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ON THE CONVERGENCE OF STABLE MEASURES
IN A BANACH SPACE
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NGUYEN ZUI TIEN (HaNor)

Abstract. In ‘this paper a space of functions generating stable
measures on a Banach space is introduced. Some. properties of this
space are investigated. Then as applications, necessary and sufficient
conditions for the weak convergence of stable measures on a Banach
space are given. The convergence of sums of independent stable
random variables with Banach values is investigated as well

1. NOTATIONS AND DEFINITIONS

Let (U, Z, m) be a fixed finite measure space and let X be a separable
Banach space with norm ||:|| and topological dual X*. Denote by
L,(X;U,2,m(L, (X) for short) the set of all X-valued functions f such
that

Il = (]I @I dm(} 7 < +<o.

In the case X is the set of real numbers we write L, instead of L,(X).
sL,(X) denotes the set of all X-valued functions f such that {f, x*>eL for
each x*e X*.

" In the sequel, if not otherw1se stated pis a real number with 0 < p <2A

‘'Radon probability measure u on X is called p- -stable iff for given a > 0,

b >0 we have

A(ax*) f(bx*) = A((@®+b)M7x*)  for all x*ex*,

~ where ji is the characteristic functional (ch.f) of p, ie.

A(x*) = [exp {i (x, x*>}du(x).
X .

Thus, in this paper we consider only symmetric stable measures. Let {6}
be a sequence of independent identically distributed real random variables



138 _ Nguyen Zui Tien

with chf. exp (—|1/?). A Banach space X is said to be of stable type p if for -
some (each) re(0, p) there exists a constant ¢ > 0 such that

(E]| 3 x 601 < c( 3 iy
k=1 k=1

for all x,, ..., x, in X. For properties of Banach spaces of stable type we
refer the reader to [5], [101.

Let now (Q, 4, P) be a probability space. By an X-valued. random
variable (r.v) we mean a strongly measurable mapping ¢ Q- X. Z(§
denotes the distribution of &,

L) (B)=P{eB} for any Be @(X)

where J‘(X) is the set of all Borel subsets of X. If 5,” (&) is p-stable, then we
say that ¢ is p-stable r.v.

' 2. THE SPACE S,(X)
Let f be an element of sL,(X). Put “ 7
%s (x*) = exp {— §|<f @), x*)Pdm(u)}, x*eX*.

Denote by S,(X) the set of all fesL,(X) such that y, (x*) is the chf. of a
Radon measure on X. For every feS§ (X) let u; denote the corresponding
measure, i.e.

(2.1 ' ﬁf (x*) = Xr (x*).

Obviously, u, is p-stable.

Conversely, each p-stable measure ¢ on X can be wntten in the form
(2.1). Indeed, it is well known that the chf. of a p-stable measure u on X is
of the form .

A(e%) = exp {— [I<Kx, x*)IPda ()},

where ¢ is a ﬁnite measure on the unit sphere S of X (see e.g. [13], [17])
Taking U =8, m=o0, f(x)=x we get (2 1) o is called the spectral measure
of

For feS§,(X) we put

AU = ([l diy ), re(o, P

In- view of results of [8], [9], [11] it is not hard to prove the followmg
THEOREM 2.1 (1) S,(X) is a linear subspace of L,(X).
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(2) There exist positive constants C, and C, , such that for all feS,(X)
we have .

I, = 0f?(5) =C, lim tuy {1l >t}”"< Crp4e(f)

t=++w

where o, is the spectral measure of u,.

(3) For 1 <r <p<2(S,(X), 4(")) is a Banach space; for 0 <r <p<1
(S,(X), 4,.(*)) is a quasi-Banach space.

We now study some interesting properties of the space S,(X). First of all
it should be noted that in general case S,(X) is not a closed subspace of
L,(X) and, consequently, S,(X) is not complete with respect to ||-||,. The
following example shows it. _

Example. Let L, be infinite-dimensional and assume that X is not of
stable type p. Then there are disjoint sets A,eX and a sequence x,eX
having the following properties:

a, =m(4,) >0 for all h=1, 2, ...,

Y IbellP < 400,
n=1

o

Y . x, 0P diverges as.

n=1
Consider the functions
=Y e X1, n=1,2,..,
j=1 Y
f=Y aiPx;1,..
= J
It is easy to see that f,eS,(X), feL,(X) and
Wf~fllo= Y -lIxil”P~>0 as n— +oo.
j=n+1

It remains to show that f¢S,(X). Assume to contrary that feS,(X).
Then there exists a Radon measure u, with

2,065 = exp {— [I<f (@), x*)Pdm(w)} = exp [~ 3 [Cx X*5IP).
U . n=1

Consequently, by Ito-Nisio’s Theorem [6] we conclude that the series

]

Z Xp 951”

n=1

converges a.s. Thus we have got a contradiction.
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Denote by cL(X) the set of all X-valued functions f with
f = Z xnlAna ”f”u) = sup ”xn” < +w:
n=1 n

where A,eX are disjoint sets and x,eX for all n=1,2, ...

