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SCALE INVARIANCE OF STATISTICAL E X P E W m W S  

Abstract. It has been shown by LeCam [5 ]  that weak limits of 
experiments, which are parametrized in a certain way, typically 
satisfy a n  invariance condition which is called translation invariance. 
B is shown in the present paper that weak limits of product 
experiments with identical factors can be characterized by stability. 
This property has been considered already by Mffller [lo] under 
the label scale invariance. There is given a complete description of 
all Gaussian experiments which are translation and stable. Any 
translation invariant experiment with finite-dimefisional parameter 
space which is stable with exponent p = 2 must be a Gaussian shift. 
These results specify and extend indications of Miiller [lo]. 

Let T # Q)  be an arbitrary set. A statistical experiment E = (52, d, f l  for 
the parameter space T is a triplet consisting of a measurable space (0, 4 
and a family S = (P,: t~ T )  of probability measures. The oolIection of all . 
experiments for the parameter space T is denoted by b(7'). The experiments 
for which t I+P, is constant are called trivial. 

From basic results of decision theory an equivalence relation on 8(T) 
arises. The set of equivalence classes is denoted by &(T). In the sequel the 
weak topology on &(T) is considered. For both, the equivalence relation and 
the weak topology, the reader is referred to the literature, e.g. LeCam L6] 
and Strasser [14]. 

Let A(7') be the family of all finite subsets of T If u ~ A ( 7 ' )  and E, 
=(a, d, ga) with ga = {P,: t ~ a ) ,  then the Hellinger transform of E, is the 
function 
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S,  = { z € R a :  0 d zt 6 1, t E a ,  C z t  = 1) 
IEa 

and vl .d is an arbitrary a-finite measure dominating Pa. 
It is well-known that two experiments E and F in c$(T) are equivalent iff 

H (E,) = H(Fa) for every a E A (TI. 

Moreover, a sequence converges weakly to E iff for every a E A(T)  

lim H(E,,,) = H(E,) on S,. 
a-m 

Let us illustrate the weak topology by some typical examples. 
(1.1) Example. For every p€[O, 11 let B ( p )  = ( l - p ) ~ ~ + p ~ ~  be a two- 

point measure on ( I t ,  .+?). Fix some p ~ ( 0 ,  1 ) .  The sets 

satisfy T, T := R. Then the .sequence of experiments 

converges weakly to the Gaussian shift experiment F = (R, 3, kqbZ: ~ E R ) )  
with a2 = p ( l  - p ) .  

(1.2) Ex  ample. For every A 2 O let P(A) be the Poisson distribution with 
mean I. The sets T, : = {A 3 0: An-' E [0, 11) satisfy T, T : = [0, a). Then 
the sequence of experiments 

converges weakly to the experiment F = (R, 9?, [P(A):  A 2 0)). 
(1.3) Example. Denote the unit vectors of I?" by e i ,  1 < i 6 m, and 

define the simplex 
rn 

S ,  = (PER": pi >0, 1 < i< m, C pi = 1) .  
i =  1 

For every p € S m  let 
m 

Define a hyperplane 
m 

T : =  { t E P :  C ti =0]. 
i= 1 

Fix some p~ S,. The sets 
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satisfy T, t 7: Then the sequence of experiments 

converges weakly to the Gaussian shift experiment 

with = (pi 6ij)l <iqjSm. 

(1.4) Example. Consider now the family of grobability measures 
(P,J&?: 9 ~ l g )  with Lebesgue densities 

dP, 
- ( x ) = C ( u ) e x p ( - ( x - 9 j a ) ,  X E R ,  
dll 

where a > 0 is a characteristic constant of the family. Let 
n-1/2 if a > 112, 

( n  log n ) - l f 2  if oc = 1/2, 
n-11(2@+1) if a < 1/2. 

For some fix~d 8 G R  consider the sequence of experiments 

If a 2 112, then (En),, converges weakly to the experiment 

where a' > 0 depends on a. If a: < 112, then (E,,),, converges weakly to an 
experiment F = (a, d, {Q,: t E R}) which is characterized by the fact that 

is a Gaussian process with covariance 

and mean - K (t , t ) /2 ,  s E & t E R. 
(1.5) Example. Let POI W be the probability measure with Lebesgue 

density 

Consider the family of probability measures P, = Po * E , ,  9~ R. Then, for 
some fixed the sequence of experiments 
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converges weakly to the experiment F = (R*, AT2, {Q, : t E R}),  where 

The common feature of the preceding examples is that they are dealing 
with weak convergence of product experiments with identical components. 
The whole situation can be described as follows. Let 8 s @ be a subset and 
let E = (9, d, (Pg: 9~ 69)) be an experiment. Fix some 9 E O and consider a 
sequence of positive numbers S, 10. For every nf IV let 

T, = { t ~ H k t :  $ + b , t ~ @ )  and T:= lim T,. 
n- m 

Then one is interested in weak limits of the sequence of experiments 

The main objective of the present paper is to provide a characteristic 
property of all possible weak limit experiments which can be obtained in 
such a way. We will call this property stability of an experiment (see 
Definition (2.5)). 

