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ROBUST ESTIMATION AND FINITE POPULATION

BY

JOSEMAR RODRIGUES (BerkeLEY, CALIFORNIA)

Abstract. The main problem in this paper* is to examine the
robust estimator of a population total in the context of Royall and
Herson [3] under multiple regression superpopulation models.. The
condition on the sample that protects the estimator against bias is
studied for polynomial regression models.

1. Introduction. In this paper we are interested in estimating the popul-
ation total

N.
= Z Vi
k=1

under the superpopulation model in which y, (k = 1,..., N) are values of a
random variable Y, such that ¥, = Bo+e,./f(x), k =1, ..., N, where ¢, are
independent random variables with mean zero and variance ¢2. The par-
ameter f, is unknown and f(x) is a known function of x. The population is
finite with units labelled 1,..., N. For each element of the population we
observe the pairs (x;,.y.), k =1,..., N. If we adopt the above model, we wilk
obtain a condition such that the linear unbiased estimator under this model
turns out to be linear unbiased under the multiple regression models. We use
the notation &(do,...,0;: f 9, introduced by Royall and Herson [3], to
denote the multiple regression model

J
Y, =‘Z 0; B xpjt e/ 12
j=o

@

* This paper was prepared with support of the University of S%o Paulo and Fundacio de
Amparo 2 Pesquisa do Estado de Sdo Paulo. '
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where X0 = 1, X34,..., Xy are known number for k = 1,..., N, d,'s are zeros
orones, ;> =f(x) if j =0 or £2 =1° (8g, 61 Xp1»--.,0;Xy) if j =1 and f(x)
is a known function. If §; =1, the term B;x;; appears in the multiple
regression model, and if §; = 0, then this term is absent in the model. The
random variables e,, ..., ey are uncorrelated with mean zero and variance o2
The main contribution of this paper is to extend Royall and Herson’s results
by using a general variance function f(x) in our superpopulation model.

2. Best linear unbiased estimator. Royall and Herson [3] introduced the
following definition: :
Definition 2.1. For a given sample s and a model &, and estimator T

is unbiased for T= Z Y, if

k=1
E[T-T]=0,

where the subscript 1nd1cates that the expectation is taken with respect to
probability distribution of the model &.
By the generalized Gauss-Markov theorem ([2], p. 230) and Section 3.1
in [3], the best linear unbiased estimator (B.L.U.E.) of T under the model
E(1: S (x)) is

2 %(N-— n)/f (%)

. ) _ kes
T o) =2 B+ 5y
kes

3

where ) denotes the sum over all units in the sample s.

kes
Remarks. (1) If f(x) = 1, then we have the estimator

T(1:1) = —Z ¥,

R s

which is the expansion estlmator when the simple random sampllng is used
(see [3]).

(2) The estimator T(l 1) is biased under the model &0, 1:f °(x)) for any
function f°(x) unless Wlth B, =0or X, =X,. For .

E [T(1:1)-T] =;Z By xkl“;‘z B1 X1
=1

kes
= NP, X15—~B1 Nx; = NB (X1,—X,),

where

N
Z Xk1 zkxm
_kes = k=1

and X; =

X —
1s n N
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3. Robustness for multiple regression models.
Definition 3.1. Let s¥(J) be any sample such that

2 X 2 Xl f (a)

3.1 kes ke , j=1,....J,
G N=n" S 10 7

kes

where §={1,...,N}—s. . «
Remark. If x,; = x{ and f(x) = 1, it turns out to be the condition of a
balanced sample introduced by Royall and Herson [3]. Suppose the model
E(1:f(x)) is wrong and the correct model is £(8,, 84,...,0;:/%). Then we
have the following »
Lemma 3.1, If s =s*(J), then T(l:f(x)) is unbiased under the multiple
regression model (8¢, 81,...,0,:f° for any function f°.
Proof. We have

E[T(1:f (x)-T]

Y Y B/ (k) N

J
— 5 ) N— kes j=0 - : 5 . .
ES (j;o J’ﬂj xk_])"'( n) Z 1 / f (xk) k§1 (j;o J ﬂ] xkj)

kes

(N—n) Z xkj/f(xk) N ;
51 nBJ( - 2 xkj)

R. j+ kes
va:s b Z /1 (%)

kes

I

7

(N“’n)kz Xl f (%)
S e ~kzeg x,,j) =0 ifs=s (J).

kes

=2 51'131(
j=o

Remark. If we choose a sample s = s*(J), then the estimator T(l:f (x))
is robust in the sense that the bias is eliminated under any multiple
regression models. The following theorem states the estimator T(1:f(x)) is
B.L.U.E. in a special class of models. The technique which is used to prove
the theorem below is the same as that introduced by Scott et al. [5].

