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SOME RESULW ON CYLINDRICAL IMEASURES 
AND APBkilCATION 

Abstract. The aim of this paper which is a continuation of 181 is 
to study cylindrical measures on a locally convex space which are 
scalarly concentrated on compact sets. We give some results con- 
cerning continuity of the covariance operator' and compactness of 
the reproducing kernel Hilbert space of such a measure. Moreover, 
we give some applications concerning Gaussian cylindrical measurea 
and the law of the iterated logarithm. 

1 1. IPrelaninaries. Let E be a locally convex space (1.c.s.) and E' its 
I topological dual. By EL and E: we shall denote the space E' under topologies 
I _ a(E', E) and z(E',  E) (weak and Mackey, respectively). Let 6 be a family of 

subsets of E. We denote by E', the topology 6-convergence on E' (i.e. the 
topology of uniform convergence on sets from 6). If E and F are two locally 
convex spaces, then LtE, F )  will denote the set of all continuous linear 
operators from E into F. If (9, sd, P) is a probability space, then the linear 
map T E'+ ~'(9, d, P) is called the cylindrical process. 

We say that a cylindrical process T is Pettis integrable if 
( 1 )  T(Ef) c L1 and 
(2) for each A E d there is an x, E E such that (x, , x') = 1 Tx' dP for each 

A 

x'EE'. We write T d P  = x,. 
A 

Remark 1. If T is a (7(Ef, E), j( It,,)-continuous cylindrical process, 
then T is Pettis integrabie. 

The above remark follows from the fact that the transpose operator T* 
to T maps Lw into E. More facts concerning connections between Mackey 
continuity and integrabhlity can be found in [9]. 

Now, let % ( E )  denote the algebra of cylindrical subsets of E, and p a 
cylindrical measure on %(E) .  It can be shown (cf. [I], p. 41) that there exist 
a probability space and a cylindrical process T,: E' -P LO(Q, d, 9) such that 
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for each CEW.(E), C =  (xEE: ((x,x;) ;..., ( . x , x ~ ) ) ~ B ) ,  where n e w ,  
x; : . . ., x; EE' and  BE(%?^), we have 

This correspondence between p and T, is one-to-one. In the sequel 
pYi ..,,, x;, will denote the distribution of the random vector ( T , x ; ,  . . ., 7;, xk). 
We say that a cylindrical measure p has a weak p-order if 

j' 1 T, x'JP JP < rn for each x' E E'. 
R 

If p has the weak second order then there exist rn,~E'* (E'* denotes the 
algebraic dual to E') and a linear operator R,: E' + Er* such that 

(m,, , x') = 1 T, x' dP 
n 

and 

(RP x', y ' )  = 1; x' Y ' ~ P -  <mp, x') (m,, Y'> 
\ R 

for each x', y ' ~  E', m, is called the mean of p; R, - the covariance operutor 
of p. 

On the subspace R,(E') -of E'* we define the inner product. For 
h l ,  hZ€  Ry (E') ,  hl = R,x;,  hz = Rex;, we set (h, , h,), = (R@x', ,  xi). By H ,  
we shall denote the completion of R,(E') in the norm 1 1  - 11, = ( -, a )LIZ. H,  is 
called -the reproducing kernel HiEbert space (RKHS) of p. 

We say that a cylindrical measure p is Gaussian if for each  EN and 
x', , . . . , X: E E', (q xi,  . . . , xi,) is a Gaussian random vector (or, which is the 
same, if pxi ,.,,, is a Gaussian measure on R"). 