(1-.6) Remark. Bas~cally, every sequence (8,) can be used for resealing. 
However, one may ask which reparametrizations are meaningful from a 
statistical point of view. The purpose of rescaling is to guarantee that the 
limit experiment I; is non-degenerate. If {Q,: t~ T )  is the family of pro- 
bability measures underlying F, this means 

Since En -t F, weakly, we have 

i.e. any choice of 6, = 6,(t) (possibly depending on t )  which satisfies 

makes sense. If E is non-trivial and continuous, this can always be achieved. 
The salient point, however, is the question whether the order of the conver- 
gence of 6,(t)  10 is independent of t~ T. One easily checks that 

1 
6, (at) = - S,(t), a > 0. 

a 

Hence, the order of convergence is constant on every ray starting at 0. 
But, in fact, there is a variety of interesting cases with order of convergence 

i differing from ray to ray. A systematic treatment of these cases within the 
I 

! framework of the asymptotic theory does not exist up to now. A11 the 
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situations considered so far in the literature are such that the rescaling can 
be done independently of the particular ray. This is not only true for the . 
numerous standard examples where the limit is a Gaussian shift, but also for 
those "non-regular" cases, which are considered in Ibragimov and 
Has'minskii [I], Chapters V and VI. It is one of the primary aims of the 
present paper to start with a systematic treatment of these examples. 

(1.7) Remark.  Of course, even if (d,),, ii an appropriate resealing, it 
does not follow that (E,Jn),, converges weakly. A substantial assumption 
of the present paper is that (En),, is equicontinuous in a sense described 
below. As is well-known, this implies weak sequential compactness of (En),,. 
For simplicity, the theorems of this paper have been formulated for the 
whole sequence But it is mere routine to chck that they also apply 
to subsequences. Hence, the main theorem (2.9) yields a characteristic pro- 
perty of all weak accumulation points of a reparametrized equicontinuous 
sequence of experiments. 

The paper is organized in the following way. The main results are stated 
and proved in the second paragraph. Section 3 contains some basic facts on 
translation invariant and on Gaussian experiments. In the last paragraph we 
have collected some consequences whlch are obtained by combining stability 
with translation invariance to give partial answers to a question posed by 
Miiller [lo]. 

k t  us conclude the introductory section with some technical 
supplements. 

There are several topologies on the space of probability measures which 
play a role in the present context. The uariationaI distance between PI SZ and 
QJ  -r$ is denoted by IlP-Q11. Another metric is defined by the Hellinger 
distance d ( P ,  Q )  which is related with the Hellinger transform by 

H (E,) (4, i) = 1 - d2 (P,,  P,) if a =.is ,  t )  . 

The topologies on 9 which are defined by these distances are identical. 
For the following assume that T is a metric space with distance Q. An 

experiment E = (9, d, {P,: t~ T}) 1s continuous if t H Pt is continuous for 
the variational (or Hellinger) distance. Let Pl,f T and consider a *sequence of 
experiments 

E , = ( Q , ,  dm, {P,,,: ~ E T , , } )  in &(T&,  EN. 

The sequence (E3, ,  is called equicontinuous if for every E > 0 and t  E?" 

there is a S(E, t) > 0 such that 

, ,  E if Q ( s , ~ ) < E  and { s , t )  G T,. 

Equicontinuity of a sequence (En),, has the following useful consequence. 
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Let (~,J,,IA(T) and ol€A(T)  be such that c r ,=( t , l  ,..., t sPk) ,  a =  
= ( t l ,  . .., t k ) ,  and tnVi -, ti, 1 G i G k. If (Em),& is equicontinuous and E,  + E 
weakly, then H ( E  n,,n) + H (E,). 

2 STABILITY OF EXPERIMKNTS 

Let Ei = (Qi, di, Pi) be experiments in C ( T )  and write Pi = {P,,,: t~ T ) ,  
i = 1, 2. Then the product E I @ E ,  is defined by E , 8 E 2  =(a1 x62,, 

P), where 9 = [P, , ,@P, , , :  t~ T I .  In an obvious manner this 
definition can be used to define powers of experiments. 