TaeoreM 2.2V. (1) In any case if X is of stable type p, then
cLo(X) = S,(X) and there exists a positive constant ¢ depending only on X
and p, r such that .(f) <c|lfll, for all fecL,(X).

(2) Conversely, if U is [0,1] with the Lebesque measure and
cL(X) © 8,(X), then X is of stable type p. '

Proof. (1) Let fecL,(X) with

f = Z x"lAn.
n=1
Then we have

Il = X IIxdIPm(4,) < + 0.

n=1
Consequently, if X 'is of stable type p, then the series

a0

Y (m(4n)!7 x, 03
n=1
converges as. to some r.v. & Evidently,
E exp (i (¢, x*)) = exp {— 21 <X, X*>I"m(.21,.)}
=exp {— il(f(u), x* | dm (u)}.
This shows that feSI;(X). Moreover (see [10]), we have

() = ENEN <c( ) xllPmAN? = cllfll,,
n=1

where ¢ is a positive constant depending only on X and p,'r.'
(2) Let U =[0, 1] with the Lebesgue measure m and (x,) be a sequence
in X with ~

a= ¥ bl < +oo.

1} See also Theorems V.10.1 and V.10.2 in [18].
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We can find a partition (4,) of [0, 1] such that
[0,1]1= Y 4, m(4)=a"!|x,.
n=1

Without loss of generality. we assume that ||x,]| # 0 for all n=1, 2, ...
Consider the following function:
' . . ©
f = g'/P "
n=111%ull
Then we have ||f]l., = a', ie. fecL(X).
By assumption it follows that feS,(X). So there exists a Radon measure

" py; on X such that

fr(x*) = exp {— [I<f @), x*)IPdm(u)}
U

= eXp {_ Z I<xm X*>|p}‘
. n=1
By Ito-Nisio’s Theorem it implies that the series
oo
Y x,00
n=1 '

converges as. in X.
From Theorems 2.1, 2.2 and the example above we get
COROLLARY 2.32. The following conditions are equivalent:
(1) X is of stable type p. : :
(2) S,(X) =L,(X) for any (U, Z, m). v
(3) There exists a positive constant C depending only on X and p, r such

- that for any (U, X, m) and for all feS,(X) we have

4 AN < CISl,-
(4) §,(X) is complete with respect to |||,

One can ask whether ¢f €S,(X), provided f eS,,'(X) and @eL,, where
L, denotes the set of all measurable real-valued functions ¢ with

llolle = sup lpW)] < +o0.

As is shown below 1t is true. For this purpose we need the two following

lemmas,
Lemma 24. Let f,eS,(X) and feL,(X) such that || f,—fll,»0 as n—

 See also Theorem V.10.2 in [18] and Theorem 5 in [8).
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+00 and {p;} is uniformly tight. Then feS,(X) and the sequence {p,n}
converges weakly to p;. ' '

Proof. Since {u, } is uniformly tight, there exists a subsequence {yf"k}
converging weakly to some Radon measure u on X. In particular we have

ﬁf,,k(x*) =exp {— [j;l(f,,k(u), x*3IP dm(u) } ’—>.ﬁ(x*) as k— 4+ .

On the other hand, because of || f,~f|l, =0 we get
im [ [<fy, x*)Pdm(u) = [I{f @), x*HIP dm(u),
U

k=+wo Uy

which shows that .
A(x*) = exp {— [I{f (W), x*D|? dm(u)},
: U

ie. f eS,, (X). Moreover, as is shown above, the sequence {u, } has only one
limit point. Hence it must converge weakly to pu,.

LemMma 2.5. If feS,(X) and AeZ, then 1,f€eS,(X).
Proof. Consider cylindrical measures u,, u, defined as follows:

fiy (x*) = exp {— [I{f, x*)IP dm},
A
fis(x*) = exp {— [ I<f, x*)|Pdm}.
- v\4
Evidently, we have
A (%) = fy (%) fip (x%),

ie. pf=u1 #1,. Since p, is a Radon measure on X and p,, p, are
symmetric, u, and g, are Radon measures on X as well (see [14]), which
shows that 1,feS,(X).

