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ON SOME REPRESENTATIONS
CONCERNING THE STOCHASTIC INTEGRALS

BY

TOSHIO YAMADA (Fukuoka)

Abstract. Some additive functionals concerning the Cauchy’s
principal value or the Hadamard’s finite part are investigated.
A decomposition of additive functionals is proposed by using the
Hilbert transform theory.

~ 0. Introduction. Let T be a distribution which belongs to the class 7"} L2.100"
Let B, be a one-dimensional Brownian motion. Fukushima has proposed

. 1
a definition of the integral § T(Byds (cf. [1] and [2]). The definition is given
‘ 0

so that Ito’s formula
t dF ' it
F(B, = F(Bo)+{ a!—x(Bs)st+5 | T(Byds

remains still valid, where F belongs to 2,,,, and d* F/dx* = T in the sense
of Schwartz's distribution. Fukushima showed that the integral is a con-
tinuous additive functional of zero energy.

The additive functional defined by the Cauchy’s principal value is an
important example which belongs to the class of the integrals introduced in
the above. In this paper, we are concerned with some properties of this
functional.

In Section 1, Fukushima’s deﬁmtlon will be introduced. In Sectlon 2,
some representations for integrals such as ~

|4 t 1
g (v.p.;:)(Bs) ds, (}; <v.p.;)(Bs) ds,

etc, will be investigated. In Section 3, a relation between the continuous
additive functional corresponding to an I?’-function and the functional de-
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fined by the Cauchy’s principal value will be discussed. In the section, the
Hilbert transform theory of IZ?-functions will play an important role.

1. Preliminaries. Let (Q, %, P: #,) be a complete probability space with
right continuous increasing famﬂy (Fzo of sub-a-ﬁelds of #. Let B, be a
continuous % ,-martingale such that . '

() E[(B,~B)}%,]=t—s fortz=sz=0;

(ii) the initial distribution u has a compact support; that is to say, B, is a
one-dimensional % ,-Brownian motion with a compact initial distribution u.

Def1n1t10n 1.1. A distribution T belongs to “@sz if there exists-a
function fe I%,. (R') such that dffdx = T, where the derlva’uve is considered in
the sense of Schwartz’s distribution.

Definition 1.2 (M. Fukushima). We define j T(B)ds (Te %"} ) as

L2 loc
f T(B)ds = 2F (B)—2F (Bo)—2f f(BYdB, (*),
0 0

where F(x) is an absolutely continuous function such that
dF (x d*F d
Dy SWelu(®, and G =7

We give some examples of distributions which belong to JLZI In the
following we denote by 2 the set of all C*-functions with compact support.

Example 1.1 (Dirac méasure). 6(p) = 0(0), pe 2. Let F be defined by

{0 for x<0,

F(x)=1x for x> 0.
.. Then
dF 0 forx<0,
-—f(x) {1‘ for x>0

and f(x) belongs to I%.(RY).
Example 1.2. We have
1
v.p.;c——((p) hm{(logs)(p(0)+j' 4 ) }, 0e9.
+

Let F be defined by

0 for x <0,
xlogx—x for x> 0.

F(x) ={

! t
() The stochastic integral [ f(B,)dB; is understood in the sense of Ito.
1]
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Then
dF 0 for x <0,
dx =/ = % log x » for x > 0,
where f(x) belongs to I%.(R') and
d 1
Ec—f(x) = VPZ

Example 1.3 (Cauchy’s principal value). We have

—&

V.p.é(qo)—_—_]ejf?{ | QDJ(Cx)dx_l_}’ (P)(Cx)dx}’ ved.

Let F be defined by F(x) = xlog|x|—x. Then dF/dx =f(x) = log|x|, where
f(x) belongs to IZ.(R') and

d 1

—log|x{ = v.p.—.

dx X

2. Some representations. H. Tanaka has pointed out that

@.1) (B)* = (Bo)* + | H(B)dB,+3L°

1]

(see, eg., [31, [5], and [6]), where

0 for x<0
+ ~ s
) ‘{x for x>0,

0 for x<0,
1 for x>0,

H(x)=)[

and L3 is the local time of the Brownian motion B, at 0. Combining (2.1) and
Definition 1.2, we obtain

(2.2) j 8(B)ds = I°.
0

In the following theorem we give two representations concerning the
stochastic integrals:
Tueorem 2.1. The following equalities hold in the I2-sense:

|4

1 ' t d:
(2.3) ) (v.p. Z)(Bs) ds = liln(;n{(log €) L‘,’+£ I, w,(Bs)Ef},

0

! 1 ) ds ° ds
(24) g(vp;)(Bs)dS = ?ﬁ)‘%g I(-— 1.-—e](Bs)Es—+£ I[a.w)(Bs)—'B_s}

(cf. [4], p. 72).