(2.1) Defini t ion.  An experiment E E b ( n  is infinitely divisible if for every 
n E N there is an experiment F,  E t (T) such that FX - E. 

If F," - E, then Fa is called an n-th root of E. We call F ,  the n-th rDOt 
since it is uniquely determined up to equivalence. In an obvious manner it is 
possible to define rational powers of infinitely divisible experiments and it 
follows from weak compactness of &(T)  that there is a weakly continuous 
semigroup A w E i ,  LE(O,  a) (i.e. E"# = E"EW), such that El = E. 

The general form of the Hellinper transform of an infinitely divisible 
experiment is derived by LeCam [6] .  An eIaboration of his ideas is con- 
tained in Milbrodt and Strasser [9]. We only give important examples which 
will be used later. 

(2.2) Examples.  
(1) Let Tbe a positive definite(k x k)-matrix and let E = (Rk ,  .#, .9) with 

9 = (v,,,: t~p]. If we define E, =(@, d ,  PA) with PA = ~v i l , 21 , r :  I E ~ ) ,  

R 2 0, then easy computations show that E ,  - E< 1 A 0. An experiment like 
E is called a Gaussian shift. The limit experiments of Examples (1.1) and (1.3) 
are Gaussian shifts. 

(2) Let 92 be a ring of subsets of a set X and for each I E T let A: W 
-t [0, cc) be an additive set function. Consider the experiment E E b ( T )  
whose probability measures P,, t~ are the distributions of the Poisson 
processes with intensity k, t E T (cf. Le Cam 161 and Milbrodt [8]). Such an 
experiment is called a Poisson experiment. Every Poisson experiment E is in- 
finitely divisible and the n-th roots are Poisson experiments with intensities 
h/n, IE T The limit experiments of Examples (1.2) and (1.5) are Poisson ex- 
periments. This is trivial in Example (1.2) and less obvious in Example (1.5). 

For the rest of the present section we assume that the parameter space T 
is a convex cone with vertex zero of a normed linear space and that O E  IT: 
The most important example will be the case where T = Rk. It should be 
noted, however, that the assumption covers also the case of Example (1.2). 

For the notion of stability we introduce a useful notation. If cr 2 0 and 
E€b (T ) ,  let U , E E ~ ( T )  be the experiment which is obtained from E 
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replacing t by at for every t~ T Hence, if E = (a, d, .[ P,: t~ Tj), then U, E 
=(P, d, [P,,: t €  TI) .  

(2.3) LEMMA. The system (UJ,,, is a semigroup of weakly continetous 
transformations with the following properties: 

(I) U, Up = UaB, where a 2 0, f l  3 0. 
(2) U,E@UuF = U,(E@F) for u 2 0. 
(3) E - F implies U, E - U ,  F for a 3 0. 
(4) If E is continuous at zero, then lim U, E is trivial. 

u + o  
(5) If E is continuous at zero and non-triuial, then Urn E - UB E implies 

a = P. 
Proof.  Assertions (1)-(4) are obvious. To prove (5) let U, E -- Up E. This 

implies E - U(p,m,k E for every k~ N. If a > b, it follows that (Wjk + 0 as 
k -P co and continuity of E at zero implies that E is trivial. Hence a: g P. For 
reasons of symmetry it follows that a = /I. 

Condition (4) of the following theorem coincides with the notion of scale 
invariance introduced by Miiller [lo]. 

(2.4) THEOREM. Let E E 6 (T )  be a non-trivial continuous experiment. The 
following properties are equivabnt: 

(1) For all z > 0, fl > 0, there is a y > O  such that UaE@U,,E - U , E .  
(2) For every  EN there is a c, > 0 such that En - Uc,E. 
(3) There is some p > 0 suck that En - U,,,, E for every n E N. 
(4) E is infinitely divisible, and there is some p > 0 such that Ea - Ua,,,E 

for every a 2 0. 
Proof.  (1) - (2). Let c, = 1 and define (c,),, inductively by Ucn E BE - U,,, , E, n E N. It is obvious that U,, E - En for every n E N. 
(2) * (3). For convenience c, = : c (n), n E N. For m, n E N we have 

It follows from Lemma (2.3), (5) ,  that c(rnn) = c(m)c (n), where m, n E N. 
Let us show that nwc(n) is increasing. Assurhing the contrary, let 

c ( r  + 1) < c(r) for some r E N. If a : = c(r + l)/c (r) < 1, it follows from contin- 
uity of E that 

On the other hand, noting that ak = c ((r + l)k)/c (rk), we obtain 

, (Uak EYL = u a k  ( ~ 3  .- Uak UC(,.k) E - Ufltr+ ,,,) 
E - E(r+l)k 

which implies that 

1 - d2 (Po, Pukr) = (1 - d2 (Po ,  P,)Y('+ 
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Hence, for every t E T with d (Po, P,) > 0, we have 

which is the desired contradiction. 
If m, n E N  are such that rn > n > 1, then for each k g M  there is an 

1 ( k )  E M such that 
nl(kJ < mk < nl(k) + 1 

I 

which implies 

cltk) (n) g ck (m) < c' (~)+ l (n).  