2. Cylindrical measures scahrly concentrated on compac_t sets. Results 
of this section are based on the following 

LEMMA 1 .  Let E and F be 1.c.s. and let G be the family of all compact 
and buianced subsets of E. If  T is a linear operator from E' into F, then rhe 
following conditions are equivalent: 

(a )  T E  L ( E k ,  F ) ;  
(b) TE L(E:, F )  and, for each equicontinuous subset A of E', T(A)  is 

relatively compact in F .  
Proof.  (a) => (b). If T E L ( E ; ,  F )  then T E L ( E , ,  F) because the 6- 

topology on E' is weaker than .c(E', E). Let A be an equicontinuous subset 
of E' and let -A denote the closure of A in a ( E f ,  E ) .  Because of [q (4.3, p. 
84) the set A is a (E', E)-compact. Then on set A the topology a(E', E) 
coincides with 6-topology ([6], 4.5, p. 85). Therefore K is compact in EL. By 
assumption T E  L(E',, F), so T(A) is compact in F and therefore T(A)  
is relatively compact. 
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(b) + (a). Let 6, denote the family of all compact and balanced subsets 
of F and let T* denote the transpose to T Since T E  LIE:, F )  then T* maps 
F' into E. First we show that T*E L(F&,, E).  Let U be an absolutely convex 
neighbourhood of 0 in E'. Then U" (" denotes the polar) is an equicontinuous 
subset of E', and by the assumption T ( U o )  is relatively compact in F. 
If K is the closure of T(UO),  it is easy to show that T*(KO)  c U. Since Ko is a 
neighbourhood of 0 in F',, , T* E L(F&, , E). Therefore, using the implication 
(a) = (b), we see that T * E  L(Fi,  E) and, for each equicontinuous subset B 
of F', T* (B) is relatively compact in E. Now, by  repeating the above 
arguments replacing T by T*, we have T = (T*)* E L(E&, F ) ,  

Let G be a family of subsets of E and p a cylindrical measure on E. We 
say that p is scalarly concentrated on 6 if for each E > 0 there is an A E  G 
such that 

(A,)* ( x r ( ~ ) )  2 1 - E for each X' E Er 

(, denotes the inner measure). 

The following Theorem 1 is an extension of the similar one (c.f. [8] 
Theorem 4.2) on the case of an arbitrary locally convex space (without 
assumption that E is complete). Methods of the proof of this theorem do not 
use notations of tensor products. 

THEOREM 1. Let E be an 1c.s. and let 6 be a family of all compact and 
balanced subsets of E. If p is a Gaussian cylindrical measure scalarly con- 
centrated on G, then we have: 

(a) m, E E. 
(b)  R,: E' -+ E and R,(UO) is a relatively compact subset of E for each 

neighbourhood U of 0 in E. 
(c) H, is a subspace of E and the canonical injection 8: H ,  -t E is 

continuous. 
(d) ( h ~  H,: (Ih(1, < lj is a compact subset of E. 
Proof.  (a) By [I], Proposition 2, p. 182, T, E L(Ek, L2), SO E L(E:, LZ). 

In particular T,E L(Ei,  L') and, therefore, T is Pettis integrable. Hence 
m, = J T, d, is an element of 3. 

n 
(b) Since T,E  L(E:, L2), it is easy to show that SqT, ~ P E  E for each 

R 
function q E L1. This implies 

Now we prove the second part of (b). Let TI = T ,x ' -  (m,, x').  Note that 
the transpose q* to T,  is of the form 

(T* rp, x') = SqT, x'dP 
R 
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for each r p ~  L2 and X'EE', and that R, = T ' o  T,. Since the polar of the 
neighbourhood LT of 0 in E is an equicontinuous subset of E', it follows from 
Lemma 1 that R,(UO) is a relatively compact subset of E. 

(c) Let 2 denote the closure of T;C (El) in L2. Since T,* is defined on 
whole L2, T'(&') c E, Moreover, T;C is the one-to-one and isometric map 
from T,  (E') onto R,(E'). Therefore, T: can extend to a map from JEa onto 
H,,, which map possesses the same properties as q*. In particular H ,  
= TF(&?) and hence H, c E, Now we show that the canonical injection 
0: H,, + E is continuous. Let U be an equicontinuous neighbourhood of 0 
in E and let p u ( . )  denote the Minkowski functional of U. For h~ R, (Ef ) ,  
h = R, x', we have 

P,(W = SUP I@, x', Y')I < I1 T, ~'11~1 SUP I1 TI ~ ' 1 1 ~ 2  
y'eu" ~ ' E U "  

Since T,  E LIE:, L ~ ) ,  

Consequently, 8: R, (E') + E is continuous and hence the injection of H, into 
E is continuous. 

