ON THE CONVERGENCE OF SOME DISCRETE PROBABILITY DISTRIBUTIONS

BY
NGUYEN NAM HONG (HANOI)

Abstract

In [4] Zakusilo proved that the random power series $\sum_{n=1}^{\infty} c^{n} X_{n}$, where $c \in(0,1)$ and X_{1}, X_{2}, \ldots are i.i.d. random variables, is convergent with probability 1 if and only if $E \log \left(\left|X_{1}\right|+1\right)<\infty$. The purpose of this paper is to prove a discrete analogue of this theorem. Further, we extend the result to multiparameter random series.

Let $P\left(Z_{+}^{d}\right)$ be the class of all probability distributions on the lattice Z_{+}^{d} of all d-vectors with integer components. For $n=\left(n_{1}, \ldots, n_{d}\right) \in Z_{+}^{d}$ we put $|n|=n_{1}+\ldots+n_{d}$. Let $e_{j}(j=1, \ldots, d)$ be a vector in Z_{+}^{d} whose components are equal to 0 but for the j-th one are equal to 1 . Every $\mu \in P\left(Z_{+}^{d}\right)$ can be represented as

$$
\begin{equation*}
\mu=\sum_{n \in Z_{+}^{d}} p_{n} \delta_{n}, \tag{1}
\end{equation*}
$$

where $p_{n} \geqslant 0, \sum p_{n}=1$, and δ_{n} is the unit mass at the point n. Given a number c in the unit interval $(0,1)$ and $\mu \in P\left(Z_{+}^{d}\right)$ with representation (1), we define a distribution $S_{c} \mu$ on Z_{+}^{d} by the formula

$$
\begin{equation*}
S_{c} \mu=\sum_{\substack{n \in z^{d} \\ n=\left(n_{1}, \ldots, n_{d}\right)}} p_{n_{j=1}} \stackrel{d}{*}\left[(1-c) \delta_{0}+c \delta_{e_{j}}\right]^{* n_{j}}, \tag{2}
\end{equation*}
$$

where the asterisk $*$ denotes the convolution operation.
It should be noted that S_{c} is a slight generalization of the Steutel - van Harn transformation on $P\left(Z_{+}\right)$(cf. [3]). It is not difficult to verify the
formulas

$$
\begin{gathered}
S_{c}\left(\mu_{1} * \mu_{2}\right)=S_{c} \mu_{1} * S_{c} \mu_{2}, \quad S_{c_{1}} S_{c_{2}} \mu=S_{c_{1} c_{2}} \mu \\
S_{c}\left(\alpha \mu_{1}+\beta \mu_{2}\right)=\alpha S_{c} \mu_{1}+\beta S_{c} \mu_{2}
\end{gathered}
$$

where $\alpha, \beta \geqslant 0, \alpha+\beta=1$. Moreover, $S_{c} \mu$ is jointly continuous in c and μ.
A distribution μ on Z_{+}^{d} is said to be c-decomposable if there exists a $\mu_{1} \in P\left(Z_{+}^{d}\right)$ (depending on c and μ) such that

$$
\mu=S_{c} \mu * \mu_{1}
$$

More generally, μ is said to be $\left\langle c_{1}, \ldots, c_{k}\right\rangle$-decomposable, where $c_{1}, \ldots, c_{k} \in(0,1)$, if there exist $\mu_{1}, \ldots, \mu_{k} \in P\left(Z_{+}^{d}\right)$ such that

$$
\mu=S_{c_{1}} \mu * \mu_{1}
$$

$$
\begin{equation*}
\mu_{1}=S_{c_{2}} \mu_{1} * \mu_{2}, \quad \cdots \quad \mu_{k-1}=S_{c_{k}} \mu_{k-1} * \mu_{k} \tag{3}
\end{equation*}
$$

In this case μ_{k} is said to satisfy the convolution equations (3) for some μ and c_{1}, \ldots, c_{k} in $(0,1)(\mathrm{cf} .[1])$. The aim of this note is to prove the following

Theorem, The following statements are equivalent:
(i) μ_{k} satisfies the convolution equations (3);
(ii) the infinite convolution

$$
\begin{equation*}
\stackrel{\stackrel{\infty}{m_{1}, \ldots, m_{k}=0}}{*} S_{c_{1}^{m_{1}} \ldots m_{k}^{m}} \mu_{k} \tag{4}
\end{equation*}
$$

is weakly convergent;
(iii) $\sum_{n \in Z_{+}^{d}} p_{n} \log ^{k}(|n|+1)<\infty$, where $p_{n}=\mu_{k}(\{n\})$.

We prove first the following
Lemma. For every $c \in(0,1)$ there exist positive constants A and B such that, for sufficiently large $q=1,2, \ldots$, the following inequality holds:

$$
\begin{equation*}
B \log ^{k} q \leqslant \sum_{m=0}^{\infty}\left(1-\left(1-c^{m}\right)^{q}\right) V_{m+k-1}^{m} \leqslant A \log ^{k} q \tag{5}
\end{equation*}
$$

where

$$
V_{j}^{i}=\frac{j!}{i!(j-i)!}
$$

Proof. It is easy to see that

$$
\begin{equation*}
\sum_{m=0}^{\alpha} V_{m+k-1}^{m}=V_{\alpha+k}^{\alpha} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{m \rightarrow x} \frac{V_{m+k}^{m}}{m^{k}}=\frac{1}{k!} . \tag{7}
\end{equation*}
$$

