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ON INVARIANT CURVE ESTIMATORS
BY .

WOLFGANG WERTZ (WIEN)

Abstract. Invariantly optimal estimators of functions, with res-
pect to mean integrated squared error as a risk, are considered.
Their Bayes properties are investigated and, for several examples,
explicit solutions are computed.

1. INTRODUCTION

The purpose of this paper is to construct nonparametric estimators, .

satisfying optimality conditions with respect to a nonparametric risk, namely.

. the mean integrated squared error (MISE). Actually, it is possible to carry
through the computations only for parametric models. On the othér hand,
this enables us to compare estimators corresponding to a nonparametric
criterion with estimators which are obtained by estimating the unkown
parameters.

Without further restrictions on the estimators under consideration it is
impossible to find estimators which are optimal in the sense that they
minimize uniformly the risk.

The assumption of expectation- unblasedness is too strong for nonpara-.
metric situations, in larger models even void. Hence we restrict ourselves to
the study of invariant estimators.

In [10] we have derived invariantly optimal estimators (IOE’s) of func-
tlons, based on mean integrated p-th power loss (p > 1); the case p = 1 with
several examples is treated in [117]. For p = 2, in [10] further examples are
included, concerning density estimation on the real line, on the circle and on
the sphere; moreover, estimation of the density, of the density of order
statistics, etc. is considered there. The. IOE of the reliability function in the
exponential case is investigated in [3], including its asymptotic deficiency
compared with other common types of estimators, in a local manner,
however
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Restriction to invariant estimators can be justified for several reasons in
our situation:

(i) For many applications, invariance is a desirable property of
estimators.

(i) Under reasonable conditions, estimators constructed by substituting

estimators of the parameter turn out to be invariant.

To be more specific, we give the following example: let us estimate the
density, which is assumed to be specified up to location and scale, say

; XEs>— f(xo_é)

Estimating £ by the empirical mean X and o by the empirical standard
deviation s yields
1 .
xt—>—f (x x)
s s

as a density estimate which is invariant in the sense below.

(iti) Although IOE’s are not strict in general (a situation which is usually
met in nonparametric curve estimation), there are examples in which the IOE
has uniformly smaller risk than the usually strict “parametric estimator” (see
e.g. [8], [2]). It is not yet known whether this is the typical situation. In
some cases an expectation-unbiased estimator exists, but it is inferior to the
IOE. All of this holds, e.g., if a normal density with unknown location is to
be estimated. ! :

(iv) If the model has certain invariance properties, for every estimator f
there exists an invariant estimator f, such that the maximum risk of 7, is not
greater than the maximum risk of £ In particular, the existence of an
invariant minimax estimator can be proved (see [4] and [9D.

In the following we give some more examples for the case p = 2. For

many problems (in particular estimating distribution functions, reliability

functions, hazard rate functions and so on), an essential integrability assump-
tion of [10] (the square integrability of the function Df, below, in the case
treated here) fails to hold. A natural way to aveid such difficulties in case of
sample space Z is to truncate the function to be estimated at two quantiles;
this is carried out in [4]. From a practical point of view, the truncation at
quantiles is reasonable under many circumstances, say, in a purely nonpara-
metric framework, when nothing is assumed about the analytic form of the
density (e.g. exponentially or algebraically decreasing tails), no reliable in-
formation is available about the behaviour of the distribution outside an
interval between two appropriate quantiles.
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In chapter 3 the IOE is shown to be a generalized Bayes estimator (GBE)
in the sense of Sacks [5].

2. PRELIMINARIES

. Let G be a locally compact group, H a closed subgroup, X := G/H the
corresponding homogeneous space, % its o-algebra of Borel sets, v a right

Haar measure on G and g a nontrivial, relatively invariant, ¢-finite measure
on %, ie.

A A g4 = 2@ n)
9eG AT '

with a function y: G —(0, ) independent of A.

Let f be a probability density, P:=fu the corresponding’ probability
measure, f, the probability density x> x(g fg™'x) and P,:= = f,n. For
every geG let Dfy: X — & be a p-square- 1ntegrable function w1th

- Dfy(x) = rp(g"‘)Df(g" x)

for every geG and xe & with a function ¢: G —n%\{O}
The set of all ¢-invariant estlmators f of Df,, ie.

fE an(Xn+l, Qﬂn+1’ P;@ﬂ),
geG
with |
/\ /\ N 6" 29 = 9@ (g, 9%),

xeX xMexn geG

will be denoted by S, (¢).
' Let ‘ ' .

