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ON INVARIANT CURVE ESTIMATORS 

BY 

WOLFGANG WERTZ (WIEN) 

Abstract. Invariantly optimal estimators of functions, with res- 
pect to mean integrated squared etror as a risk, are considered. 
Thcir Bayes properties are investigated and, for several examples, 
explicit solutions are computed. 

1. INTRODUCTION 

The purpose of this paper is to construct nonparametric estimators, 
satisfying optimality conditions with respect to a nonparametric risk, namely 
the mean integrated squared error (MISE). Actually, it is possible to carry 
through the computations only for parametric models. On the other hand, 
this enables us to compare estimators corresponding to a nonparametric 
criterion with estimators which are obtained by estimating the unkown 
parameters. 

Without further restrictions on the estimators under consideration it is 
impossible to find estimators which are optimal in the sense that they 
minimize uniformly the risk. 

The assumption of expectation-unbiasedness is too strong for nonpara- 
metric situations, in larger models even void. Hence we restrict oursehes to 
the study of invariant estimators. 

In [lo] we have derived invariantly optimal estimators (IOE's) of func- 
tions, based on mean integrated p-th power loss ( p  > 1); the case p = 1 with 
several examples is treated in [llj. For p = 2, in [lo] further examples are 
included, concerning density estimation on the real line, on the circle and on 
the sphere; moreover, estimation of the density, of the density of order 
statistics, etc. is considered there. The IOE of the reliability function in the 
exponential case is investigated in [3], including its asymptotic deficiency 
compared with other common types of estimators, in a local manner, 
however. 
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Restriction to invariant estimators can be justified for several reasons in 
our situation: 

(i) For many applications, invariance is a desirable property of 
estimators. 

(ii) Under reasonable conditions, estimators constructed by substituting 
estimators of the parameter turn out to be invariant. 

To be more specific, we give the following example: let us estimate the 
density, which is assumed to be specified up to location and scale, say 

Estimating ( by the empirical mean X and a by the empirical standard 
deviation s yields 

as a density estimate which is invariant in the sense below. 
(iii) Although IOE's are not strict in general (a situation which is usually 

met in nonparametric curve estimation), there are examples in which the IOE 
has uniformly smaller risk than the usually strict "parametric estimator" (see 
e.g. [8], [23). It is not yet known whether this is the typical situation. In 
some cases an expectation-unbiased estimator exists, but it is inferior to the 
IOE. All of this holds, e.g., if a normal density with unknown location is to 
be estimated. I 

(iv) If the model has certain invariance properties, for every estimator f 
there exists an invariant estimator& such that the maximum risk of& is not 
greater than the maximum risk of f In particular, the existence of an 
invariant minimax estimator can be proved (see [4] and [93 .  

In the following we give some more examples for the case p = 2. For 
many problems (in particular estimating distribution functions, reliability 
functions, hazard rate functions and so on), an essential integrability assump- 
tion of [lo] (the square integrability of the function Df, below, in the case 
treated here) fails to hold. A natural way to avcsid such difficulties in case of 
sample space 9 is to truncate the function to be estimated at two quantiles; 
this is carried out in 1441. From a practical point of view, the truncation at 
quantiles is reasonable under many circumstances, say, in a purely nonpara- 
metric framework, when nothing is assumed about the analytic form of the 
density (e.g. exponentially or algebraically decreasing tails), no reliable in- 
formation is available about the behaviour of the distribution outside an 
interval between two appropriate quantiles. 
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In chapter 3 the IOE is shown to be a generalized Bayes estimator (GBE) 
in the sense of Sacks [5 1. 

2 PRELIMINARIES 

Let G be a locally compact group, H a closed subgroup, X :  = G/H the 
! corresponding homogeneous space, 2" its D-algebra of Bore1 sets, v a right 

Haar measure on G and p a nontrivial, relatively invariant, a-finite measure 
on X, i.e. 

with a function X :  G 4 (0, m) independent of A. 
Let f be a -probability density, P := fp  the corresponding probability 

measure, f, the probability density x (g- f (g- ' x)  and P, : =& p. For 
every g GG let Df,: X + .@? be a p-squareintegrable function with 

for every g E G and x E 9" with a function q: G + 9 \ (0). 
The set of all ip-invariant estimators f of DfgJ i.e. 

, 

I J E  n L,(x~+', P+I, P ~ P ) ,  
ff EG 

1 with 
I 

A r\ AF(xn, X) = cp(g)f(gxn, gx), 
x d  X"Exm 9 4  

*ill be denoted by Sz(q) .  
I Let 

~ ( x  g) = ~ ( f ,  Pg):= jLf(xn, 4-o/,(rl124(x)dG(x3 
P X  

serve as the risk of f at g. 
I The formula 

for every ~ E S ~ ( ~ ) ,  where e is the unit of the group, is proved in [lo], and 
further the following is stated: 

8 THEOREM. Let 
n 

t ~ ~ ~ ~ ( g ) ~ " + ~ ( g - ' )  nf (g-l~i) 
I i= f 
\ be v -integrable for Pa-almost all x" = (x, , . . . , x,,). Then 
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defines the cp-invariantly optimal estimator of Df,. 
I 

3. THE IOE AS A GEIWJRAUZED BAYES ESTIhL4mR 

The estimation problem treated here can also be regarded as a purely 
parametric problem, namely estimating D&(@ for fued xcX. Just as it is 

I I 

interkstidg to coniider parametric methods krom a nonparametric point of 
view, it can be informative to regard (2) as a pointwise estimator of Df,(x) 
and to apply parametric criteria. 