TueorEM 2.6. If peL, and feS,(X), then ¢feS,(X) and
(2.2) 4 (@f) < 2||9ll o 4, (f)-
Proof. At first we assume that ¢ is a simple.function -with
P = Y iy,
. _ k=1
Then we can write

of = 3 allyf)
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Noting that §,(X) is a linear subspace, we get ¢f €5,(X) (by Lemma 2.5).
Furthermore, we can choose independent r.v.s &,, ..., &, with values in X
such that

I g(&k)’:ul,‘k‘f: k=15'-'9 n,

g(g ék)=”fa

Z( Z °‘k £) = Hyy-

k=1

By this way and noting that (see, e.g., [16])
P{|Y a &l >t} < 2P {max IakIHkZ &l > 1),
k=1 a =1

we obtain inequality (2.2) immediately.
The general case follows from the special case by choosing suitable s1mp1e
‘functions and using Lemma 2.4 and Theorem 3.3 below.

Remark. The assertion of Theorem 2.6 for the case p =2 was pointed
out in [5] by using random integral. Recently, Rosinski [15] has constructed
a general random integral. In paricular, he has proved that feS,(X) iff f is
M -integrable, where M is a random measure deﬁned on 2 and taklng valucs
in LO(Q A, P) with

E exp 1tM(A) =exp (—m(A)|1)?), AeZ.

We refer the reader to [15] and [18] for details.
To end this section we should like to raise two following problems.

; Problem 1. Is it true that S,(X) = S,{(X) for 1<qg<p<2?
i Clearly, the answer is “yes” if- X is of stable type g. Dang Hung Thang
" [2] gave a positive answer to the problem for the case X = [ (B) with 1 <
l < ¢ and‘B is a Banach space of stable type q (although I,(B) is not of stable
: type g).
| Problem 2. Is the set of all simple functlons dense in S (X) with respect
‘ to norm A,.(-)? , ‘
If the answer is “yes”, then by Theorem 3.3 we could prove that:
For any p-stable measure u on a Banach space there exists a sequence of
p-stable measures {u,} such that the support of g, is a finite set for all n and
U, converges weakly to p, where o, is the spectral measure of p,.
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3. THE CONVERGENCE IN §,(X)

Our aim in this section is to investigate the convergence relation between
feS8,(X) and p,. ] _

ProrosiTiON 3.1. Let- {f,} be a family of elements in S,(X) and {p, = p;_}
be the corresponding family of p-stable measures on X. If |u,} is uniformly
tight, then {f,} is bounded in L,(X). ‘

Proof. Recall that a family of Radon measures {u,,,} on X is called
uniformly tight iff for any & > 0 there exists a compact K, < X such that
1 (X\K,) < ¢ for all a. In [3] we have proved that if {y4,} is a family of p-
stable measures on X and it is uniformly tight, then

sup [[|x|I"dp,(x) < +o0  with 0 <r < p.
x X )

Hence, by Theorem 2.1, it follows that

sup || £ll, < C,,p sup 4,(f;) < + 0.

Remark. In general, it is.possible that u, =y, for f, geS,(X) and
f #g. So the assertion that the weak convergence of {u,} = {u; } implies
the converge of { ,,, in L,(X) is falsc However, in any case we have the
following
~ ProrosiTiON 3.2. If f,,eS (X), feS,(X) and p, weakly converges to ug,
then || full, = I f1l, and 4,(f) = 4,(f) as n—> +o0. _

Proof. The first assertion is an immediate consequence of Theorem 2.1
and Theorem 4.3, the second one follows from Corollary 3.4 of 31

The next theorem is the main result of this sectlon
THEOREM 3.3. If f,e8,(X), f€§, (X) and, for some re(O p) A(fy—f)—=0

as n— +oo, then p, weakly converges to i = Ji;.

Proof. Let ¢ be an embedding of L, into L, (see [1]) and T,, T the
linear operators defined as follows:

T X ke } r X 7k
Tx* o (f, x*) L xE o f, )

Put L,=®0T,, L=®oT Because of f,e5,(X), feS,(X) there exist

' X-valued r.v.s ¢,, ¢ such that

L, x* = {o,, x*>} Lx* =<9, x*>}
= 2 (¢, n=Z(p)

ML |
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(see Lemma 2 in [8]). Now it is easy to check that

(Ln_L)(x*) = <(Pn_(p’ X*>7
Brp-s = L (0a—0),
/L(fn—f) =(Ell@,—0llN'" >0 as i — +oo0,

where E stands for the mathematical expectatlon In particular, this implies
that p, converges weakly to p.

As a corollary of Theorem 3.3 and Corollary 2.3 we obtain

CorOLLARY 34. Let X be a Banach space of stable type p and f,e L,(X),
feL,(X). If f,—f in L,(X), then u, weakly converges to ..