THEOREM 3.1. The estimator T(1:f (x)) is B.L.U.E. under the model
‘f(al)a 619--'55,J:f*(x))s
where

‘ J
f*(x) =f(x) 'ZO ajajxkj, k=1,...,N,

x=(x, 60, 5lxk‘1,...,(5‘,x“), aj> O, j=0, 1,...,-],
if s=s*(J).
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Proof. Let 7;(0,0,...,8; = 1, 0,..., 0: f(x) x;;) be the B.L.U.E. under the
model £(0, 0,...,8; =1, 0,...,0: f(x) x;;). Then by [5] we have the B.L.U.E.

Z Y/ ()
7;(0,0,...,0,6,=1,0,...,0: " Y, + = )
i SCIxg) =2 Wb ¥ e

. hes
If s =s%*(J), then
T:(0,0,...,0,8,=1,0,...,0: f () x;) = T(L:f (%), j=0,1,...,J.

Thus T(1: f (%)) is B.L.U.E. under the model £(0, 0,...,0, §; =1, 0,...,0:
f®)xy), j=0,1,...,J. We now consider the model ¢&(do,...,5;
=1,...,8;:f(x)x,). Since the expression

E, [T(1:f ()~ TJ* = Var, (T (1: £ () - Z Y,)+ Varg (¥ %)

g ke¥
(see [3], p. 882) depends only on the function f(x)x,; and the estimator -

T(1: f(x)) is unbiased under the model g], we conclude that T(1:f(x)) is
B.L.U.E. under the model ¢;, j=0,1,...,J. But we have

E[T(1:f(x)-T]* = Z d;a; Ee; [T(1: f(x)-T]?

and T(:f (x)) is unbiased under the model &(dy, 84,...,8,: f*(x)). Then
T(1: f(x)) is BL.U.E. under the model ¢.

4. Polynomial regression models. Suppose that x,; = x{, k =1,...,N and
j=0,1,...,J. Then this particular model ¢(8o, y,...,6;: f°(x)) is known as
the polynomial regression model. Using (3.1) for f(x) = x we see that s*(J) is
a sample such that

‘ YooY Xt
4.1 ke . kes , j=0,1,...,J.
1) N-—n Z 1/x, g

Under the model £(dy, 64,...,9;: X) the mean squared error (M.S.E.) of the
estimator T(1:x) is of the form ({37, p. 882

- (N—n)?
4.) B [T(19—TT = [ .
( ol Z 1/ Jge:s
. kes .
for any s. If we choose the sample s = s*(J), the M.S.E. of T'(1:x) turns out
to be

2 T Z Xk
M, where fi — keg .
n N—n
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For a small sampling fraction, X; is approximately equal to

> X
F = k=1
N
Consequently,
6*N(N—n)%

(4.3) MSE. ~

Remarks. (1) Note that (4 3) is the same expresswn as (3.1) in [3] under
the condition (3.1) for X =x{ and f(x) = 1. :

(2) Suppose we adopt the model ¢(1:x) and the sampling fraction is
small. Then (4.2) is approximately equal to

(N—np? _
d [z T "J’

which is minimized if- we choose the sample such that ) 1/x, is the

kes

maximum (optimal sample). Condition (4.1) provides protection against the
bias under the general polynomial regression model, but some efficiency is
lost with respect to the optimal sample under the model ¢(1:x) (see [3]).
(3) By [5], the polynomial regression model with f*(x) = 6?x+02x? is
often a realistic model. Next we will compare the expansion estimator with a
balanced sample, i.e.,, f(x) = 1, and the estimator T'(1:x) with s = s*(J), both
under the polynomial regression model with f*(x) = 6? x+0¢2 x2. It is inter-
esting to note that these estimators are B.L.U.E. under this model with their
respective samples.
TueoreM 4.1. The estimator T(1:x) with s = s*(J) is more efficient than
the expansion estimator with a balanced sample, both under the polynomial
regression model &(1, 1: f*(x)), i,

E [T(1:0)— TP <EJ[T1:1)—TP, where f*(x) = 0? x+02x%

Proof. If f(x) = 1, we obtain from (3.1) under general regression models

the condition of balanced sample % = ¥ where
. ) Noxi

P =Y="% and x-u) =y X

kes I ‘ =1 N

The M.S.E. of the estimator 7(1:1) under the polynormal regressmn model
(1, 1: f*(x)) with balanced sampling, by [5] and [3], is

aN(N n)
n

j=0,....J.

