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Abstract. Let 8 be a Dirichlet form corresponding to a sym- 
metric Markov process fd = {Sd, .k, &, px}  acting on a state space 
X. Let g and h, y < h, be quasi-continuous elements of the cor- 
responding Dirichlet space 9, a d '  v a quasicontinuous solution of 
the variational inequality 

h",(v, u -u )  L O for all U E ~ ,  Z, 6 u < h, 

where a > 0 and &'#(u, u) = 8 ( u ,  v)+bl(ti, v )  for all u, VEF. It is 
shown in the paper that if J,(z, a) is defined for all x e X  and all 
stopping times t and a by 

then for quasievery X E X  we have 

u ( x )  = i d  sup J J z ,  a) = sup id J,(z, a). 
T 0 d 1 

Moreover, for quasi-every X E X  the pair (?, Z) such that 

% = id{t 2 0; h(x,x,) = a(x,)], o  ̂= inf{t 2 0; g(q) = vIxJ} 
is the saddle point of the game 

J,(t^, a) r 3, t?, ii) G J ,  (z, $1 
for a11 stopping times z, cr and quasi-every X E  X. 

I. Inarodwtiol~. Since early seventies it is known that the value of a 
stopping game assodated with a diffusion process can be identified as a 
solution of a certain variational inequality. Papers [9], ClO] and [64, 121 
were the first mntdning general results in this direction. 

Hn the present paper we take up a general symmetric Markov process and 
we assume that the obstacles, which define the cost functionaL are arbitrary 
elements of the associated Dirichlet space (,F, 8) (see 171). This assumption 
means, when s p i d z e d  to the diffusion case, tthd obstacles are merely sf 6-6' 



and not of M%class. In the setting of Dirichlet spaces one can hope to extend 
known results to irregular diffusion processes with drift and diffusion coeffici- 
ents being only measurable functions. Moreover, some Markov processes 
with non-local generators can be treated in this way. It is also of independent 
interest to find whether the interplay between variational inequalities and 
stopping games takes place if it can be reasonably formulated. The main aim 
of the paper is to show that this is really the case. 

For one obstacle and an optimal stopping poblern, analogous results 
were obtained by Nagai &13], and our paper can be considered as an 
extension of Nagai's results to the game situation. Let us notice, however, 
that the method used in 1131 cannot be generalized to cover the present case. 
The main reason for this is that the value of a stopping game cannot be, in 
general represented as a difference of x-potentials and, therefore, saddle 
stopping times cannot be defined by the corresponding additive functionals. 

Main tools used in the p a p r  are potential theory and the penally methd  
developed in [3]. 

The basic theorem is formulated in Section 2. Hn Section 3 we give a 
complete proof of the theorem under the so-called separability condition. We 
use here the Bismut-Nakoulim's method (see: [4] and 1141) which consists in 
reducing [he game problem to a system of quasi-variational inequalities. The 
proof of the first part of the theorem, in the general case, is given in Section 
4. Results on penalizations, among which Theorem 3 being of independent 
interest, are gathered in the next section. The proof is completed in the final 
Section 6. As far as basic concepts and notation related to Dirichlet forms 
Dirichlet spaces, and symmetric Markov processes, we refer to Nagai's paper 
1131 and to Fukushima's monograph [7]. 

The literature devoted to stopping games is quite extensive. Besides of the 
mentioned papers [9], [lo] and [li], different aspects of such games were 
studied in [3]-151, [Id], [8], [Y6]-[18], and [Ill .  In particular, in some 
places, we follow papers [16]-[I 81. 

The present gaper is a rewritten version of the report [20]. 

I would like to thank my Italian colleagues I. Dolcetta and M. Matzeu 
for discussions on the topic of the paper we had during my stay in Istituto 
Guido Castelnuovo in June 1981. 

Z F O F R I ~ ~ O I P  of fk maim result. We assume throughout the paper that 
the Dirichlet space (9, d?J, a >  0, is C,(X)-regular and the Markov process 
M = 152, .X, x,, P x ]  is a Hunt process. The basic reference measure on X 
will be denoted by wl. Thus, in particuhr, 9 is densely embedded in the 
Hilbert space iY = P ( X ,  nz) (see [7]). It is known that for an arbitrary 
element g ~ 9  there exists its quasi-continuous version denoted by (see [7], 
p. 65).- 

Let g and h be quasicontinuous versions of arbitrary elements from 9 
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satisfying the inequality 

(1) g < h quasi-everywhere (q.e.1. 