Remark. The assertion of Corollary 3.4 for the case p =2 was pointed
out in [19].

From the example in ‘Section 2 and Corollary 3.4 we get

CoroLLARY 3.5. The following condmons are equwalent
(1) X is of stable type p.
(2) For any (U, Z, m) the convergence of a sequence {f,} in L (X) zmpltes

" the weak convergence of the corresponding sequence {i,}.

4. THE UNIFORM TIGHTNESS OF SPECTRAL MEASURES,

Let { 4, be a family of p-stéble. measures on‘a séparable Banach space X
with chf.

fy (x*) = exp {— [I<x, x*}|Pdo, (x)}, x*eX* 0<p<2,
B 3

where S is the unit sphere of X and o, is a finite measure on S for any a.

In this section we investigate the relation between the uniform tightness
of {y,} and the uniform tightness of the corresponding family of spectral
measures |0, .

THeEOREM 4.1. If {p,} is uniformly tight, then so is {o,}.

Proof. Without loss of generality we can suppose that X has a Schauder
basis (since every separable Banach space can be embedded into a Banach
space having a Schauder basis, e.g. Cpo,q))- 5

Let (e,) be a Schauder basis in X. By Theorem 3.5 of [3] the uniform
tightness of {u,} is equivalent to the conditions

~ sup | [Ix]I"du, () < + o0,
a X

lim sup {[| VIl dpg () = 0

N-aw a X

10 — Probability Math. Statistics 5/1
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for any re(0, p), where
Vyx = Z (x, ef e,
k=N

and (e¥) is the dual basis of (e,). :
Note that p,oVy ! is the p-stable measure on X with chf.

(e O Vi 1Y (x*) = exp {— _!I (Vax, x*IP dog ()}

Consequently, by Theorem 2.1,
sup 0,(S) = sup [I1xlI?da, (x) < ¢, sup {J I dpy (0} < +c0.
o a § a X ’

sup {||Vy x||?do,(x) < c,,, sup {JlIVa Xl dp, (x)}P" >0 ~as N — + 0.
@ S a X

In view of Theorem 3 in [12] this permits us to conclude that the family

{o,} is uniformly tight.
The next theorem characterizes those Banach spaces for which the

converse to Theorem 4.1 is true.
TueoreM 4.2. For any separable Banach space X the following conditions
are equivalent:

M Xyzs of stable type p. ' '
(2) {u,) is uniformly tight tﬁ' so is {0,}, where {1} is an arbitrary famtly of

p- srable measures on X.
Proof. By the argument as in the proof of Theorem 4.1 we can assume

that X has a Schauder basis (e,).
(1) = (2). In view of Theorem 4.1 it is sufficient to show that the uniform

tightness of {g,} implies the uniform tightness of {u,}.
As was shown in [12], the uniform tlghtness of {o,} i is eqmvalent to the

: followmg conditions:

(4:1) , ‘. sup 0,(8) < + 0,
4.2 NhT sup o, {x: HVN xll >¢} =0 forany ¢ > 0.
Now note that | | |
JIIVy xliP da, = I ||V x|I? do, + § IVaxlido,
s (xeS: |V xll >e} fxeS: ||V x| <2}

< Ko, {x: ||Vy x| > &} +&70,(S)

(because of ||Vy x| \<§lK for all xeS, where K is the basis constant of (e,).

Consequently, using conditions (4.1) and (4.2), we obtain
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(4.3) sup [||x||?do,(x) < + o0,
o ‘ : a5
(4.4). ~ lim sup [HVNxH”da (x) =
N-ow a

If X is of stable type p, then (4.3), (4. 4) and Corollary 2.3 imply, for any
re(0, p), the following conditions:

- sup [lxlI"dp, (x) < + 00, Nl"f supf [ Va X" dptg (%) =
Coa X~ —“+w a

which shows that {,u,,} is uniformly tight (see [3]).
(2) = (1). Suppose that (x,) is a sequence of elements in X with

Z lIxall” < + 0.

n=1
We show that the random series

4.5 Y x,60

n=1

converges a.s. We take for 6, the measure on' S defined as follows:

a,,(—ﬂ—) =lxlr, k=1,2,...,n
Il

It is easy to see that Oa is the spectral measure of the following p-stable
measure:

=Z(Y x0P).
k=1

Obviously, this family {c,} is uniformly tight, so, by the assumption, {u,}
is also uniformly tight. Hence, by Ito-Nisio’s Theorem (see [6]) it follows
that series (4.5) converges a.s.

