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ASYMPTOTIC EXPANSIONS FOR CONDITIONAL DISTRIBUTIONS:
THE LATTICE CASE
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Abstract. It is shown that the conditional distribution of
X, +...+X,, given Y;+...+Y, =y, admits an asymptotic expan-
sion whenever (X, Y;), (X5, ¥2),... is a sequence of independent
identically distributed lattice random vectors and y lies in a set A (n)
for which P{Y;+ ...+ Y,¢ A(n)} can be neglected. Explicit formulas
are given for the terms of order n™ Y2 and n™1.

1. Introduction. Let ¢ be a family of probability measures on the Borel
field #* of some Euclidean space R*, and for fixed PeB let Z,, Z,,... be a
sequence of independent k-variate random vectors with distribution P.
Partition the vectors Z; according to Z; = (X, Y;), where X, is p-variate, Y; is
g-variate, and p+q = k. We consider the conditional distribution Q (P, n, y)
of X;+...+X,, given Y;+ ...+ Y, =y, in the following two cases:

(i) The set of all integral k-vectors Z* is the minimal lattice for Z, (i.e.
Z,eZ* almost surely and Z* is the minimal additive subgroup of R* with
this property). :

(i) Z? is the minimal lattice for Y;, and Z, satisfies a uniform Cramér
condition in its first argument X,:

For every ¢ > 0 there exists 6 > 0 such that for ¢, e R, t,eRY, [|t,]] = ¢, we
have , ‘

(1.1) |[Eexp(it] X, +ith ¥})| <1~

We shall obtain asymptotic expensions for the distribution functions and
the point probabilities in case (i), and for probabilities of convex sets in case
(ii). This will be done with an error term umform in PcP and y in a subset
A(P, n) of Z% such that

sup{P{Y, +... +Y,¢ A(P, m}: PeP}
can be neglected.
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Asymptotic results on Q(P, n, y) were first obtained by Steck [10]. He
proves weak convergence of suitably standardized conditional distributions
to the normal law. Higher order approximations for conditional distributions
are derived by Michel [6] for the case where for m sufficiently large the
distribution of Z;+...+Z, is dominated by the k-variate Lebesgue
measure. Qur proofs are based on Michel's method. For p =1, explicit
formulas are given for the terms of order n~*/? and n™! of the expansions.

Asymptotic expansions for conditional distributions are a basic tool to
investigate the asymptotic behavior of asymptotically similar tests in ex-
ponential models (see [7] and [3]).

As a side result, we obtain asymptotic expansions for certain distributions
by writing these distributions as Q (P, n, y) with suitably chosen P and y:

Example 1.1. (a) Let P be the distribution of (U, U + V), where U and V
are independent Poisson variables. Then Q (P, n, y) is a binomial distribution
with parameters n and EU/E(U+V).

(b) If P is the distribution of (U, U+ V), where U and V are independent
Bernoulli variables with EU = EV, then Q(P, n, y) is a hypergeometric
distribution with parameters 2n, n, y. Approximations for hypergeometric
distributions can be found in [8]. If EU = p, # p, = EV, then Q(P, n, y) is
no longer hypergeometric. For

6 =pl —Pz)/(Pz(l —Pl))

we obtain

Q(P’n’y){k}=<Z>»<yfk‘)0k[j§oG)(.vij)aj] o k= Oy

Asymptotic normality of these distributions was shown by Hannan and
Harkness [2].

Example 1.2. Let Py, P, be probability measures on # satisfying the
usual Cramér condition ,
12 lim supl‘fe“"Pj(dx)l <1, j=1,2

: ftl— o0

Consider a sequence Uy, U,,... of independent random variables, some of
which have the distribution P,, the others have the distribution P,.
Asymptotic expansions for the distribution of U;+ ... + U, can be obtained
from our Theorem 2.3: o

Let (X,, Y}), (X,, Y,),... be a sequence of independent identically distri-
buted bivariate random vectors such that ‘ :

(@ P{Y, =1} =1-P{Y, =2} = pe(0, 1);

(b) the conditional distribution of X, given ¥; =j, is P; (=1, 2).