(d) Using the similar arguments as in 171 (Theorem 4.2 (d)) and Lemma 1 
it can be shown that the unit ball in H, is a compact subset of E. 

The next theorem extends Theorem 1 on the case of non-Gaussian 
cylindrical measures. 

THEOREM 2. Let E be an 1.c.s. and let G be the family of aEE compact and 
balanced subsets of E .  I f  p is a .  cylindrical measure on E such that 
T,E L(Ef, L2), then there are satisfied points (a), (b), (c) and (d )  of Theorem 1. 

The proof of this theorem is similar to the proof of Theorem 1. 

' 3. Applications. Let p be a cylindrical measure on an 1.c.s. E and let T, be 
its cylindrical process. The function f i :  E'+ C, 

fi(x') = 1 exp ( i  T, x3 d P ,  
12 

is called the characteristic functional of p. 
Now, let H be a Hilbert space. The cylindrical measure y ~ ,  on H is said to 

6e canonical Gaussian measure if y,(x) = exp ( -+ ( 1 ~ 1 1 ~ )  (here H' is identified 
with H). Using Bochner Theorem it is easy to show that the function H 3 x  
3 exp (-+[1-~11~) is a characteristic functional of some Gaussian measure on 
H (in the sense of the definition from section I). This Gaussian measure is 
scalarly concentrated on family of all balls in H (cf. [7], p. 327), so it is 
concentrated on o(H, H') compact sets. Theorem 3 shows that a Gaussian 
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measure on an 1.c.s. can be obtained as an image of the canonical Gaussian 
measure if and only if it is scalarly concentrated on weakly compact sets. 
This theorem extends results of Bore11 ([Z], Theorem 4) and Dudley, 
Feldman and LeCam ([3Jy Theorem 2.1) which were obtained for Radon 
measures. 

THEOREM 3. Let E be un 1.c.s. and 6 a family of all a ( E ,  E') compact and 
balanced subsets of E. I f  p is a Gaussian cylindrical measure on E with m, = 0, 
then the following conditions are equivalent: 

(a)  there exists a Hilbert space H and weakly continuous linear operator 
S :  H + E such that S(y,j = p. 

(b) p is scalarly concentrated on 6. 
I 

Proof .  Suppose p is scalarly concentrated on G. Then, applying 
Theorem 1 to the space (E,  a ( E ,  E')), we obtain that H, c E and that 6:  H ,  
+ ( E ,  a ( E ,  E')) is continuous. Hence, 0 is (a(Hp, H,), a(E, E')) continuous 
and therefore 8* maps E' into H, ([6], 7.4, p. 158). Now let y, be canonical 
Gaussian measure on H. Since 

0 ( y H )  (x') = T H ( B *  x'j = exp (-+(Id* ~'11,") 

= exp (-3 {R, x', x')) = F.(x') 

for each x'EE', we have B(y,) = p. 
Conversely, let us suppose that there exist a Hilbert space and a weakly 

I continuous linear operator S :  H +  E such that S(yH) = p. Then 

c ( x f )  = j&(S* x3 = exp (- i l ls* xfll&). 

On the other hand, ji(xf) = exp ( -4  I(T, xf1j2,j. Since the linear operator 
S*: E' + H is ( z ( E f ,  E), ([ .I( ,)  continuous ([6], 7.8, p. 158) and E', = E:, it 
follows that T, E L(Ei, L2) = L(EL, L2). Therefore, by [I], Proposition 2, p. 
182, p is scalarly concentrated on 6. 

In the sequel we shall use the following 

LEMMA 2. Let E be a separable and complete Lc.s. and G a family of all 
compact and balanced subsets of E. Assume that T is a linear operator from E' 
into a Banach space F suck that IITx:llF + 0 for each sequence {x:) c E', 
where x: -, 0 in a(Ef, a. Then T E  L(E&, F).  