For any pair of stopping times (t, a) the ilecost functional A, is defined by 

(2) J x b ,  4 = E"(~-="""(~,"~~(X,)+~,,,~(X,))), 

and K stands for the following closed and convex subset of -9: 

(3 K = (~€5; g < M < h m-as.;. 

The following theorem is the main result of the paper: 
THEOREM 1. Tlrere exist a qzrasi-continzdoers jidncbiun v E K which soltres the 

tluriutional itzequaliql 

(4) B,(v, u-u)  2 O jbr 1711 U E K  

dad a properly exceptional set N such thur, ,for all x E X \ M, 
u (x) = sup id J ,  (z, c) = inf sup J ,  (r , cr) . 

a r T G 

Moreover, the pair (f, 6) such that 

(5 )  -? = inf ',t 2 0; v(x,) = h(x,)j, 

is the saddle point oJ' the game 

for all stopping times z a ~ d  a and x E X \ N .  
For completeness and later references we formulate a slightly generalized 

version of Nagai's result [13]. 
THEOREM 2 (Nagai C13j). There exist a quasi-confirnous ,function w E ,F 

which solves the variational inequality 

and a properly exceptional set N such that, for all x E X \ N, 

w (x) = sup Ex (e-  '" g (x,)) = Ex (e- " (xi)), 
D 

where 6 is defined by (6) with v replaced by w. Moreouer, w is the smallest 
or-potential mjorizing the Jfuction g m-a.e. 

3. The case sf seprable obbaclm. In this section we prove Theorem I 
under the following separability condition (see [4] and 1141): 

There exist a-potentials w,, W,EF such that 

5 - Prob. Math. Statist. 4 (3 



P ~ o ~ o s s r r c ~ ~  1. l i t  y arid h ha arbitrary elemevdtsfrom S such that g 6 k 
m-a.e. There exists n pair (ii, 2) E .F x !F satisfying the quasi-vmiatiorial 
psobJem 

69) 
- 
v &?-kg and 6',(i?, u-C) 2 O Jbr u >g+g, UES, 

if :uad only rlze sepcarabilirjt cnditiun (8) holds. Moreover, 5f there exisrs n 
saEutio~1 lo the grrobbm (9)-(10), therl it is unique if ard only 5 f  the conlacl set 

Ldefirzed i r s  terms qf some quasi-con~iwuous modifificutiolzv L, of elements h, g, is 
of capacity zero. 

P r o  of. If t h r e  exists a solution (is, E) of the problem (9)-(10), then the 
Eilnetions B and _v are or-potentials (see Theorem 2 or Theorem 3.2.1 in [?I) 
and they clearly separate obstacles la and g.  O n  the other hand, if the 
separability condition (8) holds, then for each a we have w, 2 i& and w2 2 g, 
m-as., where the functions E,, and 3, (n = I ,  2,.  . .) are defined by induction 
as follows. If n = 0, then &, = 2, = 0 and, for general yn, Fm+, and g,,,, arbre 
unique solutions of the following variational inequalities, respectively: 

W - Z ) ~ + ~ )  3 0 for ME@-, u &gn-h. 

Consequently, F,, and gM are a-potentials. Moreover, a simple induction shows 
that both sequences (i&) a d  (in) are increasing and bounded from above by 
a-potentials w, and w,, respectively. Therefore, (Ei , )  and (z,) converge in 
(9, to some a-potentials ;iT and which solve the initial problem {9)=(10). 

The uniqueness can k proved in a similar way as in [14]. 
COROLLARY. If the pair (V, g) is a solution of the problem (9)-(10), then the, 

digereme v = u-g is the unique solution qf the problem (43. 
The proof is immediate. 
Now we are in a position to prove the following partial result: 
~ O P Q S I T I O N  2. Under the separability condition. (81, Theorem I &Ids tme .  
Proof.  Without loss of generality we can assume that the functions 0, g. 

and u are quasixontinuous. Consequently, the functions B and g  are so- 
lutions, in the sense specified in Theorem 2, of stopping Sime probkms with 
gain fundions g + g  and G- h, respectively. Using the same argument as in 

one can find a properly exceptional set N swh that, for all x E X \N 
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and moments G ,  T^, 

6 = 311f ( r  2 0; t,(x,] -g(x,) +gj - inf [ t  3 0; u(x , )  = ~(4)) .  

z  ̂ = inf [ t  2 0; ~ ( q )  = i i ( ~ ; ) - - h )  

we have 

G(x) = EX(e-""v(x,)) for all . c ~  < 6, 

v(x)  = Ex(e-""(x,)) for all z ,< t .  - 

Moreover, one can assume that fdr 2611 initial states X E X \ N  the processes 
(e-  "' ~ ( x , ) )  and (e- r * f_v (x,)) are non-negative Px-supermartingales, Thus, for 
arbitrary stopping times t, 0 we obtain 