3 — Prob. Math. Statist. 4 (2)
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Proof of (2.3). Set

0 for x <0,
Fg(x)z{(leogs)/&-: , for 0 <x <g,
e—Xloge)e+xlogx—x for e < x.
Then
‘ 10 for x <0,
Fi{x) =f,(x) = { [(loge)/e]lx for 0 <x <eg,
log x for e < x,
and

0 for x <0,
F(x) = { (loge)fe for 0 <x <eg,
1/x for ¢ < x.

By Ito’s formula, we have

1(t 1 K d
2.5) 5{ g 1[0,8)_(35)——‘°f‘°‘ds+.£ I, o) (BY) _Bi}
— F,(B)~F,(Bo)— | /,(B)dB, as.

0

We will show that

(2.6) lilr(r)l {F,(B)—F,(Bo)— } f.(B)dB,} = %3 (v.p.;l—)(Bs) ds
£ 0 ) +
holds in the I?-sense. |
Let
0 ' for x <0,
‘ _ F(x)={xlogx—x for x> 0.
Then

0 for x <0,
logx for x> 0.

F'(x) =f(x) ={

Therefore, by the definition of the integral

3 (v.p.——l—) (By)ds,
0 X4
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we have .
t

t 2
| [ (v )mads— .5+ Fu oo+ [ 34, |
+ 0

2%
< 3E[|F(B)—F.(B)*1+3E[IF (Bo)—F,(Bo)I*1+

. :
+3E [i [f (B)—fo(B)Pds] =3IV + 312 + 319,

Since |F(x)—F,(x)] < e—3eloge (0 <& < 1), we see that IV -0 and 1'?

-0 as ¢]0.
2
ds]

For I we have
—log(Bs)
ul2
exp{ x= }logz(y)dyds

P < [f Iio,s) (Bs)
2

<4fuuwfj
00

rl

\/21:5
| d
4Iﬁgog () dx.

These inequalities imply that I — 0 as £ 0. Thus we have proved (2.6).
Combining (2.5) and (2.6) we obtain

2.7 } (V,p. xi)( Jds = hm{j' I, (By) 10g£ds+3" I[a’w)(Bs)g;}
0 + 0 S

=lim J,.
el0
Reduce J, to the form
o ds
28 T, = {(logd) B | fi (BY -+

{,f I[os)(Bs) loge ds— (loga)Lt} JO 4 g

say. Then, for the proof of (2.3), it remains to show that J® —0in I? as ¢ | 0.
By Tanaka’s formula, we observe that

t d 12 .
29 J? =(log s){_[ I1o. (Bs)?S—Z(B,)+ +2(By)" +2 [ H(B) st}.
0 0 .
Set
0 for x<0
S, (x) = { g1 x2 for 0<x<e,
fe+(x—¢g) for e < x.
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Then
(0 for x<0, —‘
S;(x)z{s"lx for 0<x<e
1 for e<x
and

_ 0 for x <0
S, (x) = { /e for 0 <x<e,
0 for ¢ < x.

By Ito’s formula, we have
(2.10) :j) Lo (Bs)'i:w = 28,(B,)— 28, (Bo)—zl S.(B,)dB,.
By (2.9) and (2.10) we obtain
(2.11) J® = (loge)[2{S.(B)—(B) "} +
+2{(Bo)* fSE (Bo)} +2 {:{(H (B)—S.(BJ)dB,}].

Since |
S, (Y)—(0*1<¢/2 and |H(B)—S;(B)) < lio.)(Bo)s
we infer from (2.11) that
(212) B[(J®)*1<12(loge)*E[{S,(B)—(B)" }*1+
+12(log#)* E [{5,(Bo) —(Bo) " }*1+

+12(loge)’ E[f {S;(B))— H(B)}? ds]
[1]
< 3(loge)?e?+3(loge) e +

+12(loge)? _bxof?
(loge) ji [,L(dx) j £ \[_exp 5 ds

Zns)

%

< 6(loge)? 62+ 12(loge)’ e (

O iy

Thus, (2.12) implies
(2.13) - ImE[(J®)?] =0.

zl0

By (2.7), (2.8), and (2.13), we conclude that (2.3) holds.
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Proof of (24). Define the distribution v.p.(x_) by
(v.p.—)—cl—)(qo) hmf ~(loge) 0 (0)+ f (p(x) x}, peP.