If k terms in the sequence U,,..., U, have the distribution P, and n—k
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terms have the dlstrxbutlon P,, then the distribution of Uy + ... + U, equals

g(P, n, k).
Here the uniform Cramér condition (1.1) is satisfied, i.e. by (1.2) for any

e >0 we have

sup {|Eexp(itX; +is})|: || > ¢, seR}
= sup{|p[exp(itx+is) P, (dx)-!—(l p) fexp(itx+2is) P, (dx)|: |t| > &, seR}

< sup {p|f € Py (dx)| +(1—p)|f = P, (@dx)]: |t > &} < 1.

- The above result extends easily to more than two possibledistributions of

Ul’ Uz, »ee i

Another application of our results is the approxxmatmn of the surprise
index (see [9]):

Example 1.3. Let U,, U,,... be a sequence of independent identically
distributed Z'-valued random variables. Write :

polk) =P{U,+ ...+ U, =k}.
The surprise index of the event {X,+...+X, = k} is the number
Sn,k == Z Pﬁ(])/p,,(k)
jez!

Let ¥V and W be independent random variables having the same distribution
as U,, and let P be the distribution of (¥, V—W). Then

Q(P,n, Ok} = P{V =W =k}/P{V=W} = PRy, i1

= Pu(k)/Sp-

Using asymptotic expansions for 0 (P, n, 0) and p,(k) we can easily compute
asymptotic expansions for

| Snic = Pu(k)/Q (P, n, 0) {k}.
2. The rmults Fix an integer s > 3. For P, Qe define
d(P, Q) = sup {|[P(4)—Q(4): AeA"}.

The following assumptions are made throughout this section: ;

AssumprioN 1. The family "B is compact in the topology induced hy d.

AssumpTioN 2. For all Pe P there exists M such that ﬂ]zll'P(d )< V
where r = max(2s—1, p+1).

Remark 2.1. For Pe® we denote by 2 (P) the covariance matrix of
P. For all Pe P the matrix 2 (P) is nonsingular, for otherwise Z* would not
be the minimal lattice supporting P or (1.1) would fail. By Assumption 2 the
map P — X (P) is continuous. Hence Assumption 1 implies that there exist c
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and C (0 < ¢ < C < x) such that for all Pep and all eigenvalues A of 2 (P)
we have c <A < C.

Remark 2.2. For Pe ‘P we denote the characteristic function of P by fp.
Let ¢ >0 and

Ae) ={zeR: e<|z<m, j=1,...,k}.
Then
(2.1) A sup {Ifp(2): ze A(e), Pe P} < 1.
We need the following notation. For PeQ and partition 2 = 2(P) let

Zoo 2
z-(Z0 o)
Z‘10 Z‘11

A=5-1= (Aoo /101)
Ao Ay

and

where X,4, Ao are (p, p)-matrices and X,,, A,, are (g, g)-matrices. Let
D Zo0—2Z0y Zﬁl 2105

which is the (symmetric and positive definite) inverse of Agg.
For a positive integer m and a symmetric positive definite (m, m)-matrix
A let ¢, denote the Lebesgue density of an m-variate normal random vector
with zero mean and covariance matrix A4.
We put
u(P) = [zP(dz),

(P, n) = (R(P, ), §(P, m) = n~ 2 (z—nu(P)), X(P, meR¥, §(P, ne Ry,
AP, n) = {yeZ% (P, ) 2 (P)F(P, n) <(s—3/2)logn}.

