. Tanaka has pointed out that 

I 

(2.1) @,I" = CBo)' -k J H (B,) dB, i- $I!! 
0 

(see, e.g., C31, C51, and [6]), where 

0 for x < 0, 
N(x) = 

x for x > 0, 1 for x > 0, 

and L: is the local time of the Brownian motion B, at 0. Combining (2.1) and 
Definition 1.2, we obtain 

In the following theorem we give two representations concerning the 
stochastic integrals: 

THEOREM 2.1. The following equalities hold in the d-sense: 
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Proof of (2.3). Set 
~ O E  X < 0, 

for 0 < X  < E ,  

E - - ~ ~ o ~ & ) F + x ~ o ~ x - x  for E < X. 

0 for x < 0, 
[(log~)/&]x for I ]<x<E,  

log x for E g x, 

and 

0 for x < 0, 

  log^)/^ for O < x < e ,  
l l x  for E G X. 

By Eto's formula, we have 

We will show that 

holds in the P-sense. 

for x d 0, 
F(r) = {' 

xlogx-x for x > 0. 

Then 

for x < 0, 
F(x) = f (x) = logx for x > 0. 

Therefore, by the hedefinition of the integral 



Stochastic integrais 

we have 

Sime J F  (x) - F, (xfj < c -+E log n (0 < E .= I), we see that 1:') + 0 and 1i2) 
-.O as ~1.0. 

For I!" wc have 

Thcse inequalities imply that 1:'" 0 as E 10. Thus we have proved (2.6). 
Combining (2.5) and (2.6) we obtain 

Reduce J ,  to the form 

log & + { j Ila., (83 - ds -(log 8) 
0 E 

say. Then, for the proof of (2.3), it remains to show that JL2) + O in E as 8 J 0. 
By Tanaka's formula, we observe that 

Set 

for x d 0, 
for O < x < E ,  

~ E + ( x - E )  for E ~ X .  



E 58 

Then 

0 for x 4 0 ,  
E - ' X  for O < X < E  
1 for E 6 x 

and 

0 f o r x 2 0 ,  
1 / E  fQf 0 < X  <&, 

O for E G X .  

By Ito's formula, we have 

By (2.9) and (2.10) we obtain 

Since 

we infer from (2.11) that 

(2.12) E [(Ji2))2] < 12 (log E)' E [ (S ,  (B,) - (B,) + 12] + 

t 

+ 12 (log E ) ~  E [j {Sl (B,) - H (Ball2 ds] 
0 

Thus, (2.12) implies 

By (2.71, (2.81, and (2.13), we conclude that (2.3) holds. 



Stochastic integrals 

Proof  of (2.4). &fine the distribution v.p.(x-) by 

Then, we observe that 

In the same way as in the proof of (2.3), we can see that 

Thus, we conclude that (2.4.) holds. 
Remark  2.1. kt p.f.x: be the Madamard's finite part: 

Then, in the ccas where the index d satisfies the condition -3/2 c L < - 1, 
the distribution p.f. x: belongs to the class &':,,,, . 

By the similar argurnenl as in the proof of Theorem 2.1, one obtains the 
following equality in the I?-sense: 

Remark 2.2. It is known that the additive functional defined by 
t 

J T(B,)ds is of bounded variation if and only if T is a signed Radon measure 
0 

(cf., e.g., 121). The additive functionals treated in Theorem 2.1 as well as in 
Remark 2.1 are not of bounded variation. 

3. Hilkrt tramform of C-f~wtions a d  lib additice fur#l.tioma!s d e f i d  by 
ltk Cawby's piwiprrl talrae. Let i"J' be cicfirlerf as 

C," is a c~ntinuous additive functional but it is not of bounded variation with 
respect to t. First, we shall investigate the regularity of Cf. 

PRo~osrno~ 3.1. The following rehtion holds: 



T. Yamada 

To prove the proposition, we need the following lemma: 
LEMMA 3.1. ( A )  The ccolI~crion oJ' random variables defined by 

[I@, - 4 I~g41B, - all -C& - b)  log(I& - bD)= ; a,  b E Cc, a] 
is unlfirmiy integrable, where - co < e < d < cu and O < t < ao. 

(B) T?E ccoklectiola 0j' ravedom uariables defined by 

[(@a - a1 1% 11631, - all --Po - bS TogIIBa - bl)I2 ; a, b E C E ,  dl] 

is t~rm$ormly inl'egrable, where - og < c < d < m. 
(C) The coliecrion of ranrlon ~ariables dejined by 

[(log(IB,-aO-Eog(IB,- b0)" ; a ,  ~ E C C ,  4 3  s 10, TI] 
is urt$brmly integrable with respect to (R x LO, TI ,  9099 10, a, POds),  
where - m < c < d < m  and O < T < m .  

