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~bs t rac i .  The man problem in this paper 5 s  to examine the 
robust estimator of a population total in the context of Royall and 
Herson [3] under multiple regression superpopulation models. The 
condition on the sample that protects the estimator against bias is 
studied for polynomial regression models. 

1. Introdane~sn. In this paper we are interested in estimating the p p u l -  
ation total 

under the superpopulation model in which y, ( k  = 1,. . . , N )  are values of a 
random variable Y, such that lr', = + e, d m ,  k = 1, . . . , N, where ek are 
independent random variables with mean zero and variance 0'. The par- 
ameter @, is unknown and f (x) is a known function of x. The population is 
finite with units labelled 1,. . ., N. For each element of the population we 
observe the pairs (x,, y,), k = I , .  .., N. If we adopt the above model, we will, 
obtain a condition such that the linear unbiased estimator under this model 
turns out to be linear unbiased under the multiple regression models. We use 
the notation 9(6 , ,  . . ., aJ: fa), introduced by Royal1 and Herson [3], to 
denote the multiple regression model 
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where xko = 1, xk,, . .., x,, are known number for k = 1, .  . ., N, 8,'s are zeros 
or ones. 2 = f  (xk) if j - O or ,f,O = f" (a,, 6, xkl,. . ., 6, xkJ)  if .j 2 1 and f (x) 
is a known function. If aj = 1, the term p j x k j  appears in the multiple 
regression model, and if B j  = 0, then this term is absent in the model. The 
random variables e l , .  . . , e ,  are uncorrelated with mean zero and variance g2. 

The main contribution of this paper is to extend Royall and Herson's results 
by using a general variance function f (xj in our superpopulation model. 

Z Bwt finear ~nnlbiasd mtimkor. Royall and Herson [S] introduced the 
following definition: 

D efi n j  t i o  n 2.1. For a given sample s and a model 5, and estimator f 
N 

is unbiased for T =  C Y,  if 
&= 1 

Er [F- TI = 0, 

where the subscript indicates that the expectation is taken with respect to 
probability distribution of the model 5. 

By the generalized Gauss-Markov theorem ([2], p. 230) and Section 3.1 
in 131. the best linear unbiased estimator (B.L.U.E.) of T under the model 
< ( I  : / (.v)) is 

C r, fN - 4/f 
F(1: f (x)) = C Y,+ k" > 

~ E S  1 l/f ( ~ k )  

where 1 denotes the sum over all units in the sample s. 
kE.9 

Remarks,. (1) If f ( x )  = 1, then we have the estimator 

which is the expansion estimator when the simple random sampling is used 
(see C31j. 

(2) The estimator p(1 :I) is biased under the model 5 (0, 1: f '(x)) for any 
function f '(x) unless with 8, = 0 or Z,, = XI. For 

where 

c Xkl 
- k a  

1 ' X ~ I  
k= l xlS = - and XI = ------. 

n . N 
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3. Rabaasems for multiple a e r w i o n  modeh. 
Defin i t ion  3.1. Let s + ( J )  be any sample such that 

where Z= (1, ..., N ) - s .  
Remark.  If xkj = xi and f ( x )  = 1, it turns out to be the condition of a 

balanced sample introduced by Royal1 and Hetson [3J. Suppose the nmodel 
5 (1: f (x)) is wrong and the correct model is t(6,, S , ,  . . ., Si,: f "). Then we 
have the foIIowing 

LEMMA 3.1. {f s = s* ( J ) ,  then Ti1 : f (x)) is tlr~biassd utzder the rntdriple 
regression model /a,, a,, . . ., 6,: f '1 for any function f O .  

Proof.  We have 

Remark. If we choose a sample s = s*(S) ,  then the estimator ? ( l : $ ( x ) )  
is robust in the sense that the bias is eliminated under any multiple 
regression models. The following theorem states the estimator p(l:f (x)) is 
B.L.U.E. in a special class of models. The technique which is used to prove 
the theorem below is the same as that introduced by Scott et al. [ 5 ] .  

THEOREM 3.1. The estimator ?'(I : f f x)) is B.L.U.E. under the model 

t(&, 61, .. .,&f *(x)), 
where 

r 



Proof.  Let T ( 0 ,  0 ,..., di = 1, 0 ,.... 0: f(x)x,,) be the B.L.U.E. under the 
model < (0, 0, . . . , S j  = 1, 0,. . . ,0:  ,f (x) xhj) .  Then by [ S ]  we have the B.L.U.E. 