For nonnegative k-dimensional integral vectors v denote the v-th
cumulant of P by y,(P), and for j=0,...,s—2 let P;{(—®Po.zp: {x.(P)}) be
the finite signed measure defined in [1] (p. 53, Lemma 7.2) which has
Lebesgue density P;(—@o.5p): {1,(P)}). Let P’ be the distribution of ¥;, and
for nonnegative g-dimensional integral vectors v let x,(P) denote the v-th
cumulant of P'. For j=0,...,5s—2 let us define P;(— oz »: H(P)})
and Pj(—@o., »: {T,(P)}) as above, and for j=0,...,s—2 and fixed
z =(x, y)e R*, xeR®, ye R4, determine H; (P, y, x) by the formal identity

o0

22 X n_j/ZAPj(_(pO:E(P): %6(P)})(@)

j=o

a0

= 2: n_j;ZPj(—qDO:Elyi(P): {ZD(P)})(.V) 'Z() n—ﬂz Hj(Pa Y, x)-

j=
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THEOREM 2.1. If Assumptions 1 and 2 are satisfied in case (i), then
uniformly for PeP and yec A(P, n)

(2.3) > e, n, ) {x}—q(P, n, 5(P, n), X(P, n))| = o(n™ "3,
xezP

where

s—2 )
g(P,n,y, x)=n""2Y n/2H/(P,y, x).
j=0
Proof. For short we write Z, X, y instead of Z(P, n), X(P, n), and j(P, n),
respectively. Note first that uniformly for zeZ* and PeP

24 A+l Y|Pz + .+ Z, =2} -
r—3
—n~M2 Y, n 2 Pi(~ o’ Mo (P})(@)] = O~ E+r=22),

Jj=0
The proof of (2.4) follows the pattern of the proof of Theorem 22.1 in [1].
The crucial point is (22.10) on p. 232 in [1]. An upper bound for I, can be
found by Theorem 9.10 in [1], and an upper bound for I, can be derived
from (2.1). Similarly we infer that uniformly for Pe®P and yeZz?

r=3
(2.5) lP{Yl + ..+ Y, = Y};”_qlz. Z n=i? Pj(_qDO:E“(P): X (P)})(j’)l
: ~ 4

=

— O(n—(q+r-—2)/2).
Furthermore, there exist D > 0 and N such that for all P, n > N, and
yeA(P, n)

r—3

(2.6) Y 072 Pi(= 0oz, (P = Dn~ 631212,

ji=0
The relat_ipn
la/b—c/d) < d~*(b—d|a/b+|a—c))

for a=0 and b,d >0 implies that uniformly for Pe P and ye A(P, n)
Y P{Zi+ .. +Z,=(x, WPV + ...+ Y, =y}

xeZP
' r—3

o2 3 B (= gon (1P 9%

r—3
X ['Zo n"I2 Pi(= 0oz, py: PN Y

= O(n'(f—2‘5+3/2)/2)(1+n“l’/2 Z (1+”x“k+r—1)—1) = 0(7‘1—(5_2)/2).
xeZP
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Finally, there exists a polynomial R in z = (x, y)e R*, xeR?, ye R4, such that
for all PeP and sufficiently large n '

IZ h J/ZP( Pospy: Ho(P)})(2) X

Jj=
52
"[Z n ”P( Doz, 1Py % (P)] )(y)] 1~ Z n_ﬂij(P: Y, x)l
j=0
S R(Z)Hy(P, y, x)n 612,
Putting
Ho(P, y, x) = (PE(P)(x_Zm (P)ZI1I(P)Y)
we infer that uniformly for Pe P and ye A(P, n)

D2 Y n P R((R, ) Ho(P, §, ) = o(n™¢" 2,

xeZP
which completes the proof.

