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ON THE CONVERGENCE OF STABLE MEASURES 
IN A BANACH SPACE 

NGUYEN ZUI TIEN (HANOI) 

Abstract. In this paper a space of functions generating stable 
measures on a Banach space is introduced. Some properties of ths 
space are investigated. Then as applications, necessary and sufficient 
conditions for the weak convergence of stable measures on a Banach 
space are given. The convergence of sums of independent stable 
random variables wit'h Banach values is investigated as well. 

1. NOTATFQNS AND DEFINITIONS 
I 

Let (U, Z, m) be a fixed finite measure space and let X be a separable 1 , Banach space with norm I I - 1 1  and topological dual X*. Denote by 
L,(X; U, Z, m) (L,(X) for short) the set of all X-valued functions f such 
that 

Ilf l lp = {J Ilf tu)llpdmtu))l'P < + - 
U 

In the case X is the set of real numbers we write L, instead of L,(X). 
sL,(X) denotes the set of all X-valued functions f such that < f, X*)E L, for 
each x* EX*. 

In the sequel, if not otherwise stated, p is a real number with 0 < p < 2. A 
Radon probability measure p on X is called p-stable iff for given a > 0, 
b > 0 we have 

i; (ax*) f i  (bx*) .= ji ((ap + b3 ' I p  x*) for a11 x* E X*, 

where ji is the characteristic functional (ch.f.) of p, i.e. 

fi(x*) = jexp {i (x, x*)) dp(x). 
X 

Thus, in this paper we consider only symmetric stable measures. Let (6jp1) 
be a sequence of independent identically distributed real random variables 
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with ch.f. exp (-lr(P). A Banach space X is said to be of stabk type p if for 
some (each) r ~ ( 0 ,  p) there exists a constant c > 0 such that 

for all x,, ..., x, in X. For properties of Banach spaces of stable type we 
refer the reader to [53, [lo]. 

Let now (a, A, P) be a probability space. By an X-valued. random 
variable (r.v.) we mean a strongly measurable mapping r :  62 +X. 9((e) 
denotes the distribution of 5,  

where g(X) is the set of all Bore1 subsets of X. If Y(5) is p-stable, then we 
say that 5 is p-stable r.v. 

2. THE SPACE S,(X) 

Let f be an element of sL,(X). Put 

xf ( x * )  = exp {- jj<f (4, x*)tPdm(u)),  x * € X C .  
u 

Denote by S ,  (X) the set of all f E sL,(X) such that X, (x*) is the ch.f. of a 
Radon measure on X. For every f E S , ( X )  let p, denote the corresponding 
measure, i.e. 

Obyiously, pf is p-stable. 
Conversely, each p-stable measure p on X can be written in the form 

(2.1). Indeed, it is well known that the chi. of a p-stable measure p on X is 
of the form 

fib*) = exp I- JI<x, x*)IPd4x)), 
S 

where a is a finite measure on the unit sphere S of X (see e.g. [13J, [17j). 
Taking U = S, rn = a, f (x) = x we get (2.1). a is called the spectral measure 
of y 

For f ES, (X )  we put 

In view of results of [8], [9],  [ l lJ  it is not hard to prove the following 

THEOREM 2.1. (1) S,('X) is a linear' subspuce of L,(X). 
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(2) There exist positive constants C, and C,,, such that for all f E S, ( X )  
we h u e  

where as is  the spectral measure of pf .  ' 

(3) For 1 < r < p < 2 (S , (X) ,  &(-)) is a Banach space; for 0 < r < p < 1 
(S,(X), A,(.)) is a quasi-Banuch space. 

We now study some interesting properties of the space Sp(X). First of all 
it should be noted that in general case S , ( X )  is not a closed subspace of 
L,(X)  and, consequently, S , ( X )  is not complete with respect to 1 I + I ) , .  The 
following example shows it. 