Proof of (A). A simple calculus shows that 

C C ~  - a) log (115, -a~) -IB, - b) I O ~ I [ I B ,  - b111~1 

G 8~ c{(B~ -an) I O ~ [ I B ,  - a ~ ) j 4 ~  + 8~ ~ . I ( B ,  -b) I O ~ ~ J B ,  - ~ I ) ) ~ J  

These inequalities imply Ihzt the collection is uniformly integrable. 
Proof of (B). We have 

4 8 sup f p(dx)  (x- d4 1ogCl.x- a/)  + 8 sup I p ( d x ) ( x -  bj4 log4([x- bl) 
afIc,dl 1;1 bacIc,dl R~ 

< 0. 

These inequalities imply the desired result. 
Proof o f  (G). We observe that 

T 1 ( x  - yI2 
4 8 P ~ C ~ ~ I  sup J 0 RI p(dr) - e ~ p ( - ~ ) l o g ~ ( l y - a l ) d y d s +  

R I  @ 
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(ii) k t  g and g, belung to L2(R') and Iet rheir support be compact. Suppose 
that 

Then 

lim J (g, (x) - g ( x ) ) ~  dx = 0. 
I S - *  il ~1 

(3 -4) lim J Cfg, [a)da = Cp y (a)da 
?I-+% R i  ~1 

in the @-sense. 
Br o o f. (i) Set F (XI = x log 1x1 - x. Since g is an L2-function with compact 

support and F E GO, (R1),  we obtain 

(3.5) 

and 

/F*g)' = F' (x)*g = log 1x1 .reg 

1 
(Ecg)" = v.p. -*g x . 

On the other hand, by the definition of G;, we have 

Applying the next lemma to the second term of the right-hand side of this 
equality, we have 

I 

J C,ngCw) = 2(JF*g) (4) - 2 (F*s)(B,) - 2 f IF'*&?) (B,) dB,. 
~1 0 

By (3.3, the right-hand side of the above equality is equal to 

t 

which by the definition of j (F*g)" (B,) ds is reduced to 
a 

Thus, by (3.6), we obtain (3.3). 
(ii) By (11, we see that 
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and 
7 

(3.8) j Cp g ( a )  da = IT j ( X g )  (Bs) ds . 
~1 0 

Since 

5 (.4n (4 - ~r (412 du = .f (Xg, ba) - Hi4 C4)2 da, 
~1 R ]  

the assumption on jy,, gj implies that .#g, converges to .Wg in .L?(R"). 
Then, by (3.7) and (3.81, we observe that 

t t 

li rn j C: g, (a)  da = li rn R: (X'g,) (B$) ds = IT j (.fly) (B,) dzi = j' Cf g (a )  d a  
Rf x ~1 n t z  0 0 ~1 

in the L2-sense. 
LEMMA 3.2. The Fubini type relation 

(3.9) j Ft (B , -a )g (a )da )dB ,  = I [j ~ ' ( B ~ - a ) d ~ , ~ ~ ( n ) d a  
0 R1 ~1 0 

holds as., where F(x)  = xlog(x]-x and g(x) is  arz L2dbrzctio~z with compact 
support. 

Proof. To prove this lemma, we follow essentially the same way as in the 
proof of Lemma 4.1 in [33, Chapter 3. 

Without loss of generality we suppose that g is non-negative. Denote the 
collection of all square integrable (continuous) St-martingales by M ,  (Ad",). 
Since F1*g belongs to C(R'), the left-hand side of (3.9) is well defined as an 
element of M i .  

t 

On the other hand, a w j F'(Bs - a) dB, is Bore1 measurable, and for every 
0 

T >  0 we have 

Hence 

J g (a) da max IS E'(B, - a)  dE$I < oo a.s., 
~1 OQr6T 0 
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is an element of M",sueh that, for every N E M ~ ,  

Consequently, by Proposition 11-2-4 in 131 we have 

which completes the proof. 
THEOREM 3.1'. Both parrs ( i )  and (ii) of Theorem 3.1 me rrue without the 

assumptions that g land g, haue compact supports. 
Proof ('1. ( i )  Let &(w) be the local time of the Brownian motion B, at a. 

The functions a-&(w) belong to L?(R1)  ass. because they are continuous 
and &[w)  = 0 when la1 r max iBJ. Therefore, we define A, by 

0 6 6 E t  

i 

A, g = x J ( X g )  ( B ~ )  ds = n j & (.Fg) (a) da for g E C QR I) .  

0 ~1 

Since 

.I- s2 (4 lira = j (JfM2 (4 da,  
~1 ~1 

we see that A, are linear functionals on C ( R I )  a.s. 
On the other hand, Theorem 3.1 shows that 

for any l?[dP1)-function h with compact support. 
Thus we concfude that 

A ,g=r r j (~g ) ( ' g ) (~ , )ds=  Clg(a)da a.s. for ~ E ~ ( R ' ) .  
0 ~1 

(ii) This part can be proved analogously as (i), so we omit its proof. 
Define S* by 

(2) For the proof we owe much to M. Yor (private communication). We wish to express our 
thanks to him. 



Then it is well known that X(.X*g) = g and & * ( X g )  = g for g ~ ~ ( R 9 ) .  
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