A nonuniform version of Theorem 2.1 can be found in [5]. Relation (2.3)
yields asymptotic expansions for the distribution function of Q(P, n, y). For
a nonnegative p-dimensional integral vector o = («,...,a,) let S, be the p-
variate Bernoulli polynomial of order a defined by

P
Sa(xl,...,xp) :H Bai(xl'),
i=1
where B, for m=0, 1,... is the m-th Bernoulli polynomlal These poly-
nomials are defined by the relations
By(x) =1,
B1(X) =Bn(x), xe€(0,1), m=0,1,...,

1
{B,(x)dx=0, m=1,2,...,
0

B, (x+1) =‘B,,,(x), xeR, m=1, 2,.»..
For f: R” — R we write D*f(x) instead of
@/ uy ... ) f (e

TueoreM 2.2. If Assumptions 1 and 2 are satisfied in case (i) then uni-
formly for PeB, ye A(P, n), and xcRP

Q(P, n, y)(— o0, x]=A(P, n, F(P, m)(Z(P, n)) = o(n™C~ 23,
where

A(P, n, (%) =Y (- n"“”zS; (n*'? x+np, (P))D“@(P, n, y, x).
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The summation extends over all nonnegative p-dimensional integral vectors o
such that |o| € 5—2, 1, (P)=EX,, and v

gP,n,y,uy= q(P, n, y, X(P, n))dx

F(P,n)<u

Proof. We apply Theorem A.4.3 of [1], p. 258, for r = s—1. To this end
we have to find upper bounds for |[D*q(P, n, y, w)|(1+||u||™ which hold
- uniformly for Pe P and ye A(P, n). Note first that for all m and rionnegative
integral vectors o there exists j such that, for all Pe B, yeR%, ue R, and for
n=1,2,...,

ID*q(P, n, y, w (1 +][ull™) < j(L+|Iyll +]lully Ho (P, y, u).
If ye A(P, n), then ||j]|> < C(s—3/2)logn, where § = j(P, n). Note that for
all yeR?, ‘
sup {|lull’ Ho (P, y, u): uecR?}
= sup {[lu+Zo; (P) 21 (P) YV @5 () 1€ R},
Consequently, there exists j such that, for all PeP, ueR, n=1,2,..., and
yeA(P, n),
ID*q(P, n, y, u)l (1+]jull™) <'J'108j"-

In the definition of A4, in [1] p. 259 (A.4.20), we can omit all terms of order
o(n~©~2¥%), This proves the theorem.

For p=1 and s=4 we infer that uniformly for Pe, xeZ, and
yeA(P n)

Q(P, n, y)(—o0, x) = 45(0—1'(55**201(P)Ex—ll(P)Y))+
'+5_1(P(5 (x 201(1))211 (P)Y)["_l/z R1(P , P — ) _
(Rz(P 7, DM (P, 7, X)—1z0" 1 (E—Zo1 (P) 21 (P)f))]+o(n"1)

with R;, R,, W; given by (3.3), (3.4), and (3.1), respectively.

CoroLLARY 2.1. For fixed M > 0 there exist polynomials Q, (P, y, x) and
Q,(P, y, X) in (x, y)e R** such that uniformly for PE‘IB yeA(P, n), and
xeZ with

[Z(P, m)—Zoy (P) I (P)F(P, W) S M
we have ;

Q(P, n, y)(— o, x) = B(c™*(Z(P, i)~ Zoy (P) 7 (PYF(P, m)+

+n"12Q, (P, §(P, n), X(P, m))+n""Q,(P, (P, n), X(P, n))+o(n™ "),
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where

Q:1(P, y, x) =Ry (P, y, x)—%,
02(P, y, ) = Ry (P, y, )= Wi (P, y, x)~
vidh (x Zo (P21 (P)y)
+307 (x— 20 (P 2T (P)y) Q1 (P, ¥, X)
and Ry, R,, and W, are given by (3.3), (3.4), and (3.1), respectively.

If the distribution Q(P, n, y) is smooth, then an approximation of the
distribution function of Q(P, n, y) by (P, n, y,-) should be possible. In the
following we consider case (ii), i.e. ¥; has the minimal lattice Z% and X,
satisfies the uniform Cramér condition (1.1).