Example. Let LP be infinite-dimensional and assume that X is not of 
stable type p. Then there are disjoint sets A,EZ and a sequence X , E X  
having the following properties : 

. xn OF diverges a.s. 
n= 1 

Consider the functions 

It is easy to see that ~,ES,(X), f EL,(X) and 

It remains to show that f 4 Sp(X). Assume to contrary that f E Sp(X). 
Then there exists a Radon measure pf with 

Consequently, by Ito-Nisio's Theorem C6-J we conclude that the series 

C x,, sip) 
n= 1 

converges a.s. Thus we have got a contradiction. 
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Denote by c L , ( X )  the set of all X-valued functions f with 

where A , E Z  are disjoint sets and X,EX for all n = 1 ,  2, .. . 
THEOREM 2.2')- (1) In any case if' X is of stable type p, then 

cL , (X)  c S,(X) and there exists a positiue constant c depending only on X 
and p, P such that d,(,f) d cll.fll, .for all ,f E c L , ( X ) .  

(2) Conversely, if U is [O, 11 with rhe Lebesgue measure and 
cL,(X) c S , ( X ) ,  then X is of stable type p. 

Proof.  ( 1 )  Let f E cL,(X) with 

Then we have 

Consequently, if X' is  of stable type p, then the series 

converges a.s. to some r.v. t. Evidently, 

This shows that f ES,(X). Moreover (see ClO]), we have 

where c is a positive constant depending only on X and p, r. 
(2) Let U = LO, '11 with the Lebesgne measure m and (x,)  be a sequence 

in X with ' 

See also Theorems V.lO.l and V.10.2 in 1181. 
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We can find a partition (A,) of [ O ,  11 such that 

i Without loss of generality .we assume that IJx,,ll # 0 for all n = 1, 2, . . . 
I 
I Consider the following function: 

Then we have ( 1  f 1 1 ,  = aljq i.e. f E c L ,  (X). 
By assumption it follows that J'ES,(X). So there exists a Radon measure 

I ' pJ on X such that 

m 
I 

= exp { - C I <xn, x*>IP]. 
n= 1 

I 
I By Ito-Nisio's Theorem it implies that the series 
I 

I 

, converges as .  in X. 
From Theorems 2.1, 2.2 and the example above we get 
COROLLARY 2.3 2'. The .following conditions are equivalent: 
( 1 )  X is of stable type p. 
(2) Sp(X)  = L , W )  for any ( U ,  2, 4. 

I (3) There exists a positive constant C depending only on X and p, r such 
that for any ( U ,  C, m) and for all f ES, (X)  we have 

(4) S p ( X )  is complete with respect to 1 1  . I ( , .  
One can ask whether qf ES, (X) ,  provided f E S , ( X )  and  EL,, where 

L ,  denotes the set of all measurable real-valued functions cp with 

As is shown below, it is true. For this purpose we need the two following 
lemmas. 

LEMMA 2.4. Let J;, E S, ( X )  and f E L , (X)  such that 1 1  fn - f I],, + 0 as n + 

I 

I 
See also Theorem V.10.2 in [l8] and Theorem 5 in [R]. 
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+a and (pfLSn) is unqorrnly tight. Then f ES,(X) and the sequence (pfn) 
converges weakly to pf .  

Proof.  Since {pfn} is uniformly tight, there exists a subsequence (pfnk) 
converging weakly to some Radon measure p on X. In particular we have 

I 
&,(x*) = exp (- j l(fnk(u), x*)lpdm(u)} -, fi(x*) as k -, + a. 

U 

On the other hand, because of 11 fn - f l ( ,  3 0 we get 

which shows that 

i.e, f E Sp (X). Moreover, as is shown above, the sequence {pJn) has only one 
limit point. Hence it must converge weakly to pf. 

LEMMA 2.5. I f f  €Sp(X) a d  AEZ, then lAf €Sp(X). 
P ro  of. Consider cylindricaI measures p, , p, defined as follows: 

Evidently, we have 

1 i.e. pf = pl *pz.  Since pf is a Radon measure on X and p,, p, are 
symmetric, p, and p, are Radon measures on X as well (see [14]), which 

I 

shows that lAf ES, (X) .  
I 

THEOREM 2.6. If cp E L ,  and f E S, (X), then qf E S, (X) and 

(2.2) Ar(qof) G 2llcpIlm~r~f). 