Consequently, 

(14) v ( x J = i r ( x ) - _ v ( x ) ~ E " ( e - u B A T ( ~ - 2 1 ) ( ~ ~ , , ) ) ~ ~ X ( e - 4 6 n z ~ ~ ( ~ ~ n ~ )  

< E x ( e - u S ~ s c ,  y ( ~ ~ ) + e - ~ ' ~ , , , h ( x , ) )  < Jx(z ,  6). 

Tn (14) we used the property that the processes ( ~ [ x , ) ) ,  (g(x,)) ,  (k (x t ) )  are P- 
a.e. right -continuous and that P,(h (xt) 2 v  (x,), t 2 0) = 1 for all x E Y \ N. In 
the same way one proves that v ( x )  2 J,(z^, ~s) q.e. 

4. Pswf of the ha p r t  of Theorem I. We need the following purely 
analytical results. 

PROPOSIT~ON 3. Let (g& and (h,,) converge in (9, 8,) to g and 112, respecti- 
uely, and let g,, $ h, rn-a.e. (n = 1, 2 , .  . .). If on, v E 9 In = 1 ,  2 , .  . .) and 

(15) b , ( v , , w - v , J & O  for all u ~ 9 ,  g , < u < l a , ,  

(16) ga[v, w - v )  2 0 for a11 ~€9, g < es < h, 

then v, -+ u in (9, 8J. 
The main fool in proving this proposition is the following lemma due to 

Ancona [I]: 
LEMMA 1. I f  v, 4 v in (9, gu), then also v: -+ v +  in (9, 8J. 

Proof of P ropos i t i on  3:Since &,(v,, on) < b,(g,, g3 for n = 1, 2 ,..., 
the sequence (v,) is (9, &Q-bounded. Let v^ be a weak limit in CP3 dI) OF a 
subsequence (u,,,). If u ~ 9  and g < u < h, then by Lemma 1 we have w, 
= (g, v u) A h, -, u in (3, b,), and gn d w, < la, for la = 1, 2, .  . . Since 
O", (v,,,, wn, - v,,,) 2 0, we get 

(I7) &a ( vnk ,  ~ 8 ~ )  a &a lvnk' V W ; ~ ) .  
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Putting k 4 rxl in (17), we obtain 

Therefore, t5 is a solution of (16) and the uniqueness gives 5 = v. Since 

vfi + v in (rF* 

~ O P O S I T I O N  4, For arbirrury obstnrks g ,  h EF"; g h m-a.e,, t h r e  exists 
a sequelzce of separable obstacles ( g , ,  h,J convergent in (9, &=) to  ( g ,  h). 

Proo'f, Let R,, y 3 0, be the resolvent operator assbciated with (9, &=). 
Then I;or any y > 0 we have y R , g  ,< yR, h and yR,g -+ g, yR, h -+ h in (9, &*",) 
(see l71, p. 20). From the resolvent identity we obtain 

- YR,II = R,(~(o~-~)Ryg-?'g'9) = $r(,f;Z-%Cf2) 

for some non-negative functions f;, f; EL? (X, m). Therefore, for every y > 0, 
obstacles yR, g and yR,, h are separable. 

We proceed now to proving the first part of Theorem 1. Let gn and h, be 
separable, quasi-continuous obstacles such that 8, d h, q.e. for n = 1, 2 , .  . . 
and y, and h, are convergent in (-7, 8,) to g and h, respectively. Moreover, 
let J:  (7, a) he the corresponding cost functionals: 

J::(z ,  4 = ~ " ( e - " ' " " ( ~ , , , h , ~ ~ , ~ + ~ , . , 8 , ( x , ~ ) ) ,   EX. 

Then 

where 

K(x) = sup EX(e- ""(h, - h)( (x,)). 
T 

From Theorem 2 and the fact that the solution of a variational problem (7) 
has minimal energy it follows that 

and therefore sequences (6,) and (W3 converge to 0 in the sense of (9, ga). 
Clonsquently, we can assume that G,(x) -.t 0 and M,(x) 4 0 as n 4 GO for 



%(x) = inf sup -1: ( r  , rj, u (x) = i d  sup J ,  (z, a). 
T d z a  

By (181, Ju,-u/ 4 0  q.e. But Proposj~ion 2 implies that the functions u, 
can be identified as solutions of variationaI inequalities (15) and, by 
Proposition 3, u ,  converge to r .  Therefore, E = LI outside of a set of capacity 
zero. This proves the required result. 