THEOREM 2.3 If Assumptions 1 and 2 are satisfied in case (ii), then
uniformly for Pe B, ye A(P, n) and convex measurable C — RP

Q(P, n, y)(O) = [ q(P, n, 5(P, n), X(P, n))dx+o(n =212
C .

Proof. Denote by P, the distribution of n~2(x—nu,) under Q(P, n, y)
and by Q, the signed measure with Lebesgue density n”?q(P, n, §(P, n),").
For A< R and ¢> 0 let @4 be the boundary of A and

A® = {xeRF: @x'eA) |Ix—x| <e&}.
All error terms in this proof hold uniformly for PeB, yeA(P, n), and
convex measurable C < RP. To prove our assertion

P,(C) = 0,(C)+o(mn™ ™2

it suffices to show that the following relations hold
(A) sup {|Q,((6Cy)|/e: &> 0} = o(n'/?);
(B) for all nonnegative integral p-vectors a with || < p+1,

§ 1y <t~ 102, (0) |D* fexp(it™ X) (P, — Q,) (dx)| dt = o(n™ ¢~ 2/?)

(see [11, p. 97, Corollary 11.5, and p. 98, Lemma 11.6).
Relation (A) follows from the equality

sup {|g(P, n, §(P, n), u)/Ho(P, F(P, n), u): ue R} = o(n'?)

and from Sazonov’s lemma (see [1], p. 24, Corollary 3.2).
. For the proof of (B) we use the equations
D* [exp(it" x) P,(dx) = D"Eexp(it" n (X + ... + X, —nu (P))
X1y, +rr=p/P{Yi+ ... + Y, =y}
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and
27  D*Eexp(it"n V3 (Xy+ ... + Xy (P) Ly o vy, =p)
z(znnllz)_qj‘l{'uiis_nnl/zvi=1 ,,,,, q}(v) Da.fn(ta 1.7) exp(iUT _V(Pa n))dv

where f, is the characteristic function of n™'*(Z,+ ... +Z,—-u(P)). If we
replace D* f,(t, v) by an asymptotic expansion, then we obtain an asymptotic
expansion for the left-hand side of (2.7). This is done in the following lemma.
Since this lemma is used in [4] in a slightly more general situation, we state
all assumptions in detail.

LemMMA 2.1. Let B be a family of probability measures satisfying
Assumption 1 and let ro = 0 be an integer for which

sup {[llzII"®"* P(dz): Pe P} < oo.

Assume that for all P< B the covariance matrix X (P) is non-singular. Let i, be
the characteristic function of

s—3
Z n~i2 Pj(_¢O:E(P): {Xu(P)})

Then for nonnegative mtegral p-vectors o with la| < s there exists a posmve €
such that, for teRP, ||t| < en'?, PeB, yeZ% and n=1, 2,.

D*(Bexp(it" n™ Y2 (X + ... + X, —npy (P)))1{,,1+"_+Y”=,,,
—(2nn'?)7 [y, (¢, v)exp(—iv" (P, n))du)|
<exp(—ellt]|®) (L+IFP, ) ®) te~tnrem D2,
Proof. Theorem 9.10 of [1], p. 81, implies that there exists a positive &,
such that, for te R, ||t|| <&, n'/% veRY, ||v|| < ¢, n'/?% a nonnegative integral
k-vector 8 with || < s+ry, and for n=1, 2,...,
IDP(fu(t, 0) = (t, v))| < &7 ' exp(—ey [[t]I>—e, ol n= 6~ 2/,
Using (2.7) we infer that there exists &, >0 such that, for teR?,
lit]| < e,n?%, Pe®P, and a nonnegative integral p-vector a with [a] <s,
ID“(ECXp(ltT n— 1/2(X1 + e +X,,—nﬂ1 (P)))]{yl.(..“.'_y'":y)'—
—(2nn'2) "1, (¢, v)yexp(—iv" F(P, n))dv)l
< (1+IIF(P, n)l"°)~ ! max {e; ' exp(—e, ||t n~C D21, (B)+1,(B)),

where «
I (p) = (2nn'/?)™1 j 1{Iui!<nn1/2,i= Leuglivll 381"1/2}(0) ID? fu(2, v) dv,