If s = s" J ) ,  then 

Thus T(l: f ' (x ) )  is B.L.U.E. under the model r ( 0 ,  0 ,..., 0, aj = 1,  0 ,.,., 0: 
f [x)x,,-X .j = 0, 1 , .  . ., J .  We now consider the model e ( S , ,  . . ., SJI 
= 1,. . . , aj: f (x) xkj). Sincc the expression 

(see [3], p. 882) depends only on the function J'(x)xki  and the estimator 
?(I : f ( X I )  is unbiased under the model S j ,  we conclude that p(l: f  ( X I )  is 
B.L.U.E. under the model tj, j = 0, 1 , .  . ., 9. But we have 

r 

and : f (x)) is unbiased under the model ( (do, 5,, . . . ,6,: j'* (x)). Then 
?(I: f ( x ) )  is B.L.U.E. under the model 5. 

4. Polynao~ral regression models. Suppose that xLj = xi, k = 1,. . ., N and 
j = 0, 1 ,  ..., J .  Then this particular model ((a,, a,, . . ., d j :  f *(x))3 is known as 
the polynomial regression model. Using ( 3 . 1 )  for f ( x )  = x we see that s X ( J )  is 
a sample such that 

Under the model 5 (ao9 d l , .  . . , tij: x)  the mean squared error (M.S.E.) of the 
estimator T(l:x) is of the form ([3], p. 882) 

for'any s. If we choose the sample s = s*( J), the M.S.E. of ?(l:x) turns out 
to  be 

g2 M ( N  - n)Zz 
Xk 

k& where X3 = - 
n N - n '  
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For a small sampling fraction, Z, is approximateljl equal to 

Consequently, 

rr"((N-n)~ 
M.S.E. -- 

Remarks .  (1) Note that (4.3) is the same expression as (3.1) in [3] under 
the condition (3.1) for xkj = xi  and f ( x )  = I. 

(2) Suppose we adopt the model l(l:,u) and the sampling fraction is 
small. Then (4.2) is approximately equal to 

which is minimized if we choose the sarnpb such that ljx, is the 
kw 

maximum (optimal sample). Condition (4.1) provides protection against the 
bias under the general polynomial regression model, but some efficiency is 
lost with respect to the optimal sample under the model ( (1:~)  (see [3J). 

(3) By [5] ,  the polynomial regression model with f * (x) = cr; x +  o$ xZ is 
often a realistic model. Next we will compare the expansion estimator with a 
balanced sample, i.e., f (x) = 1, and the estimator p(1:x) with s = s * ( J ) ,  both 
under the polynomial regression model with f * ( x )  = rrf x+ag x2. It is inter- 
esting to note that these estimators are B.L.U.E. under this model with their 

' respective samples. 
THEOREM 4.1. The estimator T(l :x) with s = s* ( J )  is more efficient rhan 

the expansion estimator with a balanced sample, both under the polynomial 
regression model 5 ( 1 ,  1: f * (x)), i.e., 

E, [p(l:x)- Tj2 6 E~ [ F ( l : l ) -  'T12, where f *(XI = a: x+rrix2. 

Proof.  Iff (x) = 1, we obtain from (3.1) under general regression models 
the condition of balanced sample x!) = 9 j ) ,  where 

Xjk 
and X ~ ) = C ~ ,  j = O  ,..., J .  

t= 1 

The M.S.E. of the estimator T(1:l) under the polynomial regression model 
t (I ,  1 : f * (x)) with balanced sampling, by [53 and [3], is 



If s = s*( J ) ,  it follows from (4.1) that the M.S.E. of f ( l : x )  under the model 
( 1 ,  1 : f *  (xj) is 

where 

z xi 
$1 = EL- j = O ,  1 ,..., J .  

N- n' 

Bt follows from (4.1) fir  j = 1 and j = 2 (by the Cauchy-Schwarz inequality 
and Jemen's inequality) that sE, d Z and 6'' d $"', respctively. We conclude 
from (4.4) and (4.5) that 

E4 [ ' f ( l :xj -  TI2 < EG [F[1:1)- TJ2. 