R(f, 9 = R(fP I}I{ f(x", x)— D);(x)]zdu(x)dP"(X")
. FEas

serve as the risk' of f at g.
The formula - ' : "
R(f, 9)= 2@ #*@ )R(f. o)

for every feS,(¢), where e is the unit of the group, is proved in [10], and
further the following is stated:

THEOREM. Let |

g0 @2 @ ) T1 6 %)

, , i=1
be v-integrable for P"-almost all x" = (x,, ..., x,). Then

3 — Probability Math. Statistics 5/1
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ij(g“x)fp(g)x"“(g“)Hf(g“ .)dV(g)

@ fox", x) =
gcoz(g)x”“ @™ [[lf(g"" x;)dv(g)

" defines the @-invariantly optimal estimator of Df,.

3. THE IOE AS A GENERALIZED BAYES ESTIMATOR

The est‘imation‘ problem treated here can also be regarded as a purely
parametnc problem, namely estimating Df;(x) for fixed xe X. Just as it is
1nterest1ng 'to consider parametnc methods from a nonparametric point of
view, it can be informative to regard (2) as a pointwise estimator of Df,(x)

and to. apply parametric criteria.’

Let B be a o-finite measure on G with Radon-Nikodym density p with
respect to v and g—d(g) a given function from G to # which is to be
estimated. The (generalized) Bayes risk B(d) of an estimator :
| de | Lo(X", P}

geG
of d(g) equals

B(d) = | [ [A(x")—d@Ff (x"|g)du" (x")dv(g),

1

vjvhe;e
f(x"lé):=x'_'(g“)iljlf(g“x.-)-
We make the following assumptions:'
(3a) f (x"):é £f (x"{g)p(g)dv(g) fulﬁls 0<f(x") < oo for P*-almost all x";
(Bb) g—d(g)f(x"|g)p(g) is v-integrable for P"-almost all x";

(3c)  deLq(G, ).

Then q(g|x") :=f(x"|9) p(g)/f (x™ is defined for P"-almost every x", and
~grq(g|x") is a probability density. ,
The mapping

hi>T(H) = (x"+— gh(x", 9)-4(g|x" dv(g)),

defined on L, (X" x G, f (x"|g) p(g) du" Qv (x", g)), is easily seen to be a projec-
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tion to the subspace of functions depending only on the variable x". Hence
T(d) mlmmlzes B; T(d) has the.form

T\ = [d(g)a(glx"dv(g).

- Since B is o-finite, there is an ascending sequence (C,) of sets with 0
< ﬁ(Ck) < w0, C, 1G. A sequence of probability measures §, can be defined

e.g. by
dﬁk (9):= lck (@) p(g)dv (g)/ﬁ(Ck)

Let d, be the Bayes estimator of d w1th a priori distribution f,; then, by
the Lebesgue theorem,
1

5 jd @) f(x"lg)Ic, (g9)p(g)dv(g) .

. Jk(x”) = 1 G
| B(CY f / (x"l"”ck(g)z)(g)dv( )

converges to T(d)(x") for almost all x". Hence T(d) is a generahzed Bayes
estimator (see {57, and cf. also [6]). .

Application of these considerations to the case d(g) = ¢(g~ ') Df (g~ ! x),
p(g) = @*(g)x(g~ ") proves (2) to be a generalized Bayes estimator.

i Using a result by Strasser [7], generalizing a theorem of De Groot and
Rao [1], formula (2) can also be proved to be a generalized Bayes estimator
in the nonparametric sense, under mild restrictions.

Let 4 be a probability measure on G, and let g [(Df))*du be A-
integrable, further Df, > 0. In an obvious manner, 4 induces an a priori
dlStl‘lbUthIl on {P,: geG}. We assume that LZ(X 4#) has a countable base
and :

@ o (x;g)'-*cﬂ(g_-l)Df(g'lx) :

is y®.l-1ntegrable , , -
 Wetake 4 =L,(X,p as a dec1s1on space and L(t a) = [(t—Df,)*dp as
a loss function. Then '

- B(NH) = { [[f(x" 0—Df, X)]zd#(X) Hf,,(X)d# (x")dl(g)
G yn X
is the Bayes risk of the estimator f. _
Denote by L(t, P,) the directional derivative of t+—L(t, P,) at te4 in
direction se 4. Writing g(-|-) for the a posteriori dens1ty, it follows from
theorem 4.5 of [7] that

5 JL(FG™ ), P2l dv(@)> 0 ae. for every sed
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is a sufficient condition for f to be a Bayes estimator. In our »case,
L(t, P) = ?il(:: —:;[L(‘t+as, ‘Pg)—.L(.t, Pl = 2J~(t'—— Dj;)sdp,

and (5) is equlvalent to

© U 9-D0ls@ T alxIvig) 20 ac

Take the o-finite measure § and the probability measures B, as above.
Then
IDf (x)}( g™ Hf ! x;)dB(g)

felx", %) =
J @™ _I_Tlf (67" %) dﬁk(g)

obviously fulfils (5) and hence is a Bayes estimator with a priori distribution

fo = lim fk ae.

