
PRDMBILFFY 
AKD 

MATHEMATICAL STATISTICS 

VoL 4, Far. 2 (LW4), p. Un-219 

OTIC EXPAWIONS FOR CONDInONAL DPSTRIBUTIONS: 
THE LATTICE CASE 

Abstract. It is shown that the wildit~oaal distribution of 
X, -k . . . + X,, given Y, + . . . s = y, admits an asymptotic expan- 
sion whenever (XI, Y,}, fX,, Ya], . - ,  is a sequence of independent 
identically distributed lattice random vgctars and y Ees In a set A(n) 
for which P { Y, + . . . + YE$ A(n)) can be neglected. Explicit formulas 
are gtven for the terms OF order n-'Ir and R-l. 

I. Iairoducticba Let $s be a family of probability measures on the Borel 
field Bk of some Euclidean space P, and for fixed P E  let Z , ,  Z,, . .. be a 
sequence of independent k-variate random vectors with distribution P. 
Partition the vectors Zi according to Zi =(Xi, x), where Xi is p-variate, is 
q-vartate, and p + q  = k. We consider the conditional distribution Q ( P ,  ti, y )  
of XI + . . . + X,, given Y, + . . . + Y, = y, in the following two cases: 

(i) The set of all integral k-vectors Zk is the aninimal lattice for 2, (is. 
Z ,  €Zk almost surely and Zk is the minimat additive subgroup of Bk with 
this property). 

(ii) Zq is the minimal lattice for Y,, and Z ,  satisfies a uniform Cram& 
condition in its first argument XI : 

For every E > 0 there exists 6 > 0 such that for t, EP, t, E 1P4, j(t,(l 2 E, we 
have 

(1.1) (E exp(it: XI + it; I;)[ < 1 - 6 .  

We shall obtain asymptotic expensions for the distribution functions and 
the point probabilities in case (i), and for probabilities of convex sets in case 
(ii). This will be done with an error term uniform in P E '$3 and y in a subset 
A [ P ,  n) of Zq such that 

srap{P(I;+ ... +Yn$A(P ,  n)): P E P )  
can be neglected. 
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Asymptotic results on Q ( P ,  n, y) were first obtained by Steck [10). He 
proves weak convergence of suitably standardized conditional distributioils 
to the normal law. Higher order approximations for conditional distributions 
are derived by Michel C63 for the case where for pn sufficiently large the 
distribution of Z ,  + , . . + Z, is dominated by the k-variate Lebesgue 
measure. Our proofs are based on Michers method, For p = I, explicit 
formulas are given for the terms of order n- l I2  aarid rz-'  of the expansions, 

Asymptotic expansions for conditional distributions are a basic tool to 
investigztee the asymptotic behavior of asymptotically similar tests in ex- 
ponential models (see [7] rend [33). 

As a side resuk, we obtain asymptotic expansions for certain distributions 
by writing these distributiorms as Q(P9, 11, y )  with suitably chosen P and jy: 

E xarnple 1.1. (a) Let P be the distribution of ( U ,  U + V) ,  where U and V 
are independelre Poissnln variables. Then Q ( P ,  n, y )  is a biilomial distribution 
with pwaweters n and Ekl/E(U+ V ) .  

(b) If P is the distribution of ( U ,  U + V), where U and V are independent 
Bernoulli variables with EU = @E then Q{P, n, y) is a hypergeometric 
distribution with parameters 2n, n, y. Approximations for hypergeometric 
distributions can be found in C83. If EU = p1 f pz = EK then Q(P, rt, y)  is 
no longer hypergeometric. For 

we obtain 

Asymptotic normality of these distributions was shown by Hannan and 
Harkness [2]. 

Example  6.2. Let P I ,  P,  be probability measures on 93 satisfying the 
usual Cram& condition 

(1.2) lim sup IJeiix plj(dx)l < 1, j = 1, 2. 
Itl-rc 

Consider a sequence U,,  U,, . . . of independent random variables, some of 
which have the distribution P, ,  the others have the distribution B,. 
Asymptotic expansions for the distribution of U, + . . . + U ,  can be obtained 
from our Theorem 2.3: 

Let (XI, Yl), (X,, Y,), . . . be a sequence of independent identically distri- 
buted bivariate random vectors such that 

[a) p{Yx = 1) = ]1-P(& = 2 )  = p ~ ( o ,  1); 
(b) the conditional distribution of XI,  given Yl = j, is Pj (j = 1, 21.' 
If k terms in the sequence U,, . . . , U, have the distribution P,  and n - k 
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terms have the distribution P,, then the distribution of Ul + . . . + U,-equals 
Q ( R ,  a, @. 