I,(p) = (2nn'%) 72| 1{“”” aslnllz,(U) |DF (2, v)| dv,

and the maximum is taken over all nonnegative integral k-vectors f with
1Bl < s+r.
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There exists a positive ¢ such that for all te R, Pe B, n=1, 2,..., and
all these f’s we have '
I(B) < exp{—¢g;n}.
In order to prove the same relation for I,(f) we note that

(2.8)  folt, v) =fp(n™ V2t nm 2 p)exp(—it" n''? py (P)—iv" n''? py (P)).
Since for all positive § we have '
sup {0, 0): <yl <m j=1,...,q, PeP} <1

and since {fp: PP} is equicontinuous, there exists g, > 0 such that
sup {|fp(t, 0)l: |t <eq, ol 2 &1, 0l <m, i=1,...,q9, PeP} < 1.

Consequently, there exists &5 > 0 such that for teR?, ||t]| < esn'/?, PePB, n
=1, 2,..., and for all relevant f’s we get

I (B) < exp{—esn}.

This proves the lemma. :
We apply Lemma 2.1 with r, = 0 and r instead of s and obtain upper
bounds for

1y <ot D [ XD )Py = Qu) ) .

We apply the inequality
la/b~c/d| < d~*(|b—d]|al/b—|a—c]),
where

a= {1 D*Eexp(it"n Y2(X, + ... + X,— npu(P))) x

el <enl/Z)

i , X1y, +. . +y,=pdt,
c= jl{”t” <ent/2y D ((2nn®)~ 1 [y, (¢, v)exp(—iv" F(P, m)dv)dt,

b=P{Y,+..4+Y, =y}
r—3

d=n"% Z n=i? Pj("‘“"ﬁ”o:z“(r): '{ZU(P)})(f(P, "))-
=0 : _

Together with the inequality |al/|b] < (lc|+|a—c])/(|d]—|b~—d]) we obtain
la/b—c/d| = o(n~ ¢~ 2/2),
Hence relation (B) holds if

[1 = 125 g1y 5 2y |27 T €XD(ET ) (Py— Q) (d0)] di = 0(n™ 6 212),
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Obviously,

f 1(,,(3— D22 1)) 2enll2) 'Da j‘eitx Qn(dx)' dt = o(n-(s»~ 2)/2)'

.For the proof of the same relation for P, we ‘use the uniform Crameér
condition (1.1). From (2.7) we obtain

|D* fexp(it" x) P,(dx)] < sup {[D*f,(t, v)|: veRY/P{Y;+...+Y, =y}

Equation (2.8) and condition (1.1) yield that sup {|D%f,(¢, v)]: ve R?} con-
verges to zero exponentially. Using (2.5) and (2.6) we see that P{Y; + ... + Y,
=y} does not converge to zero exponentially. This proves the equahty

i1 - 1),2>”t“>£"1,2’{D“§exp(lt x) P, (dx)|dt = o(n~ 6~ 2/?),
Now the proof of Theorem 2.3 is complete.

3. Formulas. To write the formulas in an economic way we need the
following notation:
For positive integers m and iy,...,ine{0,...,q} let

Otgronig = =1V (B)).. (2 = ™ (P) P(d2),

where z(?,...,z@ and p@(P),..., 19 (P) are the components of the vectors z
and u(P), respectively. Write

T l=4= (aij)i.j=0,...,q:
(isjsl):agélzai,j,b i:jal :07-"aQa
(i,j,l m)=agoai,j,l’m..; i,j, l,m=‘0,...,q.
We note that o = agq /2.