Remark. Theorem 4.2 is a simple corollary of Theorem V.10.3 in [18].
However, it should be noted that we have proved this theorem w1thout using
stochastic integral.

In general case we can not assert that the weak convergence of a
sequence of p-stable measures implies the weak convergence of the cor-
responding sequence of spectral measures. But we always have the following

THEOREM 4.3. Let X be a separable Banach space and {u,} a sequence of
p-stable measures on X. If u, converges weakly to p, then a,(s) converges to
o (S), where o, and o are spectral measures of p, and p, respectively.

Proof. According to Theorem 4.1 we have sup a,(S) < + oo (since {5} is
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uniformly tight). Let s be a limit point of the sequence {s,(S)}. So there
exists a subsequence {c, (S)} with '

im o, (S)=s.

k—+ oo

It remains to show that s = ¢(S). Since {,u,,k} is uniformly tight, so is
{a,,k} by Theorem 4.1. Hence, by Prokhorov’s Theorem (see [14]), the
sequence {c, | contains a subsequence {0y} converging weakly to a finite
measure o, on S. This implies, for all x*e X*, that

hm Uuk(s) = O-OD{S) =S,

k=00

lim [[<x, x*)Pdoy, = [I<x, x*)IPdo,,.
h

k—w §
On the other hand, since u, converges weakly to u, we get

lim |<x, x*)|?do, = j[(x x*>Pdo.

no>w S
Consequently,
jl(x x*>|"da—j'|<x, x*MPds, for all x*e X*. -

By Theorem 2.1 it follows that ¢ (S) = aw(Sj, ie. s =0(S), as desired.

5. THE CONVERGENCE OF SUMS OF INDEPENDENT
p-STABLE BANACH VALUED RANDOM VARIABLES

We now apply results of previous sections to_study the convergence of
sums of independent p-stable Banach valued random variables.

Tueorem 5.1. Let {£,} be a sequence of independent X -valued p-stable
rv.’s. If the random series

CR Y &,

converges a.s., then

52) Y, 04(8) < +00,

n=1

where o, is the spectrdl measure of the p-stable measure £ (&,).
Proof. Put

= Zék: . Hn=ZL(Sy), dn= Zak
k=1 ' k=1
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It is easy to see that

fin(x*) = exp {— [[<x, x*)|?d4,(x)},
S

1e. 4, is the spectral measure of the p-stable measure u, on X. If the random
series (5.1) converges a.s., then, evidently, the sequence {u,} converges weakly
to a measure y on X. So, by Theorem 4.3, we have
im A,(S)=4(S),
n—+ o :
where A is the spectral measure of the p-stable measure g, Wthh implies
condition (5.2).

THEOREM 5.2. Let X be a separable Banach space. The followmg conditions
are equivalent:

(1) X is of stable type p with 0 <p < 2. -

(2) For any sequence {,} of independent X -valued p-stable r.v.’s series
(5.1) converges a.s. iff condition (5.2) is satisfied.

Proof. (1) —»(2). In view of Theorem 5.1 it remains to show that if
condition (5.2) holds, then random series (5.1) converges a.s. For this purpose
we put

o(B) = f o, (B), Ee.%(X).

n=1
From condition (5.2) it follows that ¢ is a finite measure on s. If X is of
stable type p, then, by Corollary 2.3, the functional defined by the formula

() = exp {— [1¢x, x*)IPda(x)}

is the chf. of a p-stable measure u on X.
On the other hand, we have - _
lim f,(x*) = lim exp {— [|<x, x*)Pdd,(x)}
S

n—w n—>+ o

=exp {— [(x x*)l”da} f(x*)

for all x*eX*. Consequently, by Ito-Nisio’s Theorem we conclude that
random series (5.1) converges a.s.
(2) = (1). Let (x,) be a sequence of elements in X with .

e .
Z ”x"”p < 4 00.
n=1

Put ¢, = x, 0‘”) Then we get

o0

@ =l 3 8= T el < +co.

n=1 n=1
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Hence (2) implies that the random series

oD

Z X, 9&11)

n=1

converges a.s. The proof is completed.

COROLLARY 5.3. Let X be a separable Banach space. The fallowmg
conditions are equivalent:

(1) X is of stable type p with 0 <p < 2.

(2) For any sequence {¢,} of mdependent X -valued p- stable r.v.’s series
(5.1) converges as. iff the series

Z E &y
n=1 :

converges for some (each) re(0, p).

"Remark. Corollary 5.3 (and, consequently, Theorem 5.2) is not valid for
p = 2. A necessary and sufficient condition for (2) to be true for p=2is: X
is isomorphic to a Hilbert space (see [7]).
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