Mere the uniform Gram& condition (9.1) is satisfad, i.e. by (1.2) for m y  
E > 0 we have 

- sup ( I P  Sexp0tx-k is) PI (dx) + (1 - p) f exp(itx + 2is) P3 (dx)j : It1 2 r, s E R) 

6 sup ( p  ( g ^  eit* PI Cdx)( +(I - p)IjdtX Pz (dx) ( :  111 2 E: < 1 . 

The above result extends easily to more than two possible distributions of 
0 1 ,  uz,... 

Another application of our results is the appra.nimation of the surprise 
index (see [Jd]): 

E x a m pl e 1 -3. Let U ,  , U, , . . . be a seqixenm of illdependent iclentiically 
distributed Zr-valued random variables. Write 

pn(k;l = P { U l f  ...+ Ufl  = k]. 

The smprise index of the event [XI + . .. f X, = k) is the number 

Let V and W be independent random variables having the same distribution 
as U,, and let P be the distribution of (V, I/-6aJ3. Then 

Using asymptotic expansions for Q(P,  n, 0) and p,[k) we can easily compute 
asymptotic expansions for 

2. The raults. Fix an integer s 2 3. For 19, Q E 9 define 

d ( P ,  Q )  = sup ( ] P ( A )  - Q (A)/ : A E @) . 
The following assumptions are made thoughout this section: 
A s s u ~ m ~ o ~  1. The family "Ips compact in the topology induced by d. 
A~SUMPTI~N 2. For all PEP there exists M such that JI(zllFP(dz) < M, 

where r = max(2s- I ,  g+ 1). 
Remark 2.1. For PEP we denote by E(P) the covaiance matrix of 

P. For all P E  the matrix Z(P) is nonsipmgula~, for otherwise Zk would not 
be the heninal lattice supporting P or (1.1) would fail. By Assumption 2 the 
map P -+ Z ( P )  is continuous. Hence Assumption 1 implies that there exist c 
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and C (0 < c < C < xj such that for all P E and all eigenvahes II of ZIP)  
we have c < A < C. 

Re rn a rk  2.2. For P E '$ we denote the ~haraclesistic function of P by f ,. 
Let c > 0 and 

Arc) = { Z E ~ :  E <  Izj;.I % x ,  j = 1 ,..., k]. 

Then 

(2.1) sup [lfp(z)l: L E A ( E ) ,  PE @) < 1 .  

We need the following notation. Far P G and partition C = E ( P )  let 

and 

where Zoo, A,, are ( p ,  p]-matrices and XI,, A , ,  are ( q ,  y)-matrices. Let 

which i s  the (symmetric and positive definite) inverse of .Aoo. 
For a positive integer m and a symmetric positive definite (m, m)-matrix 

A let 40, denote the Eebesgue density of an m-variate normal random vector 
with zero mean and covariance matrix A. 

We put 
P(P) = Q'zP(dz), 

For nonnegative k-dimensional integral vectors v denote the t.-th 
cumulant of P by yl,(P), and for j = 0, .  . ., s -  2 let P j ( -  @o:zrp,: { h { P ) j )  be 
the finite signed measure defined in [I] (p. 53, Lemma 7.2) which has 
Lebesgue density Bj (- rpO:E(P): {XV(~))). Let P' be the distribution of TI, and 
for nonnegative q-dimensional integral vectors u let xv:,(P) denote the v-th 
cumulant of P". For j = 0,. . . , s - 2 let us define Pj ( -  ( P ~ : ~ ~  [z,,(P))) 
and Pj  ( -  qO:~l I(P): (xu (P)]) as above, and for j = 0,. . . , s - 2 and fixed 
z = ( x ,  y) E @, x E dgP* y E BP9, deterrrairne Wj ( P ,  y, x) by the formal identity 



THEOREM 2.1. 1f A~s~rnpt ions  1 and 2 are ~ a t i ~ f i e d  in case (i), then 
uniformly for P E $ and y S A  ( P ,  a) 

(2.3) 1 / Q ( P ,  ?I ,  y )  [x] -q(Y,  a, YIP, a), zip, a))\ = u(l2- ( 9 -  2)12), 

xed' 

where 
1- 2 

q ( P ,  n, y ,  x) = n-P12 1 npjl2 Hj(PJ, y, x). 
j= 0 

Proof.  For short we write 2, y" instead of TIP,  n), 2 ( P ,  m), and F ( P ,  n), 
respectively. Note first that uniformly far Z E Z ~  and P E ~  

