PROBABILITY AND MATHEMATICAL STATISTICS

Vol. 4, Fasc. 2 (1984), p. 167-170

ON THE CONVERGENCE OF SOME DISCRETE PROBABILITY DISTRIBUTIONS

BY

NGUYEN NAM HONG (HANOI)

Abstract. In [4] Zakusilo proved that the random power series $\sum_{n=1}^{\infty} c^n X_n$, where $c \in (0, 1)$ and X_1, X_2, \ldots are i.i.d. random variables, is convergent with probability 1 if and only if $E \log(|X_1|+1) < \infty$. The purpose of this paper is to prove a discrete analogue of this theorem. Further, we extend the result to multiparameter random series.

Let $P(Z_{+}^{d})$ be the class of all probability distributions on the lattice Z_{+}^{d} of all *d*-vectors with integer components. For $n = (n_1, ..., n_d) \in Z_{+}^{d}$ we put $|n| = n_1 + ... + n_d$. Let e_j (j = 1, ..., d) be a vector in Z_{+}^{d} whose components are equal to 0 but for the *j*-th one are equal to 1. Every $\mu \in P(Z_{+}^{d})$ can be represented as

(1)
$$\mu = \sum_{n \in \mathbb{Z}_+^d} p_n \delta_n,$$

where $p_n \ge 0$, $\sum p_n = 1$, and δ_n is the unit mass at the point *n*. Given a number *c* in the unit interval (0, 1) and $\mu \in P(Z_+^d)$ with representation (1), we define a distribution $S_c \mu$ on Z_+^d by the formula

(2)
$$S_{c} \mu = \sum_{\substack{n \in \mathbb{Z}^{d} \\ n = (n_{1}, \dots, n_{d})}} p_{n} \sum_{j=1}^{d} \left[(1-c) \delta_{0} + c \delta_{e_{j}} \right]^{*n_{j}},$$

where the asterisk * denotes the convolution operation.

It should be noted that S_c is a slight generalization of the Steutel - van Harn transformation on $P(Z_+)$ (cf. [3]). It is not difficult to verify the

formulas

$$S_{c}(\mu_{1}*\mu_{2}) = S_{c}\mu_{1}*S_{c}\mu_{2}, \qquad S_{c_{1}}S_{c_{2}}\mu = S_{c_{1}c_{2}}\mu,$$
$$S_{c}(\alpha\mu_{1}+\beta\mu_{2}) = \alpha S_{c}\mu_{1}+\beta S_{c}\mu_{2},$$

where $\alpha, \beta \ge 0, \alpha + \beta = 1$. Moreover, $S_c \mu$ is jointly continuous in c and μ . A distribution μ on Z_+^d is said to be *c*-decomposable if there exists a

 $\mu_1 \in P(Z_+^d)$ (depending on c and μ) such that

$$\mu = S_c \, \mu * \mu_1.$$

More generally, μ is said to be $\langle c_1, \ldots, c_k \rangle$ -decomposable, where $c_1, \ldots, c_k \in (0, 1)$, if there exist $\mu_1, \ldots, \mu_k \in P(\mathbb{Z}^d_+)$ such that

(3)

$$\mu = S_{c_1} \mu * \mu_1,$$

$$\mu_1 = S_{c_2} \mu_1 * \mu_2, \qquad \dots \qquad \mu_{k-1} = S_{c_k} \mu_{k-1} * \mu_k$$

In this case μ_k is said to satisfy the convolution equations (3) for some μ and c_1, \ldots, c_k in (0, 1) (cf. [1]). The aim of this note is to prove the following

THEOREM. The following statements are equivalent:

m 1

(i) μ_k satisfies the convolution equations (3);

(ii) the infinite convolution

$$\sum_{k=0}^{\infty} S_{cm_1...,cm_k} \mu_k$$

is weakly convergent;

(iii) $\sum_{n \in \mathbb{Z}_{+}^{d}} p_{n} \log^{k}(|n|+1) < \infty$, where $p_{n} = \mu_{k}(\{n\})$. We prove first the following

LEMMA. For every $c \in (0, 1)$ there exist positive constants A and B such that, for sufficiently large q = 1, 2, ..., the following inequality holds:

(5)
$$B\log^k q \leq \sum_{m=0}^{\infty} (1-(1-c^m)^q) V_{m+k-1}^m \leq A\log^k q,$$

where

(6)

$$V_j^i = \frac{j!}{i!(j-i)!}.$$

Proof. It is easy to see that

$$\sum_{m=0}^{\alpha} V_{m+k-1}^m = V_{\alpha+k}^{\alpha}$$

168

and

(7)

$$\lim_{m \to \infty} \frac{V_{m+k}^m}{m^k} = \frac{1}{k!}$$

Further, we have the inequalities

$$\sum_{m=0}^{\infty} \left(1 - (1 - c^m)^q \right) V_{m+k-1}^m \ge \sum_{\substack{0 \le m \le \log_c q^{-1} \\ 0 \le m \le \log_c q^{-1}}} \left(1 - (1 - c^m)^q \right) V_{m+k-1}^m$$
$$\ge \sum_{\substack{0 \le m \le \log_c q^{-1} \\ 0 \le m \le \log_c q^{-1}}} \left(1 - (1 - q^{-1})^q \right) V_{m+k-1}^m$$

which, by (6) and (7), imply that there exists a B > 0 such that, for sufficiently large q, the inequality