(4.4) B, [T(1:1)-T]? = [0} %+03x?].
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If s = s*(J), it follows from (4.1) that the M.S.E. of T(1:x) under the model
E(1, 1:£*(x) is

4.5) B [T(1:0-T? = 0?| 2%+ 02 21— |4 02 5@ |,
¢ N N !

where

2, Xk
F) — keS i=0.1
X N i=0,1,....J.
it follows from (4.1) for j =1 and j = 2 (by the Cauchy-Schwarz inequality
and Jensen’s inequality) that X, < ¥ and ©? < x'?, respectively. We conclude
from (44) and (4.5) that

E.[T(1:x)- TP <E[T1:1)-TJ

5. The meaning of condition (4.1). It may be difficult to obtain a sample
which exactly satisfies (4.1). On the other hand, if we consider a special
sampling design, it is possible to obtain a sample which approximately
satisfies condition (4.1).

Definition 5.1. The function P(s) such that P(s) = 0 for all seS, where

S is the set of all samples, and ) P(s)=1 is called the sampling design.
seS

Definition 5.2. The inclusion probability m, of unit k is the probability
of selecting that unit, ie.,

Ty, = Z P(S)’

s>k}

where the summation extends over all samples s such that kes. By [1], p. 11,
we have ‘

where n is the sample size.
Tueorem 5.1, If

then
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where E, denotes the expectation with respect to P(s).
Proof. We have

Z\fc ;Zxk N N
LA
-2 T
B Zl/xk

Remark. We conclude from Theorem 5.1 that for sufficiently large n
and with a large sampling fraction the condition (4.1} is approximately
satisfied if we choose a sampling design with the inclusion probability

(N n)/%

Z 1/

1— =20, k=1,..,N.

6. Stratified random sampling. The purpose of this section is to prove that
the stratified sample and condition (4.1) together imply a higher efficiency
than is achieved by a sample s which satisfies only condition (4.1). By [4],
the population is divided into N strata as follows: N, units with the smallest
x values form stratum 1, the next N, units form stratum 2, etc. A sample Sy
of size n, is selected from the N, units in the h-th stratum.

Remarks. (1) A natural estimator for + under the model &(1:x) is

H
L0 = Y T,
h=1

where
Z Yin/ Xun
| - kEsh .
1 T.(1:x) = Z Yoo +———(N,—n), h=1,...H,
[ ) . kesp, Z l/xkh
| kesy,
| and
H Np
z Z Yur = Z ty, ty= Z Yn:
n=1 k=1 k=1
2 If
kZ Xk Z X *
6.1 =h il , h=1,... H
(6D Nh_"h > 1%
kesy -

6 — Prob. Math. Statist. 4 (2)
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{one-step balanced), the estimator T,(1:x) is protected against the bias with
respect to T, under the superpopulation model

J , :
Yin = Z 51/3jn xih"'ekh\/ﬁa h=1,...,H.
j=o0

(3) We have
. L L N, (N, —n)
Be, [ %= T = ¥ Eq [B(1:9)- %) = }: e A

Ny

if condmon (6.1) is satisfied, where 53, indicates the above model for h
=1,.

(4) Optzmal allocation sample. Suppose the cost of sampling is given by a
fixed ¢, plus the cost ¢, for each unit sampled in stratum h. Let the total cost
be :

H

C=CO+ Z Cp By
h=1

~

If (6.1) is satlsﬁed then X; <X, and the M.S.E. of the estimator T, is less
than or equal to

. - H AN (N, —
(6.2) o2 5 NelMu=m) o
By [4] the expression (6.2) is minimized when n,aN,%3/% h=1,...,H
under the condition that C is fixed and ¢, is constant in each stratum A
{optimal allocation).

Tueorem 6.1. If the sampling fraction is small and (4.1) is satisfied, then
B [T(1:0)— TP -Ey, [T,(1:0-T]°

under a one-step balanced sampling in each stratum h and n,aN, %2,
Proof. From (4.3) and (6.2) we have
E [T(1:x)— T1—Eg, [T, (19— TT?
T H ,
o~ UZM_GZ %_(Nh nh)fgh‘
n h=1
o_zN(N n)x g Nh(Nh "h)

L T,

NWN-nXx

— e NDE_ S Ny Ng)
k=1




Robust estimation 205

o a 12 1/272
"_'*“n‘{ zf—[Z Nh/ (Nhfh) ! ] }
h=1

- =0

where the last inequality holds by the Cauchy-Schwartz inequality.
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