Combining these inequalities and taking logarithms we obtain 

1 (k) log c (n) log c (m) 1 ( k )  f 1 log c (n) . 
pp < <- I(k) log n ' i(k) + 1 log n log m 

for k -P XI this yields 

log n log ne 

The number or 2 0 is independent of rn,  EN which implies that c, = na, 
 EN. It remains to show that o! > 0. II ~f = 0, then En - E for every  EN, 
which implies 

1 - d2 (Po, P,) = (1 - d2 (Po, P,))", t € T. 

Hence d ( P , ,  P,) can assume only the values 0 and 1 which is a contradic- 
tion to the continuity of E. 

(3) a(4).  To prove that E is infinitely divisible we observe that for every 
n c N  

(U,- 1lpE)" = Un- I/p(E)? - Un- l l p  UnllpE = E . 

which implies that Elln - Un- E. 
Let z 2 0 and choose (k (a)),, such that lim (k(n)/n) = a. Then continuity 

implies 

lim Ua(nl,n)~lpE = UalIp E ,  weakly. 
n-+m 

However, (3) implies 

which proves that E" - Ua,,, E. 
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(4) +(I). This is obvious by the relation 

(2.5) Defini t ion.  A continuous experiment E E b(T) is <stable if it 
is either trivial or if any of the equivalent conditions (1)-(4) in (2.4) is 
satisfied. 

If EE &(T)  is stable and non-trivial, then the exponent p of conditions 
(3) or (4) in (2.4) is called the characteristic exponent. 

(2.6) LEMMA. A continuous, non-trivial experiment E E  &(T )  ii stable with 
exponent ' p > 0 ifS the Iogarithm of i ts  HeIIinger transforms 

are homogeneous functions of degree p. 
Proof.  This is an immediate consequence of (2.4) (4). 

(2.7) Examples.  
(1) The limit experiments of Examples (1.1)-(1.5) are stable. 
(2) A non- trivial Poisson experiment E whose intensities are uniformly 

bounded measures cannot be stable since 

is bounded on Tx 7: 
Now, we show that the class of stable experiments coincides with the 

class of weak limits of equicontinuous sequences (UanEn),,, where 6,JO. 
This extends the suggestion of Miiller [lo], in that we do not specify the 
dependence of 8, on nE N. 

First we note some simple facts. 
(2.8)   em ark. Let EE&(T) and 6,JO. Assume that (U+E"), is 

equicontinuous and converges weakly to a limit F E B(T) .  If F is not trivial, ' 

then 
(1) h-l (dm+ = 1; 

n-m 

(2) for every m E N the sequence (6,,J6,),, converges in (0, I]. 
For the easy proofs note that the sequences have accumulation points in . 

10, 11 and apply elementary limiting properties of the Hellinger distances. 
(2.9) THEOREM. An experiment F E  8 ( T )  is stable @it is the weak limit of 

an equicontinuous sequence (U,,En),,, where E E  $(T) and 6,4 0. 
P r o  of. First assume that F is stable. If F is trivial, then the assertion is 

obvious. If F is not trivial but stable with exponent p > 0, then we define 
6, = n-ltP and observe that En = U,,Fn satisfies En - F for every nEN. 
Write F = (O,, do, (Q, :  t E T)). Then we have d(Q;$,  QQ = d (Qs, Qt), 
s, t~ ?; which proves the necessity of the condition. 

Conversely, assume that there are an experiment EE & ( T )  and 8,10 such 
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that (Us, E"),,, is equicontinuous and U,, En -) F weakly. In view of Remark 
(2.81, (2), for, every r n ~  M there exists 

Then 
F = lim Uamn Em" = lim UCm Van E F  

n + m  n-m 

= Ucm ( lim Us, En)"' = Uc, Fm 
n-m 

Now, Theorem (2.4) completes the proof. 
Lf 6 ,  = n- '15 n E M, the preceding assertion is trivial in that it does not 

rely on Theorem (2.4). But this is not necessarily the case, as Example (1.4) 
shows. There, for E = 1/2, the stability exponent is p = 2 but 8,, 
= ( n  log n)- l t 2 ,  n E EN. The sequence (6,) cannot be replaced by 6, = n- 'I2, 
 EN, since this choice would lead to a degenerate limit experiment. The 
general form of the sequence (6,) is given below. 