(8)
$$B \log^k q \leq \sum_{m=0}^{\infty} (1 - (1 - c^m)^q) V_{m+k-1}^m$$

holds.

On the other hand, we get

$$\sum_{m=0}^{\infty} \left(1 - (1 - c^{m})^{q}\right) V_{m+k-1}^{m}$$

$$= \sum_{0 \leq m \leq \log_{c}q^{-1}} \left(1 - (1 - c^{m})^{q}\right) V_{m+k-1}^{m} + \sum_{p=1}^{\infty} \sum_{\substack{p \mid \log_{c}q^{-1} \leq m \\ \leq (p+1) \mid \log_{c}q^{-1}}} \left(1 - (1 - c^{m})^{q}\right) V_{m+k-1}^{m}$$

$$\leq \sum_{0 \leq m \leq \log_{c}q^{-1}} V_{m+k-1}^{m} + \sum_{p=1}^{\infty} \left(1 - (1 - q^{-p})^{q}\right) \sum_{\substack{p \mid \log_{c}q^{-1} \leq m \\ \leq (p+1) \mid \log_{c}q^{-1}}} V_{m+k-1}^{m},$$

which by (6) and by a simple computation implies the existence of a constant A such that

(9)
$$\sum_{m=0}^{\infty} \left(1 - (1 - c^m)^q \right) V_{m+k-1}^m \leq A \log^k q$$

for sufficiently large q.

Finally, from (8) and (9) we obtain (5), which completes the proof of the Lemma.

Proof of the Theorem. Equivalence (i) \Leftrightarrow (ii) can be easily proved. Thus, we prove only the equivalence (ii) \Leftrightarrow (iii). Let μ_k be a distribution on Z_+^d and let $p_n = \mu_k(\{n\})$ ($n \in Z_+^d$). Further, from the Kolmogorov theorem on three series ([2], p. 323-324) it follows that the series (4) is weakly convergent if and only if

(10)
$$\sum_{m_1,\ldots,m_k=0}^{\infty} \left(1 - S_{c_1^{m_1}\ldots c_k^{m_k}} \mu_k(\{0\})\right) < \infty,$$

Nguyen Nam Hong

where 0 is the zero element in Z_{+}^{d} . On the other hand, we have

$$S_{c} \mu(\{0\}) = \sum_{n \in \mathbb{Z}_{+}^{d}} (1-c)^{|n|} p_{n}$$

with $p_n = \mu(\{n\})$. Thus condition (10) can be rewritten as

$$\sum_{n\in\mathbb{Z}_{+}^{d}}\sum_{m_{1},\ldots,m_{k}=0}^{j}p_{n}(1-(1-c_{1}^{m_{1}}\ldots c_{k}^{m_{k}})^{|n|})<\infty,$$

which implies that for $c = \min(c_1, \ldots, c_k)$

(11)
$$\sum_{n\in\mathbb{Z}_{+}^{d}}\sum_{m=0}^{\infty}p_{n}\left(1-(1-c^{m})^{[n]}\right)V_{m+k-1}^{m}<\infty.$$

By the Lemma the last condition is equivalent to (iii).

Conversely, if (iii) is satisfied, then (11) holds with $c = \max(c_1, ..., c_k)$ for any $c_1, ..., c_k \in (0, 1)$. Hence (10) is satisfied and, consequently, the series (4) is weakly convergent. Thus the proof is complete.

A simple consequence of the Theorem is the following

COROLLARY. If μ_k on Z^d_+ has any finite moment, then it satisfies the convolution equation (3).

REFERENCES

- [1] Nguyen Van Thu, A characterization of some probability distributions, p. 302-308 in: Probability theory on vector spaces, Vol. 2, Lecture Notes in Math. 828 (1980).
- [2] W. W. Petrov, Sum of independent random variables (in Russian), Moscow 1972.
- [3] F. W. Steutel and K. Van Harn, Discrete analogues of selfdecomposability and stability, Ann. Probability 7 (1979), p. 893-899.
- [4] O. K. Zakusilo, On the class of limit distributions in a scheme of summing up, Theory Probab. Math. Statist. 12 (1975), p. 44-48.

Institute of Mathematics P.O. Box 631, Bo-ho Hanoi, Vietnam

Received on 22. 12. 1981