The proof of (2.4) follows the pattern of the proof of Theorem 22.1 in [I]. 
The crucial point is (22.10) on p. 232 in El]. An upper bound for I, can be 
found by Theorem 9-10 in [I], and an upper bound for I, can be derived 
from 42.1). Similarly we infer that uniformly for P E  and y f Z q  

Furthermore, there exist D > 0 and N such that for all P E  C$3, n > N ,  and 
Y E A ( ? ,  1 0  

The relation 

la/b-c/dl < d-I  (Ib-dl a/b+la-cl) 

for a 2 0 and b, d > 0 implies that uniformly for PE and y E A ( P ,  n) 



Finally, there exists a polynomial R in z = (x, y ) ~  P, X E R ~ ,  y E IP? such that 
for all PE and sufticiently large fz 

Putting 

HOP, I', x) = c ~ i ( n ( ~ - ~ o l I ~ ) ~ , ~ ( P ) ~ )  

we infer that uniformly for P F  '$ and y E A ( P ,  11) 

n-(s- l ) i2  C F I - P / ~ R ( ( z ,  ~ ) H ~ ( P ,  7, q = ~ { n - ( ~ - ~ ) i ~ ) ,  
x a p  

which completes the proof. 
A nonunifdrm version of Theorem 2.1 can be found in 151. Relation (2.3) 

yields asymptotic expansions for the distribution function of Q ( P ,  n ,  y)" For 
a nonnegative p-dimensional integral vector rx = (a,:. . . , or,) kt S, be the p- 
vaaiate Bernoulli polynomial of order a defined by 

where B, for rn = 0, 1,  ... is the m-th Bernoulli polynomial. These poly- 
nomials are defined by the relations 

For f: RF -+ R we write P f  (x) instead of 

(alal/sul u, . . . ~ ' ~ u J  f ( U ) I ~ = ~ .  

THEOREM 2.2. If Asstsmptiorzs 1 a d  2 are satisjied in case (i) then uni- 
formly for P E y, y E A (P ,  n), a n d  x  E B 

Q ( P ,  n,  y) ( -  m, X I - A ( B ,  n,  y"(P, n))(x"(P, n)) = ~ ( n - ( " ~ ) ! ~ ) ,  

where, 

A (P, n, y)(x) = 1 (- 1)l"l n - l a l l z ~  ( n1j2 x + n ~ ~ ( ~ ) ) ~ q " ( P , n , ~ , x ) .  



The summation ~xtends oaer all mnnegutiue p-dime~si~nnl  inlegral trectors w 
szkch that loll < s - 2, p, ('PI = E X , ,  and 

Proof .  We apply Theorem A.4.3 of [I], p, 258, for I. = s-  1. To this end 
we have to find upper bounds for IDUq(P, n, y ,  u)l(l -t-iluil'") which hold 
uniformly for P E ~  and y E A ( P ,  n). Note first that for all rn and nonnegative 
integral vectors ct there exists j such that, for all P E ~ ,  y ER, UER, and fur 
n = 1, 2, ,.., 

I 

If JJ E A ( P ,  ra), then j l j j l / 2  6 GIs- 3/21 log n, where 7 = J(P, n). Note that for 
YEP, 

sup {llulljH,(P, y ,  u): U E ~ ;  

= sup {llu+xol (PIE;: ~ P ~ Y F J ~ ~ : ~ ~ ~ ~ ~ :  u E  PI. 

Consequently, there exists j such that, for all P E ~ ,  u EP, PI = 1, 2, .  .., and 
YEAIJ', n17 

In the definition of A, in [ I ] ,  p. 259, (A.4.20), we can ornit all terms of order 
(n-  (s- 2 ~ 2  ). This proves the theorem. 

For p = 1 and s = 4 we infer that uniformly for P E P ,  X E Z ,  and 
~ E A ( P ,  n) 

Q ( P ,  n, Y M -  m, XI = @(~-'(~--Z.OI [ ~ ) ~ ; I ' ( P ) Y ) ) +  

with R, ,  R,, Ur, given by 1(3.3), (3.4), and (3.11, respzctively. 
COROLLARY 2.1. For $xed M > 0 there exist polymwu'stls Q ,  ( P ,  y ,  x) and 

Q2 ( P ,  y ,  x) in (x, y) E R4' such that u n ~ o r ~ n l y  for P E g7 y yf A ( P ,  ~ t ) ,  and 
X E Z  with 

we have 
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and R, ,  R,, and T/V, are giuen by (3.3), (3.41, and (3.11, respeccivelj~. 
lf the distribution Q ( P ,  n, y) is smooth, then an approximation of the 

distribution function of Q(P, n ,  y) by q ( P ,  1 2 ,  y ; )  should be possible. In the 
following we consider case (ii), i.e. ;F; has the minimal Iartice ZB and XI 
satisfies the uniform Cramer condition (1.1). 