(2.10) COROLLARY. Assume that (U,, En),,, is an equiconrinuous sequence 
converging weakly to a non-trivial F E A (T). Then 

6, = n-llp a,, n E N ,  

where p > 0 is the exponent of stability of F a d  

l i m s = l  for e v e r y m ~ N .  
n + m  an 

Proof .  Let  EN. Since 

we have to show that 

Let c, be the limit of (6,,,,J6,),,, (cf. Remark (2.Q (2)). If t E T is such that 
0 < d (Qo ,  Q,) < 1, then 

and 

lim mnd2 (Po, Pam& = lim mnd"~,,  
n-m ,-+OD 
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From Lemma (2.6) we get 

which implies mci  = 1. 
The property the 'sequence of factors (a,),, inherits according to the 

preceding assertion is slow variation for n+ m; in particular, 

an l im-=O and l i m n E u a , = x ,  c > 0 .  
.-+a nE s + m  

Examples of such sequences are logarithms and powers of logarithms. 
The preceding results explain why the limit experiments of examples 

(1.4) and (1.5) must be stable and clarify the particular form of the 
rescaling constants 6,JO. The following obvious modification of the 
argument extends the result also to a more general situation, which covers 
Examples (1.1)-(1.3): 

(2.11) Remark. Let D G T be a closed subset which is starshaped in the 
following sense: the set D contains 0, and every ray A w A t ,  TE intersects dD 
at exactly one point 3, > 0. Let E ,  = (a, d, IP,: t ~ D j )  be a continuous 
experiment. Then we may construct a continuous experiment E 
= (8, d, 1 PI: r E TI)  with ED = E, by the definition Pi = PLI, if R, 
=sup {AE[O, 11: A ~ E D ] ,  ~ E T  Let S,JO and T , = f t € T .  6 , t f D j .  Then the 
weak limits of the sequence of experiments 

are the same as the weak limits of ( U s , E X E N .  

3. TRANSLATION ZNVARIANT EXPERIMENTS AND GAUSSIAN EXPERIMENTS 

In this paragraph we collect and prove, if necessary, some facts on 
translation invariance and Gaussian experiments. 

(3.1) Defini t ion.  Assume that T is a linear space. An experiment E 
= (S2, .d, 9 = {P,:  t E T ) )  E G (T )  is translarion invariant if E is equivalent to 
(Q, .d, {PI+,: ~ E T ) )  for every S E T  

The importance of translation invariance is due to the fact that in many 
situations almost every limit experiment is translation invariant. This has 
been shown by LeCam [ 5 ] .  

A simple description of translation invariance is as follows. E is trans- 
lation invariant iff, for every s E T and r E T, 
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An obvious consequence of translation invariance of an experiment E is 
the translation iuvariance of the Hellinger distances between the probability 
measures of E. The limit experiments of examples (1.1) and (1.3)-(1.5) are 
translation invariant. 

(3.2) De  fi n it i o n. An experiment E E b IT )  is a Gaussian experiment if it is 
homogeneous and if the loglikelihood process (log (dP,/dPo)hET is a Gaussian 
process. 

(3.3) Remark .  The following facts are easy to prove and well-known. 
The property of being a Gaussian experiment is a property of equivalence 
classes of experiments. The equivalence class is uniquely determined by the 
covariance K :  Tx T + R of the loglikelihood process (log (dP,/dP,)),,, which 
is a positive sernidetinite kernel satisfying K ( s ,  0) = K ( 0 ,  t) = 0 for all S E  'I: 
t~ 7: The covariance K and the Hellinger distances determine each other by 
the formulas 

K ( s ,  s ) + K ( t ,  t )  
1 -d2(Ps, P,)  = exp 

2 

and 
K ( S ,  t )  = 4(a ( s ,  O)+a(O, t ) -a ( s :  t ) )  

if a ( s ,  r) = -log (1 - d 2 ( P , ,  P,)) .  
This is a consequence of the general form of the Hellinger transform of 

Gaussian experiments. Hence, it follows that the function ( s ,  r ) w d ( P , ,  P,), 
( s ,  t) E Tx T, determines the equivalence class of a Gaussian experiment. 

(3.4) THEOREM. Assume that T is a linear space. Let E 
= (Q, .d, IP,: r E T ! )  be a Gaussian experiment. Then each of the following 
conditions is equicalenr to transIation invariance of E :  

(1) d ( P , , :  P,,) = d ( P , , + , ,  P,,,,) for all t l ,  t 2 ,  s~ 
(2)  The centered loglikelihood process 

has stationary increments. 
Proof .  (1) The preceding remark shows that two Gaussian experiments 

are equivalent iff the Hellinger distances between corresponding pairs of 
probability measures are equal. This implies that translation invariance is 
equivalent to condition (1). 