k—+ o i
|

Let, for k=0, 1,2, ..., |
40, X):= [ D, ()@ ) ﬁlf(g-lx,-)dﬂ(g)
Cx =
and _ .
B [ 267 1167 54800

where C,:= G. Obviously, AkTAO, BkTBo and f;, = 4,/B,.
Now, since Df, = 0,

R Al _|4o| |, AxBo
fo—Fd = 5° o 1=
MO M TRy Bl [Bo| | Bido
R B, " B
<fol-{ 1+ <ol [ 1+ ).
7l ( o L;) 7 ( + Bl)

- Because fy(x", )eL,(X, p), and BO/BI is 1ndependent of x, Lebesgue’s
theorem can be applied, yielding

“f‘;’(xn’ ')—ﬁ(x"a ')“2,11 - 0

for almost every x".
This proves f, to be a generalized Bayes estimator in the global sense.
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" 4. EXAMPLES

The first examples refer to the case of distributions defined on the real
line: X = # and u is the Lebesgue measure.

(a) Location parameter b unknown. We take G = 4, the additive group,
hence y = 1. The solution is

IDf(x b)¢(b)Hf(x —b)db

[9*(®) Hf(x.-—b)db
2 i=1

(b) Scale parameter a > 0 unknown. We take the multiplicative group %, ,
x(a) = a. We have

| Df(x/a)tp(a)a“"”’Hf(X/a)da
(7b) folxm, x) = ©=)

[T Hf(xJa

(0, o)

An examination of the proofs in [10] shows that (7b) is also the IOE in’
the case X =%, G=2,.

(c) Both location and scale parameters are unknown. We take G as the
group of all mappings

x—ax+b (a>0,beR)
and H as the subgroup of mappings x+>ax; then y(a, b) = a. We have

j’ [ or(*22)ota e i (52 )

(7)  Jolx, x) =222
)dadb

j f ¢*(a, b)a""*z’l—[f(
# (0,0)

As remarked in chapter 1, frequently the square integrability of Df fails
to hold. To overcome this difficulty, one can truncate Df, at given quantiles
x# and x{ of the distribution P, (0 <a < f < 1).

Let us denote by D the tl;u_ncatlon of D, namely

- Df, = 11, xi].

In each of the cases (a)-(c), a problem invariant under G remains
invariant under truncation, with the same function ¢.
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We consider case (c). Writing x, = x{® and x; = x§°?, g =(a, b), we
have x» = gx,+b, and
x—a
b

Dfaiy(®) = ¢((a, )~") Df (

follows. Hence formulae (7a) to (7c) can be applied directly.
The calculations leading to the following solutioris are omitted here (for
sake of completeness, results of [10] are also included).

A. Exponential distribution. Density: f(x) = e™* 1, o, (x).
. Estimation of density: Df =f.
(i) a=1, b unknown.

n _ )
="

if x <x;
n+1 >
n —(x x(l))

if x2x..
n+1 /_ -

(it} b=10, a > 0 unknown.

X=Xy |
n—=2 _ _ X=Xy “emh '
(1) .

Estlmatzon of rellablhty functlon truncated at quantiles:
Df (X) =e " 1(::“ xﬂ) (X),

x = —log(l=a), xp=-log(1-p (O<a<p<1).
(i) @a=1, b unknown.

n  n(x— .
I (=T x < x4

n -Xx mx—Xcy '
n_-i-l[ex(” —(A=pPrrE T XX < X < Xy + X,
0 Af X 2 x4y + xg.
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(ii) b =0, a > 0 unknown.

x x x
- . : (1 +nf) 10,00 (%)

T(n+1)

(F'k,2) = fe 't 1ar denotes the incomplete gamma-function).
: .

. iR ' cex
] s =T X
n—.—.—_e/___.l { N 1\‘ —

0 x5 xp1)ex, T X Xypxy 2 Xg Xy¥xg ¥

Fig. 1. Estimate of reliability function truncated at Xy Xg, M=5, x5y =02
rf — reliability function

Fig. 2. Estimate of reliability function truncated at Xy Xg. =3, X=1.
if — reliability function

Estimation of hazard rate truncated at quantiles: Df
a=1, b unknown.

—a)'—(1=p)" e i x < x5+ X,

[~ =(1 =BT ™ if x < x,
1—(1=p)re"™* "y if X0y + %, < X < X1y + X,
0 if x> x4y+x;. '

= Lixpxp-
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hrt
ﬁ-_—__
___"_/—_’7-;7—1 Ty Y
/\
- N
——e p=3 \\
\
\\
= "-(d \\
DR o
1 Xy X%y 2 Xg Xyxg

S Fig. 3. n=35, x4, =02
hrt - hazard rate truncated at x,, x,; e — estimates; d — density

B. Laplace distribution. Density: f(x) =4e .

Estimation of density:
b =0, a >0 unknown.