Then, we observe that

1 1 1
v.p.; = v.p.;—+v.p.-——.
N

In the same way as in the proof of (2.3), we can see that

t t d
f(v.p.}—)(Bs)ds = lim{ —(oge) B+ [ I - -4 (Bs)i} in I2.
0 X el0 0 Bs

Thus, we conclude that (2.4) holds.
Remark 2.1. Let pf. x4 be the Hadamard’s finite part:

A+l

pf.x4 (@) = lif{)l{j. (0)+f x*p( x)dx} peD.

Then, in the case where the index A satisfies the condition —3/2 < 1 < —1,
the distribution pf.x% belongs to the class JLz loc+

By the similar argument as in the proof of Theorem 2.1, one obtains the
following equality in the I?-sense:

L‘2+§I[m) S)B‘ds} (—%<,1<—1).

A+l

A+1

f(pf x4 )(B)ds = hm{

Remark 2.2. It is known that the additive functional defined by
¥

{ T(By)ds is of bounded variation if and only if T is a signed Radon measure
o
(cf, e.g., [2]). The additive functionals treated in Theorem 2.1 as well as in

Remark 2.1 are not of bounded variation.

3. Hilbert transform of I2-functions and the additive functionals defined by
the Cauchy’s principal value. Let ¢ be defined as

t. s 1 ’
= ‘(‘) (v.p.x—:—a-)(Bs)ds.

C; is a continuous additive functional but it is not of bounded variation with
respect to t. First, we shall investigate the regularity of Cj.

ProrositioN 3.1. The jollowing relation holds:

(3.1) . limE[|C°—C}2] = 0.

b—a
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To prove the proposition, we need the following lemma:
Lemma 3.1. (A) The collection of random variables defined by
[{(B.—a)log(|B,—a)—(B,—b)log(1B,~b))}*; a, belc, d]]
is uniformly integrable, where —o0 <c<d < oo and 0 <t < 0.
(B) The collection of random variables defined by
[{(Bo—a)log(1By—al)—(Bo—b) log(1Bo—bl)}*; a, be[c, d]]
is uniformly integrable, where —o0 <c¢ <d < .
(C) The collection of random variables defined by
[{log (1B, —a))~log (B,— b)}?; a, belc, d1, se[0, T]]

is wuniformly -integrable with respect to (2 x[0, T], F®ZA[0, T], PQds),
where —0 <c<d< o and 0 < T< 0.

Proof of (A). A simple calculus shows that
E[{(B,—a)log(B,—al)—(B,~b)log(|B,—b)}*]
< 8E[{(B,—a)log(IB, —al)“‘] +8E [{(B,—b)log(1B,—b])}“]

2
{—(x 2ty) }(y—a)“log“(ly—al)dw

2
1B by togt (- dy < oo

<8sup | p(dx) j

aelc,d] Rl A /

; . +8sup | u(dx)

exp
bele.d] g1 Rl ~/ 2mt

These inequalities imply that the collection is uniformly integrable.
Proqf of (B). We have

E [{(Bo—a) log(|Bo —al) — (B, — b) log (|Bo — b} }*]
<8sup | p(dx)(x—a)*log(lx—al)+8 sup { pdx)(x—b)*log*(Ix— bl)

aejc,d] rl befc,d] ri

< Q0.

These inequalities imply the desired result.
Proof of (C). We observe that

T
| E[{log(|B,~ al)—log (IB,—b)}*] ds
0

Y
< 8 sup j' | pn(@x) j' (x=y)

log*(ly —al) dyds +
ade,d] 0 g1 \ /218 { 2s }

+8 sup f | uidx) I Ce—)”

log*(ly— bl)dyds
beled] 0 g1 1./2n { 2s }

< 00,
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(ii) Let g and g, belong to I*(R") and let their support be compact. Suppose
that

lim | (g.(x)—g(x))*dx =0.

noa pt
Then
(34 lim | Cig,(@da= [ Cig(a)da
n—+o Rl Rl

in the I%-sense. o
Proof. (i} Set F(x) = xlog|x| —x. Since g is an I*-function with compact
support and FeI2.(R'), we obtain

(3.3) (Fxg) = F'(x)*g = log|x|+g
and

" 1
(3.6) (F+g)’ = v.p.;*g.