(2) We keep the notations of Remark (3.3) and note that translation 
invariance of E is equivalent to translation invariance of the function a:  
Tx T + R. Let us write 
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Then we observe that if t~ 7: he ?; 

Cov ( X s + , - X , ,  X*+ , -X t )  

Hence, translation invariance of E implies stationary increments of 
(X,),,, . The converse follows from 

It is clear that there are as many translation invariant Gaussian experi- 
ments as there are centered Gaussian processes with stationary increments. 
The following examples are typical limit experiments. 

(3.5) Examples.  
(1) The experiment E of Example (2.21, (I), is the most simple Gaussian 

experiment. It is translation invariant. The loglikelihood process is of the 
form X ,  = t' X -4 t' r- l t, where X is a random variable satisfying 2 ( X I  Po) 
= v,,,. The covariance structure is K ( s ,  t) = s 'r l  t, s s p ,  f E @. 

(2) The limit experiments of Example (1.4) are translation invariant 
Gaussian experiments for T = R with covariance K ,  (s, tj = +(Isle+ jtle - 
Is- tle), where 1 < p 6 2. The case p = 2 is the trivial shift of the preceding 
example. In the cases 1 < Q < 2, however, the loglikelihood processes cannot 
be put into a similar simple form. 

Example ( 3 3 ,  (11, is a finite-dimensional Gaussian shift. It is well-known 
that every Gaussian experiment is equivalent to a subexperiment of a 
Gaussian shift, where the underlying Hilbert space may be of infinite 
dimension. Let us collect the basic facts in the following discussion. 

(3.6) Discussion.  The following is taken from LeCam [7]. Let H  be a 
Hilbert space and (a0,  do, Q,) a probability space. Any linear mapping 
L: H + L, (a,, d o ,  Q,) is a linear process. If 

then L is a standard linear Gaussian process with mean x  E H. An experi- 
ment F = (a0,  .do, (Q,: X E H ] )  is a standard Gaussian shift if 

where L is a standard linear Gaussian process with mean 0. Let E 
=(a,  d, {P , :  t ~ T j )  be an arbitrary Gaussian experiment. If K is the 
covariance of E, then there is a Hilbert space H and a mapping $: T-+ H 
such that K (s, t )  = (+ ( s ) ,  $ (t)), s E t  E T If F is the standard Gaussian 
shift on H, then E is equivalent with that subexperiment of F which is 
defined by the family of probability measures {Q~(,,: t  E T}. This is due to the 
fact that the latter is a Gaussian experiment with covariance K. 
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(3.7) Example. The experiments of Example (3.51, (2), can be embedded 
into a Gaussian shift in the following way. Let H = L,(R, A) and 
$a(t):  x ~ + l x - t l ~ - J x ~ ~ ,  X E  R, where Q = 2a+ 1, -$ < u < 4. Then easy corn- 
putations show that #, ( s ,  t )  = ($, (s),  $= ( t ) ) ,  s E R, t E $ for 0 < Q < 2. 
Moreover, we observe that these examples cannot be embedded into a finite- 
dimensional shift since {$ , ( t ) :  t E R) is a linearly independent set for every 
U E ( - 9 ,  i). For further discussion of this example cf. Pflug [I l l .  

Let us state a simple characterization of those curves $: @ -+ N which 
define a translation invariant Gaussian experiment. Obviously, these are 
exactly the curves which define Gaussian processes with stationary incre- 
ments (cf. Kolrnogorov [3]). The following theorem will be needed to obtain 
a characterization of one-dimensional Gaussian shifts by their statistical 
properties. We call a mapping U: H 4 H a motion if it is a composition of a 
linear isometry and a translation. 