Sl E)

Fig. 4. n=5, Y [x| =5.
. i=1

d ~ density; de — density estimate

C. Uniform distribution. Density: f = 19 ,,.

Estimation of density:
(i) a =1, b unknown (See Fig. 5).
( x—X(")'+1

if x,—1<x<x
(n) = (1)
x(l)—x(,,)+1 : . :

< 1. if x4y <X <X,

X, X ] (n) = (1)+1>

L 0 - ‘ otherwise.
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(i) b=0, a> 0 unknown (See Fig. 6).

K if x <0,
n—1 )
J if 0<x<xg,,
L)
n— 1 x{ .
(") if x 2 xp. .
| - n

(i) a > 0, b unknown.

n—2 [xm—x1)]"" .
- if x <xgy,
n [x(n)—x]
n—2 1 )
{ — 0 if Xy < x < x4,
B Xy — Xq1)
. qn-2
n"'2 EX(")_X(I)]" .
1 if x = x,.

Estimation of distribution function.
‘ F (x) = x10,1y (%) + 111, ) (X).
(i) a =1, b unknown. F truncated at b+1: Df = F1_ 4.

[ (x=x +1)?
(1) .
_ if x,—1<x<xy4,
2(x(1)—x(,,)+1) (n) R X (1)
X, 1 +xn '-1 .
b '—Lz_()—‘ lf x(l) S X < x(,,),
1—(x—x))? .
B l) STt
i otherwise.
b e / _,_ de
d V4
/
T dft
edf
i
X! 0 %) o X 1 "m“ X

Fig. 5. n=35, x4, =01, x(n) =
d - densnty, de — density estimate; dft — distribution functlon truncated at b+1=1;
edf — estimate of dlstrlbutlon function
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(i) b =0, a >0 unknown. F truncated at ac (¢ >1): Df = Fl_ -

0 if x <0,

n+1 x .
if 0<x <Xy,
n+2 X
. 1 'xn+1
1— o if x, <x<ex
n+2x"+1 (n) == (n)>
1 xn+1 .
(n) -
[ — if x>=cx,.
{ ( n+2 n+1 = (n)

0 . xln, 1 CX(n) C=1. . Ax

Fig. 6. n=35, x,, = 0.75.

d — density; de — density estimate; dft — distribution function truncated; edf — estlmates of
dlStl‘lbUthl‘l function

The following examples are direct consequences of formula (2).

D. k-dimensional normal distribution. X =G = 2" density f(x)
=(2n) M2e ¥Y2 (ye #*), p=v =4, (k-dimensional Lebesgue measure).

The class of considered distribution consists of the normal ones with
unknown vector of expectations and unit covariance matrix, w1th density
5,00 =(@2n)" k/2 o= (x—b)'(X—b)/2

Y x and
=1

S| -

"The IOE is a normal densify with vector of expectations y=

) ‘ . on+1
covariance matrix ——1I:
, , n -

. . ' 1\ %2 |
fo(x",x)=(2nn—+;—) exp[ Sy B ;a]
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E. Discrete uniform distribution. We take X =G = 2 (additive group of
integers), u = v = counting measure on %:

) = ¥, 1,0).
ie?
Let k be fixed and f(x) = 1/kif xe {1, ..., k}.‘ We estimate Df =, i.e. the
probabilities of the discrete distribution.
k xqy—xm+k—1

if x,—k—1<x<xg,

1 f xy € x < X,
I xgy—x+k-1
k xqy—xy+k—1
0 ' otherwise.

fﬂ(xn! x) =-

lf} x(") \<._. x < x(“+k—1,

° o . P.

o——8©
——— . = . - H—0——
0 1 X{n Xin) - 10 X

Fig. 7. k=10, n=5; x4, =2, x» =8.
p — probabilities; ¢ — estimates

At first sight, some of the solutions look rather strange, and they
obviously differ from the usual parametric methods. The fact stems from the
use of the nonparametric type of loss. But in fact, our risk R(f, g), the mean
integrated square error (MISE), is used in purely nonparametric situations
without any objection. Our results can be used to define a notion of
efficiency of nonparametric curve estimators (e.g. defined by kernel methods,
modified histograms, nearest neighbour rules) by comparing their risk with
the risk of the IOE in particular parametric models.

Generally speaking, use of a loss function defined by an integral leads to
smooth estimates (cf. the examples above). Uncertainty relative to location
smears the estimate over the real line, even if the support of Df is a proper
subset of # (see e.g. the estimates of the exponential density with known
scale parameter). If the scale parameter is unknown, usually only finitely
many moments of the density estimate exist, even in case as uniform,
exponential, normal (see [10]) and Laplace distributions (see Figs. 4 and 6).
This phenomenon is closely connected with the remarks in chapter 1.
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