5. A eonvergelace theorem. After some preparatory results on penahation 
we prove Theorem 3 needed for the identification of th pair (?, &) as the 
saddle point of the game (see formulae ( 5 )  and (6)). W e  omit proofs of  
Propositions 5 and ti below because of  their similarity to those contained in 
131 and C161 (see also [203). 

PROPQS~TION 5. For arbitrary ~lemenrs g ,  12~M = E 2 ( X ,  ~ n )  there exisf 
unique sohtions wP,  uP E H am' (i?, p") E H x H of the following equutioioras: 

In the next proposition, MP stands for the set of aI1 progressively 
measurable processes (u,) satisfying 0 < u, < fi for all t 3 0. If u, u', ~ ~ ' E E M ~ ,  

XEX, then 

PRomsmo~ 6. Let g and tr be quasi-continuous functions belonging to *GI. 
Then there exists a properly exceptiomd set N such that, f i r  quasi-continuous 
solutions wB, vP E .F of equations (19) and (20) and for all x E X \ N,  

wvx) = sup Jfi(x),  
ue& 

vP[x) = inf sup 9!(u1, u2) = sup i d  J{(uE, uZ).  
u 1 , ~ f i  u 2 , ~ @  UZEMS &EM@ 

Moreover, 



T e r o ~ ~ n l  3. PJf'  h ,  y €9, Jk  < g, and the separability condiriwn (8) holils, 
shen v P + a  i rz  (9, ga) us flltx. 

For the proof we need two lemmas- 
LEMMA 2. An incremiag sequence of' a-potei~tials bounded ,fi-om above b ~ ?  

an a-potential is conuergent in the nornz 6, to an cx-posentiul. 

The lemma follows from Lemma 3.3.2 of 671. 
LEMMA 3. Assunte that g, 7 g in (-5, 6,) and rhnr w, ( n  = 1, 2:. . .) arc. 

solutions of the equatioits 

If p,, t-i- m, theren re., t w in (3, &=) where M! is the solortion of (7). 
Proof.  Without loss of generality we can assume that the functions w,, 

g,, and w are quasicontinuous and that outside of a sct N given in 
Proposition 6 we have y" rg. Bt follavris from Theorem 2 and Proposition 6 
that the sequence (w,,) is illcreasing and that for X E X  \N 

Lemma 2 implies that (w,) converges in (-9, da) to an %-potential $. On the 
other hand, w is the smallest a-potential majorizing g (see Theorem 21, so 
6-j ij w and, finally, I;ir = w. 

PF o of of T heo r em 3. We show that families (E f l )  and (e8) are increasing 
with respect to f? > Q and bounded by x-potentials E and j introduced in 
Proposition 1. Then Lemma 2 will imply that t? 7 5 and fl Tp in (9, &&) and 
Proposition 2 together with formula (23) will give the desired result. Let us 
define or-potentials and &, /I > 0, n = 0, 1, . . . , inductively: 

One can easily show by induction (cf. the proof of Lemma 3) that 

and 

(27) 

m-a.e., n = 0, 1, 2, .  . , Functions G,, and gv, in (27) are exactly those introduced 
in the proof of Proposition 1. Since iJ 2 gn 2- i$ and g Z _u, 2 ~ f l  for all /I > O 
and n = 0, 1, . . . , passing in (34) and (25) to the Emit with n t oo, and using 
Proposition 5 and Lemma 2 we obtain $ 7  iJ@ d 3 and & ?_up  d _v in (9, &@). 
Moreover, for fixed n, both families ( g )  and Gff) are increasing with respect 
to p, and so the same is true for (8) and Cup).  



& Hdem~f~aGon of t k  saddle piat .  To prove the swond part of Thmrem 1 
we start with some lemmas. 