(3.8) THEOREM. Assume that T is a linear space. A subexperiment E E B(T) 
of a standard Gaussian shift on a Hilbert space N is translation invariant if the 
defining curve $: T +  H satisfies any of the following conditions: 

( 1 )  for every pair SE T t t ~  T 

(2) there is a semi-group {U,: t~ T )  of mtions  on H such that $ ( t )  
= U,(O), t~ T 

Proof.  (1)  Let us show that condition (1) is equivalent to translation 
invariance. Easy computations show that the standard Gaussian shift satisfies 

Hence the assertion follows from Theorem (3.4), (1). 
(2) The second condition implies the first in view of 

Assume conversely that condition (1) is satisfied. We define a group 
{A,: t E T) of isometries such that U , x  = A, x + $ ( t ) ,  t E l: is the desired 
semi-group of motions. Let 

To show that this defines linear maps A, on span {$ (h): h E T) we note 
first that 
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This follows easily from condition (1). 
Hence for arbitrary choices rli E 4 hi E T 1 < i < n, the relation 

implies 

and, therefore, 
n 

C A l j  ($ (t + hi) - $(t), $ (t + hj) - + (t)) = 0, 
i . j =  1 

which implies 

Thus A, can be extended to linear maps on span ( $ ( h ) :  h~ TI.  From 
condition (I) it is obvious that the A,, t E are isometries. The set A, : t E T )  
is a semi-group of isometries since 

It is clear that each A, can be extended to H such that {A,: ~ E T )  
remains a semi-group of isometries. The equations $ ( t )  = U,(O), t~ are 
trivial. It remains to shqw that (U,: t~ T) is a semi-group of motions in H. 
This follows from 

(3.9) Discus  s io n. Assume that T = R and E E b(R) is a translation 
invariant and continuous Gaussian experiment with Hilbert-space represen- 
tation It: R + H. It is possible to characterize the one-dimensional shift by 
statistical properties. Let pt,, be the NP-test of level IXE(O, 1) for the testing 
problem H = { P o )  against K = ( P , ) .  Then easy computations yield the 
power function 

where 9 is the distribution function of v,,, and N, is the a-quantile of V O , ~ .  
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Assume that there is a test qo such that P , q ,  = cr and 

i.e. a uniformly most powerful test of level ol for the testing problem H 
= (P,:  s < 0) against K = {P,: s > 0). We will show that in this case E is 
necessarily a one-dimensional Gaussian shift. Indeed, on the one hand, we 
have 

and, on the other hand, po = q,,, P,-a.e. for every S E R ,  t ~ d $  and hence 

P, YO = @(PI, + I I $  (s)ll cos ($ (t), t,h (s)) sgn t) ,  if s E W and t E R, 

which implies that cos ($ (s),  rl/ (t)) = sgn s . sgn t for all s E $ t E $ and, 
therefore, the image of $ in H is a straight line. -It follows that $ ( t )  
= f ( t ) $ ( l ) ,  t E R, and f: R + R is additive. From continuity it follows that 
f ( t )  = ct, t E $ which proves the assertion. 

4. SOME CONSEQUENCES OF STABILITY 

Miiller 1101 asked the question for the totality of restrictions which are 
induced by translation and stability together. Since every stable experiment 
is infinitely divisible, and since every infinitely divisible experiment admit 
a unique decomposition into a Gaussian and a Poisson part, the problem is 
two -fold. It is answered by characterizing separately the translation and 
stable Gaussian experiment and the translation invariant and stable Poisson 
experiments. Here, we consider the first part of the problem. 

(4.1) THEOREM. Assume that T is a linear space. If E E  &(T) is a Gaussian 
experiment which is translation and stable, then the characteristic exponent 
p satisfies p < 2. If T = R, then the covariance K is of the form 

P r o  of. At first consider the case k = 1. I f f  (s) : = -log (I - d2 (Po,  P,)), 
S E  $ then we obtain from Remark (3.3) in view of translation invariance 
that 

K ( s ,  t) = 4(f (s)+f ( t ) - f  ( s - t ) ) ,  s ,  t e R .  

From translation invariance we obtain also that f (s) = f ( - s ) ,  s E R. 
Stability of order p > 0 implies that f (s) = sPf ( 1 ) ,  s 2 0, which proves the 
second assertion. The exponent p must satisfy p 6 2 since otherwise K is not 
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positive semi-definite. If k > 1, then the exponent p also satisfies p ,< 2 since 
the ,first part of the proof may be applied to any one-dimensional subexperi- 
ment of E. 

It should be noted that for every p ~ ( 0 ,  21 the function K, as defined in 
the preceding theorem, is a covariance. This follows from the representation 
given in Example (3.7). 

(4.2) Remark.  The chmacrerization of the covariance structures oof tram- 
lation and stable Gaussian experiments also yields a characterization of rhe 
appertaining Hell iqer  transforms. I n  case T = @, k > 1,  a chrnacterizaticrn 
of the covariance structure analogous to the cme k = 1 can be given if the 
limiting experiment is invariant under orthogonal transformations. 

Starting from the present paper the interesting problem, whether a 
similarly complete description of the class of translation and stable Poisson 
experiments can be given, has been attacked. Janssen [2] prijved that the 
characteristic exponent p of any translation ,and stable Poisson experiment 
satisfies p < 2. For the important subclass of Poisson experiments with 
independent increments a complete description of its translation and stable 
elements is contained in Strasser [13]. 