THEOREM 2.3 If Asslampticlns 1 and 2 are satisfied in case (ii), then 
tln(form6y for P E  q, yfA(P",  a) cind convex measurable C c Rp 

Q ( P ,  n, yj(Q = q ( P ,  n ,  y ( P ,  n), E(P, f iq))dx+o(n' ' -  ' ) I 2 ) .  
C 

Pr oof. Denote by P, the distribution of n l i 2 [ x -  rzpC1,) under QIP,  n ,  y )  
and by Q, the signed measure with Lebesgue density d ' " q ( ~ ,  n, J?(P, n);). 
EOF A c RP and E > O let i A  be the boundary of A and 

All error terms in this proof hold uniformly for P E ~ ,  y e A ( P ,  n), and 
convex measurable C c R. To prove our assertion 

it suffices to show that the following relations hold: 
(A) sup [IQ, ({~C)")//E: E > 0) = o (n1j2); 
( B )  for a11 nonnegative integral p-vectors cr with loll < p+ 1, 

(see [I], p. 97, Corollary 11.5, and p. 98, Lemma 11.6). 
Relation (A) follows from the equality 

and from Sazonov's lemma (see [I], p. 24, CoroIlary 3.2). 
For the proof of (B) we use the equations 
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and 

(2.7) D" E exp(iP A -  ' I 2 ( X l  + . . . + ~ , , - t ~ p ~  (P) } )  l{yl + . , , + y n = y l  

=(2xn"2 1- j1{lDil < n n l / z , i =  I , . , . , Q I  ( v )  Dz .fn (t, 0) exp fivT F(P, n)) dv, 
where f R  is the characteristic function of n- E ! Z ( Z l  i- . . . + Z ,  - y (PI). If we 
replace Dm f,(t, v)  by an asymptotic expansion, then we obtain an asymptotic 
expansion for the Ieft-hand side of (2.7). This is done in the following lemma. 
Since this lemma is used in [4] in a slightly more general situation, we state 
a11 asstamptians in detail. 

LEMMA 2.1. kt be a firmily uf probability measures satigying 
Assumption 1 and Ie? r, 2 0 be an integer for which 

sup [ j l l . ~ ~ l ~ ~ * ~ ? ( d r ) :  P E  131 < a. 

Assume that for all P E '$3 the covariance matrix 2 (P)  is non-singul~r.  Let $, be 
the characteristic ,function of 

s - 3  

1 n-jiz?j(-@,,l(,: [ x , ( P ) ; ) .  
j= 0 

Then for nonnegative integral p-vectors a with loll G s there exists a psititle E 

such that, far t E RP, llt[l 6 ~ n ' ~ ' ,  P E  w, y EZI, and n = 1 ,  2 , .  . ., 

P r o o f .  Theorem 9.10 of [I], p. 81, implies that there exis'ts a, positive E ,  

such that, for t E Rp, J/tl l  < nltZy v E Rq, ]lull 6 E l  n112, a nonnegative integral 
k-vector with 6 s +ro, and for a = 1, 2,. . . , 

Using (2.7) we infer that there exists E ,  > 0 such that, for t ER. 
lltll 6 ez nli2, P E  '$3, and a nonnegative integral p-vector a with la] < s, 

I ~ " ( ~ e x ~ ( i t ~  n - ' j 2 ( x 1  + . . . + ~ , , - n p l  (P)))B~Y~+...+Y,,=~,- 

- ( 2 ~ n ' / ~ ) - q  J ll/, (r, v) exp (- ivT Y(P, ~z)) dv)l 

< (1+lij7(P, n)~lr0)-1max{~;1exp(-~2~It112)n-(S+q-2)j2 +]I (83+j2IP)i) .I 

and the maximum is taken over all nonnegative integral &-vectors #? with 
IBI < s-krcj. 
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There exists a positive E, such that for all t E R. P E T ,  n = 1,  2, .. ., and 
all these p's we have 

111 order to prove the same relation for I, ID) we note that 

(2.8) f,(r, v )  =fp(n-1'2 r ,  n-"' vu)"exp(-itT ?r1 i2p l  (P) - iv[  n1I2 p2 ( P ) ) .  