On the other hand, by the definition of C;, we have
| Cig(@da=2 ]| (F(B,—a)—F(By—a)}lg(a)da—

Rl Rl

~2 [ ([ F'(B,—a)dB,}g(a)da.
Rl 0

Applying the next lemma to the second term of the right-hand side of this
equality, we have

| Cig(a)da = 2(Fxg)(B)—2(F+g)(Bo)—2 | (F'+g)(B,)dB,.
rl 0

By (3.5), the right-hand side of the above equality is equal to

. t
2(F+g)(B)—2(Fxg)(Bo)—2 | (F+g) (B,)dB,,
. 0
t , '
which by the definition of | (Fxg)"(Bg)ds is reduced to
.. Y '

f (F+g)'(B,)ds.
0

Thus, by (3.6), we obtain (3.3).
(it) By (i), we see that

3.7) [ Cogu(@da =] (#g,)(B)ds
PR 0
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and

(3.8) | Ctg(ayda = = | (#g)(B)ds.
: Rl 0

Since

| (ga(@—g (@) da= | (#g,(a)—H#g(a)da

R! Rt
the assumption on {g,, g} implies that #g, converges to #yg in I?(R%").
Then, by (3.7) and (3.8), we observe that

lim | C/g,(a)da= hmnj(&fg,,) s)ds—n:j(%’g (Bs)dS—j Ctg(a)da

n>x pl n—x Rl
in the I?-sense.
LemMA 3.2. The Fubini type relation

-

t

(3.9) { 1| F(B,—a)g(a)da}dB, = | || F'(B,~a)dB,}g(a)da
0 gi - gl ©

holds a.s., where F(x) = xlog|x|—x and g(x) is an I*-function with compact

support. ‘

Proof. To prove this lemma, we follow essentially the same way as in the
proof of Lemma 4.1 in [3], Chapter 3.

Without loss of generality we suppose that g is non-negative. Denote the
collection of all square integrable (continuous) #,-martingales by M, (MS).
Since F'+g belongs to Lz(R ), the left-hand side of (3.9) is well defined as an
element of M5.

On the other hand, a+->j F’'(B,—a)dB, is Borel measurable, and for every
0

T> 0 we have

E[ | g(a)da max lj F'(B,—a)dBJ]

Rl 0<t<T
< | g(a)da{E[ max lf F'(B,—a)dB|*]}"
P! 0<IST 0

<2 g(a)d“}ds [ w@d | log*(ly—a) l_exp{“(xuy)z}dy
R o =t Rl ’  2ms 2s
< .

Hence

| g(@)da max Ij F'(B,—a)dB| < o as.,

Rrl 0<tsT
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is an element of M%5 such that, for every NeM,,

(N, L, = [ { | F'(B,~a)g(a)da}d (B, N,
0

&l :

Consequently, by Proposition II-2-4 in [3] we have

t

L={{| F(B,~a)g(a)}dB,
0 Rl

which completes the proof.

TueoreM 3.1". Both parts (i) and (ii) of Theorem 3.1 are true without the
assumptions that g and g, have compact supports.

Proof (?). (i) Let I%(w) be the local time of the Brownian motion B, at a.
The functions ar— I4(w) belong to [*(R') as. because they are continuous
and I} (w) = 0 when |a| > max |B,|. Therefore, we define A4, by

[IEES]

Ag=m j' (#Hg)(B)ds =x | I(#g)a)da for geI?(RY).
0 Rl
Since
| 9*(@da= | (#g)*(a)da,
R1 R

we see that A4, are linear functionals on I?(R') as.
On the other hand, Theorem 3.1 shows that

Ah=n }(%ﬂh)(Bs) ds= [ Coh(a)da
0 Rl

for any I?(R')-function h with compact support.
Thus we conclude that

t
Aig =1 [(Hg)(B)ds = [ Clg(ayda as. for geI?(RY).
0

rl

(i) This part can be proved analogously as (i), so we omit its proof.
Define s#* by

1 I
H¥g = ——{v.p.—*g )
g R<VP x*g)

(%) For the proof we owe much to M. Yor (private communication). We wish to express our
thanks to him.
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Then it is well known that 3 (#*g) =g and #*(#g) =g for geI?(RY).
CoroLLARY 3.2. If f belongs to I2(R%Y), then

ljf (Bs)ds=—71; [ Co(#*f)(@)da as.
0 Rl

i
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