P r o  of. since yr o T is, for each y' E Fry a * -sequentially continuous Iinear 
functional on E', then y' o T is (z (E', E) ,  11 - 11,) continuous ([6], 7.4, p. 158). 

Now, let A be an equicontinuous subset of E'. We show that T(A) is 
r k ~ a t i v e ~ ~  compact in F. Let {y,) be a sequence from T ( A ) ,  y, = T., where 
X ~ E  A, and let A denote the closure of A in a(Ef, E). Since E is separable, A 
equiped with a ( E f ,  E )  topology is compact metric space ([6], 1.7, p. 128). 
Then there exists a subsequence {x;) of (xk)  which weakly converges to 
some X ~ E  d Therefore 1 1  Tx; - Txbll+ 0 and b y  Lemma 1 we obtain that 
T E  L(EL, F ) .  
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Now, as the first application of Theorem 2 we shall give some generaliz- 
ation of Theorem 2.1' from [4]. 

THEOREM 4. Let E be a metrisable and complete 1.c.s. If p is a Radon 
measure on E such that 

for each seminorm on E, then points (a)-(b) of Theorem 1 are satisfied. 
Proof,  Since is a Radon measure, it may be assumed that E is 

separable. Let lxbj be a sequence from E' which converges to 0 in a(E', E). 
By assumptions on E, it follows that {x:) is equicontinuous and therefore 
[ xn l0  (the polar with respect to {E',  E)) is a neighbourhood of 0 in E. Let 
l{-Il denote the Minkowski functional of {x,)~. Then there exists a constant 
C such that ((x, xi,)[ < C llxll for each n E N .  Note, that T, x' = ( ., x') is the 
associated with p cylindrical process on the probability space (El BE, p). 
Since IT, xAi < C 11 .I[ E L2 ( E ,  .%, p), it follows from Lebesgue theorem that 
HTx;llL2 +0. Therefore, using Lemma 2, we obtain that p satisfies the 
assumptions of Theorem 2. 

Now we give some applications to the law of the iterated logarithm 
(LIL). Let E be a metrizable space and (a, d, P) a probability space. Let 
X: i2 -, E be a random variable (i.e. weakly measurable an separably valued 
function) and let X,, n = 1, 2, . . ., be independent copies of X, Let S ,  = XI 
+...+ X, and Q , = , / m  for n 2 3 ,  a , = a , = l .  We say that a 
random variable X sagfies the LIL if there exists a compact subset K of E 
such that 

The below theorem about compactness of the unit ball in RKHS of a 
random variable X which satisfies LIL, was first shown by Kuelbs ( [4] ,  
Theorem 3.1) under assumption that E is a Banach space and that X has the 
strong second order. Then Pisier ([4], Theorem 1 .1)  has shown this theorem 
without assumption that X has the strong second order. Thanks to the 
Theorem 2 we can give an extension of this result on the case of Frkhet 
spaces and, moreover, the proof is now simpler. 

THEOREM Let (a, d, P) be a probability space, E a rnetrizable and 
complete E.c.s., and X: L? + E a random uariabie which satisfies LIL. Denote 
by Hx the RKHS of X and by B,  the unit ball in H x .  Then Bx is a compact 
subset of E. 

Proof.  Denote by T the cylindrical process associated with X, i.e. 
Tx' = {X, x'). By the LIL for real random variable we have: 
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(1) J' Tx'dP = 0 for each X'E E'; 
R - 

(2) lim { a i l S , ,  x') = ( J  ( X ,  x ' ) ~  dP)'12 = JITx'IJLZ. 
n a 

Let i2, = (w:  a,' Sn(w) E K), where K is a compact subset of E. Let (xi) 
be a sequence from E' such .that x: -0 in c(E', E),  and let w,~S2, satisfy 

Then 
- 

l l  TxL1IL2 = lim {a; S, (a,), xi} < sup ( x ,  x;) -+ 0, 
n xeK 

if k + m. Therefore, using Lemma 2 and Theorem 2, we obtain that B, is 
compact in E. 
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