Proof .  At first we assume that rp is a simple function with 

Then we can write 
D 
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Noting that S , ( X )  is a linear subspace, we get qf ES,(X) (by Lemma 2.5). 
Furthermore, we can choose independent r.v.'s e,, . .., 5 ,  with values In X 
such that 

By this way and noting thai (see, e.g., [16]) 

we obtain inequality (2.2) immediately. 
The general case follows from the special case by choosing suitable simple 

functions and using Lemma 2.4 and Theorem 3.3 below. 
Remark.  The assertion of Theorem 2 6  for the case p = 2 was pointed 

out in [5] by using random integral. Recently, Rosinski [15] has constructed 
a general random integral. In paricular, he has proved that f E S , ( X )  iff f is 
M-integrable, where M is a random measure defined on Z and taking values 
in Lo@, A ,  P) with 

E exp i tM(A)  = exp (-m(A)lf1?, A EZ. 

We refer the reader to 1151 and [la] for details. 
To end this section we should like to raise two following problems. 
P rob lem 1. Is it true that S, (X)  c S , ( X )  for 1 < q < p < 2? 
Clearly, the answer is "yes" if X is of stable type q. Dang Hung Thang 

[2] gave a positive answer to the problem for the case X = I, (B) with 1 < s 
< q and.B is a Banach space of stable type q (although l,(B) is not of stable 
type q). 

Prob lem 2. Is the set of all simple functions dense in S, (X)  with respect 
to norm A r ( . ) ?  

If the answer is "yes", then by Theorem 3.3 we could prove that: 
For any p-stable measure p on a Banach space there exists a sequence of 

p-stable measures {p,] such that the support of a, is a finite set for all n and 
p,, converges weakly to p, where a, is the spectral measure of p,. 
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I 3. THE CONVERGENCE IN S,(X) 
I 

Our aim in this section is to investigate the convergence relation between 
f f s p  (XI and Pf 
. PROPOSITION 3.1. Let ( A )  be a family of elements in S p ( X )  and {A = pfa) 
be the corresponding family of p-stable measures on X .  I f  tkl is unijor~nly 
tight, then I,&) is bounded in L p ( X ) .  

Proof .  Recall that a family of Radon measures {A)  on X is called 
unformly tight iff for any E > 0 there exists a compact K, c X such that 
k (X\K, )  4 E for all or. In [3] we have proved that if {A] is a family of p -  

I 

i stable measures on X and it is uniformly tight, then 

sup 1 I l x t l ' d ~ ( x )  < + cx, with 0 < r < p .  
a x 

Hence, by Theorem 2.1, it follows that 

Remark.  In general, it is. possible that p~ = p4 for f, g E S, (X) and 
f # g. So the assertion that the weak convergence of (A) = {pJn} implies 
the converge of [f,) in Lp(X) is false. However, in any case we have the 
following 

PROPOSITION 3.2. If ~ , E S , ( X ) ,  f E S , ( X )  and U, weakly converges to ~1,, 

then I l fn l l p  -4Ilf l l p  and &(fJ + A , ( f )  as n-, +a. 
Proof.  The first assertion is an immediate consequence of Theorem 2.1 

and' Theorem 4.3, the second one follows from Corollary 3.4 of [3]. 
The next theorem is the main result of this section. 

THEOREM 3.3. If f , ~  Sp  (X),  f E Sp(X)  and, for some r G (0, p), I ,  ($, -f) -+ 0 
as n + + LO, then pa weakly converges to p = pf. 

Proof.  Let be an embedding of L p  into L, (see [I]) and T,, T the 
linear operators defined as follows: 

X* -+ L, X* ' LP 
T,, : 

X* -+ (f,, x*)  T: ** '(f, x * )  1- 
Put L, = 8 o T,, L = @J o T Because of S. E Sp  ( X ) ,  f E Sp  (X )  there exist 

X-vdued r.v.'s cp,, cp such that 
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(see Lemma 2 in [a]). Now it is easy to check that 

where E stands for the mathematical expectation. In particular, this implies 
that p, converges weakly to p. 

As a corollary of Theorem 3.3 and Corollary 2.3 we obtain 
COROLLARY 3.4. Let X be a Banach space of sfable type p and f , ~  Lp(X), 

f E L,(X).  I f  f ,  + f in L, (X), than p, weakly converges to p.. 
Remark. The assertion of Corollary 3.4 for the case p = 2 was pointed 

out in [19]. 
From the example in Section 2 and Corollary 3.4 we get 
COROLLARY 3.5. The foilowing conditions are equivalent: 
( 1 )  TY is of stuble type p. 
(2 )  For any ( U ,  C, m) the convergence of a sequence (A) in L,(X) implies 

the weak convergence of' the corresponding sequence {b,). 