If in the brackets an index, say i, is replaced by a dot, this means
multiplication by ay;' a,; and summation over i = 0,...,q. If a pair of indices
i, j is replaced by a pair of plus signs or asterisks, this means multiplication
by age 4; and summation over i,j=0,...,4. For example,

—-3/2
(*5 ) =age ! Qo; Agj Qo1 0y, 5,15

i,j 0

A

e TDMe

QA0; 810y, 5,1- ,
. L, 1=0

We shall use the following convention: if in a product an index occurs at
least twice, this means summation over this index starting from 0 in case of a
Roman type index, and from 1 in case of a Greek type index.

For H;(P, y, x) introduced in (2.2) we define W, by
Hi'(P»yax}"_“VVi(Pays X)Ho(Pa_V:x), i=1,2
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Then
(3.1)  Wi(P,y, x) =u(~~, ) 6—u(, +, +)/2+(u? —Dorg(B,-, )2+

+ua®rgry(B, v, )2
(3.2)

Wy (P, v, x) = @*=3)(( - » )= 3) 24— —1)(( > +, +)—3—q)/4+
+ud (B, )6 - uarﬁ(ﬂ, S+, )2+
+@—1)orgr,(B, v, - YA+uairyr,rs(B, v, 0, )/6—
~ (W=D yrgfd+ @ =1 rgr,rsre (B, v, )0, 8, )72~
—uc®rgr,rs(B, v, +)(6,, +)/2+
+(@ —wya ryr,rs(B, - )y, 8, )/4—
~@*—1a*rgr, (B, v, +)(+, - )4+ :
+@—1)o2rgr, (B, - +)(7, +)/2+(u4—3)0'2"ﬁi‘7(ﬁ, v ) s )12+

@t —2u—1)o?rgr (B, - ) - )8 —
—(W?—=1)a*rgr, (8,7, )~ +, +)/4+u0rp(ﬂ +)(+, *)/2— :
—worg(B, - +)(-,  +)2+uorg(B, +, (- +, #)/2+
+@* —w)ory (B, ), 12— )y (B, - ) +, +)/A—
—@*=3)(5 5 H) s FBHEE =D, H)(+,  #)/4+
@ =1)(, +, D5+, WYEHE =D+, +)/8—
—@*=3)(54) (5 4 Y124 @15 4 72,

where u =0¢"*(x—2o, (P) 27 (P)y) and r = 2 (P)y.
Define

Ri(P,y,x)= [ Hi(P,y, §d¢/Ho(P,y, x).

Then Wlth u and r as above we obtain

(33)  Ry(P,y,x) = —u?(5 5 )6+( +, +)/2=(- - )3 —uorg(B, -, )2~
~a?ryry (B, v, )2, ‘

(34 RZ(P y X) =(~u —3u)((' ) — 3)/24+u((',', +, +)—3—g)/4+
+(—ut=2)ary(B, -, - )6+arg (B, +, +)/2—
—ua’rgr, (B, v, VA= rgr,rs(B, v, 8, )6+
+uygrg/d—uctrgr,rsr (B, v, )0, & )12+
+airgr,rs(B, v, +)(6, 5 +)/2+
+(=u?+3) e rpr,rs(B, )y, 9, )4+
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+uctryr,(B, v, +)(+, - )/4—

——uazrgry(ﬂ, S )y, s )2+

+(—1d=3u)a?ryr, (B, 7, ) (- Y12+

+H(=uw—walryr, (B, 5 )3, 5 W8+

+uc?rgry (B, v, )5+, HYA=org (B, +)(+, *, #)/2—
—(~u*=2arg (B, -, +)(~ - +)/2—

—org(B, +, #( +, #)/2+

+(——u4—3u2—6)0'r,,(ﬁ, 5 ) () 12—

—(—u2=1)ars(B, )55 12—

—(=u=Dory(B, - ) +, +)fd—

—(=? =3 H)Cn H)B—u(s oy +)(+, % #)/d—

—u(y +, 90, +, Hfd—u(, +, +)¥/8—

(=3 =3u) (" )+, H)12+

+(—u® = 5u® —15)(;, -, -)/72.
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