Let E =(a, d, {P,: t~ P)) be stable. Miiller [lo] claims that the ex- 
ponent of stability p = 2 implies that the binary subexperiments (P,, P,), 
(s,' t ) ~  Rk x p, are Gaussian, provided E satisfies regularity conditions. Un- 
fortunately, those regularity conditions are not specified. Without any regul- 
arity conditions the assertion is obviously wrong. We show below that 
imposing translation invariance leads to a far stronger conclusion, namely 
that E is even a Gaussian shift experiment. This is obtained by Mtiller [lo] 
under the additional hypothesis that E is an exponential family. 

(4.3) THEOREM. Assum that T = 9. Let E E  &(T) be a continuous experi- 
ment which is translation and stable with exponent p. Then p = 2, ifl E is 
a standard Gaussian shijit of dimension k.  

Proof.  Assume that p = 2. For the Hellinger distances we have 

where f: l? -, R is a continuous function satisfying f (h) = l)hJ]Z f (h/llhll), h E 2. 
Since f is' bound4d on1 the unit sphere of #, it foIIows that 

Now the results of LeCam [4] imply that for Lebesgue-almost every 
SERA the experiments (an, d, g , , )  with 

converge weakly to a standard Gaussian shift of dimension k. In view of 

2 - Probability Math Statistics 5/1 
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translation invariance this is even true for every s~ @, in particular for s = 0. 
From stability we obtain that (Dm, d, P,,,,) - E for every n E N ,  which 
proves the assertion. 

I Thus, only Gaussian shifts in can be translation invariant and 
I stable with exponent p = 2. For the exponents 0 < p < 2 there are both 

Gaussian as we11 as non-Gaussian experiments being translation invariant 
and stable with tbis exponent. According to Discussion (3.6) these Gaussian 
experiments can be embedded as subexperiments of standard Gaussian shifts. 
It turns out that for p < 2 the underlying Hilbert space cannot be of finite 
dimension. 

(4.4) THEOREM. Assume that T is a linear space. Let E ~ 6 ( 7 ' )  be a 
Gaussian experiment which is translation invariant and stable with expunent 
p < 2. Then E cannot be embedded into a finite-dimensional Gaussian shift. 

Proof. The assertion is proved if we show that it is true for the case 
T = R. In this case we have a complete survey of all possible covariances 
by Theorem (4.1). Hence the arguments of Example (3.7) may be applied. 

Finally, we consider a statistical implication of stability. From Discussion 
I 

I (3.9) we have seen that in general NP-tests need not be uniformly most 
powerful if E E  8 ( R )  is a translation invariant and stable Gaussian experi- 
ment. T h s  means that in a common asymptotic framework sequences of 
NP - tests need not be asymptotically uniformly most powerful. We would 

I 
I like to compute relative efficiencies of various sequences of NP-tests. 

(4.5) Discussion. Assume that T = R. Let us consider the situation 
which is described adjacent to Example (1.5). Assume that there is a weak 
limit experiment F which is a non-trivial Gaussian experiment being trans- 
lation invariant and stable with exponent p. The Hilbert-space representation 
of F is given by $: R-,  H. Let (rp,),, be a sequence of NP-tests of level a 
for H ,  = (Pi) against K, = { P l + B r p )  and let (q,,),, be a sequence of 
NP-tests of level ct for Hn = {P:) against K, = (Pi+,$), s > 0, t > 0. We - 
know that 

and that 

Hence the asymptotic power of (@,J at t E R may be smaller than that of (q,J 
and we need larger sample sizes to reach the same power with (q,,). 

Let (k (n)b ,  -c N be any sequence such that 
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It is not clear that there are such sequences at all. But if such a sequence 
exists and if there is 

then it is natural to identify lip with the relative Pitman efficiency of (@,I 
with respect to (rpJ at ~ E R .  

Let us show that p = 1 can only bappen if p = 2. First we observe that 

Since 0 < @ ( N ,  + 119 (s)l]) < 1, it follows that (6 j d , , , ) , , ,  keeps bounded 
away from 0 and m. If A is any limit point of (S,Ja,(,)),,, then we have 
necessarily 2 = 1 and, therefore, 

which implies 

or explicitly 

lslP+1tiP- IS- tIP = 2 1 s l p f 2 ) t J p f 2 .  

It folIows that 

( ~ S J P ' ~  - JtJpf2)2 = 1s- t / P ,  

which can only be satisfied for s # t, s s 0, t > 0, if p = 2. 
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