4. THE UNIFORM TlGEPTNESS OF SPECTRAL MEASURES. 

Let {pa) be a family of p-stable measures onba separable Banach space X 
with ch.f. 

f iE(x*)  = exp (- J](x, x*)IPdca(x)), x* EX*, 0 < p < 2, 
S 

where S is the u d t  sphere of X and on is a finite measure on S for any E .  

In this section we investigate the relation between the uniform tightness 
of and the uniform tightness of the corresponding family of spectral 
measures 1 fla.,1 . 

THEOREM 4.1. If (A) is uniformly tight, then so is {gal. 

Proof.  Without loss of generality we can suppose that X has a Schauder 
basis (since every separable Banach space can be embedded into a Banach 
space having a Schauder basis, e.g. CI,,,l). 

Let ( e3  be a Schauder basis in X. By Theorem 3.5 of [3J the uniform 
tightness of (k} is equivalent to the conditions 

sup j Il~ll'd& (4 < + 00 5 

a x 

lim sup j I ] ~ ~ x l l ' d ~ ( x )  = 0 
N-m rr x 

I0 - Probability Math Statistics 511 
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for any rc{O,  p), where 

and (e:) is the dual basis of (en). 
Note that pao V i l  is the p-stable measure on X with ch.f. 

( k o  v i l j ( x * )  = exp { -  SI(Vix, x*)lpdna(x)]. 
.T 

Consequently, by Theorem 2.1, 

sup a,(S) = sup Ilxllp da, (x) d c,,, sup { j  Ilxllr 4& @))p'r < + .I,. 
a a s a x 

In view of Theorem 3 in t12] this permits us to conclude that the family 
{ G ~ )  is uniformly tight. 

The next theorem characterizes those Banach spaces for which the 
converse to Theorem 4.1 is true. 

THEOREM 4.2. For any separable Banach space X the following conditions 
me euuivaIent: 

( 1 )  X is of stable type p.. 
(2 )  {pa j. is uniformly right 1y so is {a,), where {&$ is an arbitrary family of 

p-stable measures on X .  
Proof.  By the argument as in the proof of Theorem 4.1 we can assume 

that X has a Schauder basis (e,,). 
(1) -. (2). In view of Theorem 4.1 it is sufficient to show that the uniform 

tightness of (a,) implies the uniform tightness of (A}. 
As was shown in [12], the uniform tightness of (a,) is equivalent to the 

following conditions : 

(4.1) sup aa(S) < + oo, 
a 

(4.2) lim supga{x: I Iv,xl l>~}=O forany E > O .  
N + + m  a 

Now note that 

(because of IIVNxll l K for all x ES, where K is the basis constant of (e,,)), 
~onsequent l~ ,  using conditions (4.1) and (4.2), we obtain 
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lim .sup j[IV,xllPdma(x) = 0.. 
N-*m Q s 

If X is of stable type p, then (4.3), (4.4) and Corollary 2.3 imply, for any 
r ~ ( 0 ,  p), the following conditions: 

sup J llxlB dpa (4 < + m , lim sup I1 VN xllrd& (4 = 0, 
a X m  N - + + c D  a .y 

which shows that (k)  is uniformly tight (see [3]). 
(2) -.jl). Suppose that (x,J is a sequence of elements in X with 

We show that the random series ' ' 

converges a.s. We take for a, the measure 0n.S defined as follows: 

It is easy to see that nn is the spectral measure of the following p-stable 
measure: 

Obviously, this family (on) is uniformly tight, so, by the assumption, {pnf 
. 

is also uniformly tight. Hence, by Ito-Nisio's Theorem (see [6]) it follows 
that series (4.5) converges as. 

Remark. Theorem 4.2 is a simple corollary of Theorem V.10.3 in 1181. 
However, it should be noted that we have proved this theorem without using 
stochastic integral. 