Further, we have the inequalities

$$
\begin{aligned}
\sum_{m=0}^{\infty}\left(1-\left(1-c^{m}\right)^{q}\right) V_{m+k-1}^{m} & \geqslant \sum_{0 \leqslant m \leqslant \log _{c} q^{-1}}\left(1-\left(1-c^{m}\right)^{q}\right) V_{m+k-1}^{m} \\
& \geqslant \sum_{0 \leqslant m \leqslant \log _{c} q^{-1}}\left(1-\left(1-q^{-1}\right)^{q}\right) V_{m+k-1}^{m}
\end{aligned}
$$

which, by (6) and (7), imply that there exists a $B>0$ such that, for sufficiently large q, the inequality

$$
\begin{equation*}
B \log ^{k} q \leqslant \sum_{m=0}^{\infty}\left(1-\left(1-c^{m}\right)^{q}\right) V_{m+k-1}^{m} \tag{8}
\end{equation*}
$$

holds.
On the other hand, we get

$$
\begin{aligned}
& \sum_{m=0}^{\infty}\left(1-\left(1-c^{m}\right)^{q}\right) V_{m+k-1}^{m} \\
= & \sum_{0 \leqslant m \leqslant \log _{c^{\prime}} q^{-1}}\left(1-\left(1-c^{m}\right)^{q}\right) V_{m+k-1}^{m}+\sum_{p=1}^{\infty} \sum_{\substack{\operatorname{pog}_{c} q^{-1}-1 \leqslant m \\
\leqslant(p+1) \log _{c} q^{-1}}}\left(1-\left(1-c^{m}\right)^{q}\right) V_{m+k-1}^{m} \\
\leqslant & \sum_{0 \leqslant m \leqslant \log _{c} q^{-1}} V_{m+k-1}^{m}+\sum_{p=1}^{\infty}\left(1-\left(1-q^{-p}\right)^{q}\right) \sum_{\substack{p \log _{c} q \\
\leqslant \\
\leqslant(p+1) \log _{c} q^{-1}}} V_{m+k-1}^{m},
\end{aligned}
$$

which by (6) and by a simple computation implies the existence of a constant A such that

$$
\begin{equation*}
\sum_{m=0}^{\infty}\left(1-\left(1-c^{m}\right)^{q}\right) V_{m+k-1}^{m} \leqslant A \log ^{k} q \tag{9}
\end{equation*}
$$

for sufficiently large q.
Finally, from (8) and (9) we obtain (5), which completes the proof of the Lemma.

Proof of the Theorem. Equivalence (i) \Leftrightarrow (ii) can be easily proved. Thus, we prove only the equivalence (ii) \Leftrightarrow (iii). Let μ_{k} be a distribution on Z_{+}^{d} and let $p_{n}=\mu_{k}(\{n\})\left(n \in Z_{+}^{d}\right)$. Further, from the Kolmogorov theorem on three series ([2], p. 323-324) it follows that the series (4) is weakly convergent if and only if

$$
\begin{equation*}
\sum_{m_{1}, \ldots, m_{k}=0}^{\infty}\left(1-S_{c_{1}^{m_{1}} \ldots c_{k}^{m_{k}}} \mu_{k}(\{0\})\right)<\infty \tag{10}
\end{equation*}
$$

where 0 is the zero element in Z_{+}^{d}. On the other hand, we have

$$
S_{c} \mu(\{0\})=\sum_{n \in Z_{+}^{d}}(1-c)^{|n|} p_{n}
$$

with $p_{n}=\mu(\{n\})$. Thus condition (10) can be rewritten as

$$
\sum_{n \in \mathbb{Z}_{+}^{d}} \sum_{m_{1}, \ldots, m_{k}=0}^{z} p_{n}\left(1-\left(1-c_{1}^{m_{1}} \ldots c_{k}^{m_{k}}\right)^{|n|}\right)<\infty,
$$

which implies that for $c=\min \left(c_{1}, \ldots, c_{k}\right)$

$$
\begin{equation*}
\sum_{n \in Z_{+}^{d}} \sum_{m=0}^{\infty} p_{n}\left(1-\left(1-c^{m}\right)^{|n|}\right) V_{m+k-1}^{m}<\infty \tag{11}
\end{equation*}
$$

By the Lemma the last condition is equivalent to (iii).
Conversely, if (iii) is satisfied, then (11) holds with $c=\max \left(c_{1}, \ldots, c_{k}\right)$ for any $c_{1}, \ldots, c_{k} \in(0,1)$. Hence (10) is satisfied and, consequently, the series (4) is weakly convergent. Thus the proof is complete.

A simple consequence of the Theorem is the following
Corollary. If μ_{k} on Z_{+}^{d} has any finite moment, then it satisfies the convolution equation (3).

REFERENCES

[1] Nguyen Van Thu, A characterization of some probability distributions, p. 302-308 in: Probability theory on vector spaces, Vol. 2, Lecture Notes in Math. 828 (1980).
[2] W. W. Petrov, Sum of independent random variables (in Russian), Moscow 1972.
[3] F. W. Steutel and K. Van Harn, Discrete analogues of selfdecomposability and stability, Ann. Probability 7 (1979), p. 893-899.
[4] O. K. Zakusilo, On the class of limit distributions in a scheme of summing up, Theory Probab. Math. Statist. 12 (1975), p. 44-48.

Institute of Mathematics
P.O. Box 631, Bo-ho

Hanoi, Vietnam