Since for a11 positive B we have 

sup(I<&(O, u)l :  6 G Ivjl ~ T E ,  j= 1 ,..., y ,  P F V J  < 1 

and since if,: PIE g) is equicontinuous, there exists E& > 0 such that 

Csnseqnenlly, there exists 8, > O such that for r E Rp3 llrll G ES nl/', P E @, PI 

= 1,  2,. . . , and for all relevant p"s we get 

This proves the lemma. 
We apply Lemma 2.1 with r0 = 0 and r instead of s and obtain upper 

bounds for 

JJ{i,t,i S C , , ~ J ~ I  ID' 5 exp(itT X) (P, - Q,) [dx)I dr . 

We apply the inequality 

Ia/b-c/cll < d -  "lb-dl la//&-la-el), 

where 

a = f I  l , 2 , ~ ~ e x p ( i r T n - 1 1 2 ( ~ ,  + ... +x,-np(~))) x 

x Piul+...+r,=vtdtF 

Together with the inequality lal/lbl d (Icl -I- la - cl)/(ldl- I$ -dl) we obtain 

la/$-c/dl = ~ ( r z - ( " ' ) ~ ~ ) .  

Hence relation (B) holds if 



Obviously, 

. f l{p,h- IHZa l i t ! [  a tn  1 ,2 ; / lp  jeitxQm(dx)/ d t  = o(n-i6-2v2). 
For the proof d the same relation for P, we use the uniform Cram& 

condition (1.1). From (2.7) we obtain 

IDa Jexp(irT x)PPa[dx.)l < sup {ll)aji(t, u)1: v e R ) / P  {Yl + . . . + & = y ]  

Equation (2.8) and condition (1.1) yield that sup {ID'S,(!, u)j: V E P ~  con- 
verges to zero exponentially. Using (2.5) and (2.6) we see that P { Y, t- . . . + YM 
= y)  does ilot converge to zero exponenliallg;. This proves the equality 

Now the proof of Theorem 2.3 is complete. 

3. Formulas. To write the formulas in an wommic way we ileed the 
following notation : 

For positive integers m and i,, .. .; i, E {O,. . ., g ]  let 

where s"), . . . , 2'q' and pC1")(P), . . . , P ( ~ I ( P )  are the components of the vectors 2 

and PIP), respectively. Write 

(i, j ,  i, m) = agogi,j,i,m,9 i ,  j ,  1, m = O , . .  ., q .  

We note that = a&'/2. 
If in the brackets an index, say i, is replaced by a dot, this means 

multiplication by a;: ali and summation over i = 0,. . . , q. If a pair of indices 
i ,  j is replaced by a pair of plus signs or asterisks, this means multiplication 
by a&,' aij and summation over i, ,j = (9,. . ., q. For example, 

We shall use the following convention: if in a product an index occurs at 
least twice, this means summation over this index starting from 0 in case of a 
Roman type index, and from 1 in case of a Greek type index. 

For Hi (P, y, x) introduced in (2.2) we define & by 
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Then 

(3.1) WI,(P, y, x)  = e r 3 ( - : ,  .)/6-14(-, +, t ) / 2 + ( u 2 - l ) a r B @ ; ,  .1/2+ 

+ ua%@ rr,(P, Y, . )/2, 
(3.2) 

W'(P, yt X )  = (w4-3) ( ( . ,  -, ., * ) - 3 ) / 2 4 - - ( ~ ~ - - 1 ) ( ( . ,  ., t-, +)-3-q)/4+ 

+u3crp ( f i ,  -, ; - ) / 4 - ~ ~ r ~ ( # l ,  ', +,  +)/2+ 

+ ( ~ ~ - 1 ) 0 r ~ r ~ r ~ ( 8 ~  y ,  mr .)lr4f U G ~ ~ " ~ ~ ~ ~ J ( P ,  Y ,  J, .3/6- 

- ~ u ~ l ) y , r , / 4 + ( u Z - l i ) a 4 r p r , r , r , ( f l ,  y, .)(6, E ,  -)/72- 

-U03rl ly lg( .R.  1, +I@, .r +1/2+ 

where u = a - 1 ( ~ - 6 , , ( ~ ) 2 ; ~ ( ~ ) y )  and P' = ,Z;:(P)y. 
Define 

X 

Ri(P3 Y ,  x) = 1 NiCP, Y, s")dS/N,(P, Y ,  4. 
- rn 

Then with u and r as above we obtain 

(3.3) R,(P,  J ,  X) = - v 2 ( . ,  ., - ) / 6 + ( . ,  +, $112-(. ,  -, . ) / 3 - u ~ r ~ ( f i ,  -, ' ) / 2 -  

-a2rgr,CP, Y ,  'M27 
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