In general case we can not assert that the weak convergence of a 
sequence of p-stable measures implies the weak convergence of the cor- 
responding sequence of spectral measures. But we always have the following 

THEOREM 4.3,.Let X be a separcsbb Banach space and {p,) a sequence of 
p-stable rneasurii on X .  If p, conuerges weakly to p, then a,(s) converges to 
b(S), where an and o are spectral measures of p, and & respectively. 

Proof. According to Theorem 4.1 we have sup a, (S) < + GO (since (6,) is 
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uniformly tight). Let s be a limit point of the sequence {a,(S)$. So there 
exists a subsequence [a,, ( S ) )  with 

lim an, (S) = s. 
k + +  m 

It remains to show that s = a(S). Since (pnk]  is uniformly tight, so is 
la,) by Theorem 4.1. Hence, by Prokhorov's Theorem (see [14]), the 
sequence :on,) contains a subsequence {omi) converging weakly to a finite 
measure c, on S. This implies, for all x * € X * ,  that 

lim oni IS) = 0 ,  (5') = s, 
k -m 

lim j I{x, x*>IPdamk = Sl(x, x*>IPdam. 
&-.a, s s 

On the other hand, since p, converges weakly to f i  we get 

lirn jl{x, x*>IP dun = E I{x, ~*>l'du 
n-rm s S 

Consequently, 

j 1 {x, x*)IP do = jl(x, x*)lpdda, for all x* EX*. . 
S S 

By Theorem 2.1 it follows that LT (S )  = am (S), i.e. s = CT (S), as desired. 

5. THE CONVERGENCE OF SURlS OF INDEPENDENT 
p-STABLE BANACH VALUED RANDOM VARIABLES 

We now apply results of previous sections to. study the convergence of 
sums of independent p-stable Banach valued random variables. 

THEOREM 5.1. Let {<,I be a sequence of independent X-valued p-stable 
r.v.'s. If the radorn series 

converges ass., then 

where an is the spectral measure of the p-stable measure Y(5,). 
Proof.  Put 
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It is easy to see that 

i.e. A, is the spectral measure of the p-stable measure pn on X. If the random 
series (.5.1) converges a.s., then, evidently, the sequence [p,) converges weakly 
to a measure p on X. So, by Theorem 4.3, we have 

lim A ,  ( S )  = A (S) ,  
n + +  m 

where A is the spectral measure of the p-stable measure p, whlch implies 
condition (5.2). 

THEOREM 5.2. Let X be a separable Banach space. The following conditions 
are equivalent: 

(I) X is of stable type p with 0 < p < 2. 
(2) For any sequence it,) of independent X-valued p-stable r.v.'s series 

(5.1) conueryes a.s. 1r condition (5.2) is satisfied, 
Proof .  (1) +(2). In view of Theorem 5.1 it remains to show that if 

condition (5.2) holds, then random series (5.1) converges a.s. For this purpose 
we put 

m 

(4 = C a,, (B),  B E .A9 (X). 
n =  1 

From condition (5.2) it follows that a is a finite measure on s. If X is of 
stable type p, then, by Corollary 2.3, the functional defined by the formula 

is the ch.f. of a p-stable measure p on X. 
On the other hand, we have 

lim ji,(x*) = lim exp (- [ 1 (x, X* >IPdAn (x)) 
n + m  n++ m S 

= exp {- S](x, x*)lpdu) = ji(x*) 
S 

for all x*EX*. Consequently, by Ito-Nisio's Theorem we conclude that 
random series (5.1) converges a.s. 

(2) -+ (1). Let (x,) be a sequence of elements in X with 

Put c, = xn 8ip). Then we get 
m 00 
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Hence (2) implies that the random series 

converges a.s. The proof is completed. 
COROLLARY 5.3.  Let X be a separabIe Banach space. The following 

conditions are equivalent: 
(1) X is of stable type p with 0 < p < 2. 
(2)  FOP any sequence (l,) of independent X-valued p-stable r.v.'s series 

( 5 . 1 )  converges a s .  iff the series 

converges for some (each) r E (0, p) . 
Remark .  Corollary 5.3 (and, consequently, Theorem 5.2) is not valid for 

p = 2. A necessary and sufficient condition for (2) to be true for p = 2 is: X 
is isomorphic to a Hilbert ' space (see [7]). 
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