LEMMA 4. Let t; and vP, f l  > 0, be qua.~i-co~ii~uous sol~lioms of(4J and (2631), 
respectivelj~. There exist an tncreming sequence of closed sets (Xk). and an 
illcreasing sequence qf positiue nttmbers &, jT  or! such that on every X ,  the 
firnrtions h, g, q u'" are bounded unrl crjutinuolts a& t:P" -, u un(fosmiy as n 
-+ cm jo. Moreover, Cap ( X  \ Xk) - 0 as ic  -. xi, 

Proof.  Let g,, h,,, and u, be the functions given in Propsition 3 and kt 
vf;' be the soiution of the penalized probIem with obstacles g, and it,. It 
follows from Theorem 3 that 0: + uB as oo in (53;). Therefore, one can 
find a sequence P,,t oo such that u " - $ L O  also (9, gal. Using Propsi- 
tion 6 and reasorYing as in (IS) bat with the pna8zed SunctionaIs jV! instead 
of b,, we obtain 

and the right-hand side of (28) converges also in (F ,  Reasoning in the 
same way as in the proof of Theorem 3.1.4 of /73 we can show that there 
exists an increasing sequence of closed sets Xk such that the right-hand sides 
of (28) are bounded on each X, and an appropriately chosen subsequence 
converges to 0 uniformly. Moreover, the sequence (X,) can be sekcred sin 
such a way that Cap(X\X,) 4 0 and that the functions h, g9 v, van have thk 
required properties (see the proofs of Theorems 3.1.3 and 3.1.2 in [TI). 

LEMMA 5 .  Let a function u E *F be quasi-cominuous and a > 8 a positive 
constant, Then for y.e. x E X the family of random variables {eWET u(x,); Tk any 
stopping lime) is Px-uniformljt integrable. 

Proof.  Since there always exists a quasi-continuous a-potential rnajoriz- 
ing the function u q.e. (see Theorem 2), we can assume that u itself is an a- 
potential. In the same way as in the proof of Lemma 4.4.1 in [7] one can 
show that there exists a properly exceptional set N such that for all x E X\ M 
the process Z,  = Krn u (x,), t 2 0, is a rjight-continuow non-negative P- 
supermartingale with the property 

To prove the required uniform integrability it is enough to show (see l623, p. 
102) that, for any increasing family of stopping timesT, I m, EX(ZTJ -, 0 as n 
4 co. From the representation Tlieorern 5.1 1 in [TI  it follows that there exist 
a - positive continuous additive functional A, and a properly excelpbionaI set 



M, ZJ N such that 
az 

1293 M I X )  = Ex(j e""A,) for X E X \ N , .  
0 

By the strong Markov property we have 
1 ' F j  T, 

{3W) u ( x ) = = = E X ( j  e u s d ~ s + e - a T ~ z ~ ( ~ T , ) ) = ~ x ( ~ T J + E x ( ~  e-bbdAs). 
0 D 

Since T,f m Px-as., from (29) and (30) we obtain Ex(ZT,) -f 0. 

We proceed now to the proof of the second part of Theorem 1, which is a 
modification of the proof of a similar property for optimal stopping given in 
[I51 (see also El63). Let us introduce the following stopping times: 

T" inf (I. 2 0; d' (x , )  2 h(xt)  3 ,  aD = inf { t  2 0; uD(x,) d g (x,)) , 

where B > 0, y > 0, and k = 1, 2, .  . . One can always assume that P X ( q  t a) 
= I for all x EX \ N,  where the set N has also properties specified in 
Proposition 6. The proof will be completed if we show that for arbitrary 
stopping times r and cr such that a < .r" and T d 5 Px-a.e. the relations 

(32) v (x) $ Ex v (x,)) 

hold for XEX\N. To see this notice that (31) and (32) imply 

Moreover, 
Jx(ZI, (7) = ] E ~ ( ~ - " ~ V ( X ~ )  b f s a f  e-a(rg(xdJ,<,-) 

< EX(e-aiv(x,)~,s ,+e-"av(xa)I , . , )  

< EX(e -R"av(x ,Aa) )  < v ( x ) .  

The last inequality follows from (32) because z  ̂ A cr < z^. In the same way one 
can show that J x ( z ,  6 )  2 v ( x ) .  

We prove now, for instance, (32). Assume that rr < r@ Px-a.e, for some 
p > 0. Then from (20) and the strong Markov property we obtain 

Letting / I T  cc and applying the Lebesgue domination principle to the right- 
hand side of (33) (cf. the estimate in Proposition 6), we obtain 
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Exactly as in [IS] we get 

Iim z, = f , lim a, = 6 Px-a.e. 
Y 10 Y Lo 

Let us fix now k and 11. Since v P  -+ u uniformly on X,, we can find p such 
that luPn(x)-n(x)l < y Tot n > p and x r z X , .  IF t < z,,, then v(x,)+y < h ( x , ) .  
Therefore, far t < r, n T, A u we obtain 

Consequently, r, n T, n m 5 re" and, by (341, 

Lemma 5 and the quasi-left continuity of the Markov process albw us to 
pass in (35) to the limit first with j 1.0, and then with k co to obtain (32) for 
arbitrary a < f . 
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