5. The meaing of codidom (4.1). It may be difficult to obtain a sampEe 
which exactly satisfies (4.1). On the other hand, if we consider a special 
sampling design, it is possible to obtain a sample which approximately 
satisfies condition (4.1). 

De f in i t i on  5.1. The function PFs) such that P(s)  2 0 for all SES, where 
S is the set of all samples, and 1 PCs) = 1 Is called the sampling design. 

SES 

Defin i t ion  5.2. The inclusion probability nk of unit k is.the probability 
of selecting that unit, i.e., 

where the summation extends over all samples s such that k €3. By [I], p. 11, 
we have 

N 

where n is the sample size. 
THEOREM 5.1. I f  

then 



where E, t!entrtes the expectation with respect ro P(s). 
Proof .  We have 

Wemas k. We conclude from Theorem 5.2 that for swficiently large n 
and with a large sampling fraction the condition (4.1) is approximately 
satisfied if we choose a sampling design with the inclusion probability 

1 ---- (N-"/xk > 0, k = I , .  s m y  N N 

C l l x ,  
k =  1 

6, Stratified random sampling. The purpose of this section is to prove that 
the stratified sample and condition 14.1) together imply a higher efficiency 
than is achieved by a sample s which satisfies only condition (4.1). By [4], 
the population is divided into N strata as follows: N ,  units with the smallest 
x values form stratum 1, the next N, units form stratum 2, etc. A sample sk 
of size nh is selected from the N ,  units in the h-th stratum. 

Remarks.  ( I )  A natural estimator for t under the model <( l :x)  is 

where 

and 
H N h  H Nh 

t = 1 C Y k h  = C t h ,  i h  = 1 JJkh. 
h = l  k = l  h=  1 k =  1 

6 - Prob. Math. Statist. 4 (21 



(one-step balanced), the estimator $z;,(l:x) is protected ~ a i n s t  the bias with 
respect to T, under the suprpopu!ation model 

J 

-vrr = dJPIh x i h + e k h , E ,  h =  l , . . . . H .  
j =  0 

(3) We have 

Y condition (6.1) is satisfied, where c, indicates the above model for k2 - I ,  ..., H ,  
(4) Optimal ralbcation sample. Suppose the cost of sampling is given by a 

fixed co plus the cost ck for each unit sampled in stratum h. Let the total cost 
be 

If (6.1) is satisfied, then Gh 6 X, and the M.S.E. of the estimator t, is less 
than or equal to 

By [4] the expression (6.2) is ~ n i m i z e d  when n,orN, xlt2, h = 1 , .  . ., H,  
under the condition that C is fixed and c,  is constant in  each stratum h 
(optimal allocation). 

THEOREM 6.1. If the sumpii'ing $-action is smaII and (4.1) is satisfied, then 

4 [p(l:x)- n2-~LsI [%(l:x)- TI2 

under a one-step balanced sampling in each stratum h and n,o l fVh~lf /~ .  
Proof. From (4.3) and (6.2) we have 

$ [ ~ ( I : x ) -  T]'-E~, C ~ ~ ( I : X ) -  q2 
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where the last inequality holds by the Cauchy-Schwartz inequality. 
Acknowledgement .  The author is very graref~d to the refel-ees for their 

comments and suggestions. 

[l] C .  M. Casset 13. E. Sar  ndal  and J. H. Wretman, Foundatbi~s c$ inference in survey 
sampling, J .  Wiley, Nevi York 1977. 

[2] C. R. Rae, Starisrrca! inference and its crpptications, 2nd ed., J .  Wiley, New York 1973. 
[3] R. M. Royall  and J. Herson, Robust estimation in finite ppuhtion, 5. Amer. Statist,  Assoc. 

68 (1973), p 880-889. 
[4] - Robust estimation injiriite populatiun, I I .  Ssratificatim an cr size variabk, ibidem 68 (19731, 

p. 890-693. 
I S ]  A, J. Scott, K. R. W. Brewer and E. W. Ho, Finite poplotiow sampEng unrl robust 

rsfimution, ibidem '73 (19781, p. 362. 

Institute de Matherniitica e Estatistica 
Universidade de S3o Paulo 
SFio Paulo, Brasil 

Received on 24. 7.  1980; 
revised version on 24. 5 .  1982 