Let be a a-finite measure on G with Radon-Nikodym density p with 
I 

I respect to v and g r t d ( g )  a given function from G to $2 which is to be 
1 estimated. The (generalized) Bayes risk B(d) of an estimator 

I d~ gdi n L ~ ~ x ~ ~  q 
of d @ )  equals 

where 

We make the following assumptions: 

(3a) f (xy : = If (xnl g) p (g) dv (g) fulfils 0 < f (xn) c m for P-almost all xn; 
G 

(3b) g w d ( g )  f (xn[g) p (g) is v-integrable for Pn-almost all x"; 

(3c) d€LZ(G, PI. 
Then q (81 x") = f (xnl g) p (g)fi (JP) is defined for P"-almost every x", and 

g I+ q (g 1 xn) is a probability density. 
The mapping 

h++T(h)  = (xRw G Jh(xn, dmq(g~xn)dv(g)), 
I 

I defined on L2 (Xu x G, f (xnlg)p(g) dpn@v(xn, 8)). is easily seen to be a projec- 
i 
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tion to the subspace of functions depending only on the variable xm. Hence 
T(d) minimizes B; T(4 has the form 

Since fi  is a-finite, there is an #ascending sequence (Ck) of sets with 0 
I 

< P(Ck) < a, C,  t G. A sequence of probability measures p, can be defined 
e.g. by 

- (B) : = I,, (g) P k?) dv (g)/fl tck). 

Let ak be the $ayes estimator of d with a priori distribution f l k ;  then, by 
the Lebesgue theorem, 

G 

j convergei to T(d)(x")m almost all 9. Hence T(d) is a generalized Bayes 
estimator (see [5J and cf. also [6]) .  

Application of these considerations to the case d(g) = cp(g-') Df ( 8 - I  x), 
p @) = q2 (g) x (g - l) proves (2) to be a generalized Bayes estimator. 

I Vsing a result /by Strasser [7], generalizipg a theorem of De Groot and 
Rao [I], formula (2) can also be proved to be a generalized Bayes estimator 
in the nonparametric sense, under mild restrictions. 

Let A be a probability measure on G, and let g~S(Df,)'dp be A- 
integrable, further D& 3 0. In an obvious manner, il induces an a priori 
distribution on {P,:  g E G). We assume that L, (X, p) has a countable base 
and 

(4) (x, g)++~)(s-~)Df (g- lx) 
is p@A-integrable. . 

We take A = L, (X,  p) as a decision space and L(r, P,) = j(t-D&)2dp as 
a loss function. Then 

is the Bayes risk of the estimator f 
Denote by &(t ,  P,) the directional derivative of t H L(t, P,) at t~ A in 

direction s E A. Writing ij(-I-) for the a posteriori density, it follows from 
theorem 4.5 of 171 that 

' (5 )  j rS ( f ( x n ,  . ), P,) f j (g(xn)  dv (g) 2 0 a.e. for every s E A 
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is a sufficient condition for f to be a Bayes estimator. In our case, 

and (5) is equivalent to 

(6) [ f (xn,  -Dfg(xll s(x1 d r ( x )  Y(sl xwv  (s) 8 0 a.e. 
G X 

Take the o-finite measure j and the probability measures /Ik as above. 
Then n 

D& ( 4  x n ( g  '1 n f (g-' xi) dB, (g) 
G i =  1 h(xn, X I  = 

jxn(e-l) f i f ( g - l  x i )d~k(d  
G i = l  

I 
I obviously fulfils (5) and hence is a Bayes estimator with a priori distribution 
I 

J, = p,; further, I 

I ,  L 

Let, for k = 0, 1, 2, . . . , 

and n 

BkIx"):= ck 1 i!"(g-l) nf (g-'xi)dB@), 
i= 1 

where Co : = G. Obviously, A, 7 Ao, Bk f Bo and f, = AJBk. 
Now, since Df, 2 0, 

1 

Because f0(xn, . )EL*(X,  p), and BO/B,  is independent of x, Lebesgue's 
theorem can be applied, yielding 

for almost every x". 
This proves fo to be a generalized Bayes estimator in the global sense. 
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4. EXAMPLES 

The first examples refer to the case of distributions defined on the real 
line: X .G 9 and p is the Lebesgue measure. 

(a) Location parameter b unknown. We take G = 9, the additive group, 
hence x E I. The solution is 

(b) Scale parameter a  > 0 unknown. We take the multiplicative group B+, 
~ ( a j  - a. We have 

n 

1 Df (./a) 9 (a) a - 2, n'f (xila) da 
(7b) 6 (x", X) = m, 

i =  1 
rl 

1 q2 (a) a-("' n f (xi/a) da 
(0 ,  m) i =  1 

An examination of the proofs in [lo] shows that (7b) is also the IOE in 
the case X = .9?, G = 9,. 

(c) Both location and scale parameters are unknown. We take G as the , 
group of all mappings 

and H as the subgroup of mappings x ~ a x ;  then ~ ( a ,  b) = a. We have 

(7c) jb (x", x) = " 'O.") I .p2 (a, b) fi f (q) dadb 
i = l  

As remarked in chapter 1, frequently the square integrability of Df fails 
to hold. To overcome this difficulty, one can truncate Df, at given quantiles 
x:~) and xj8) of the distribution P, (0 ,< a < P ,< 1) .  

Let us denote by B the truncation of D, namely 

In each of the cases (a)-(c), a problem invariant under G remains 
invariant under truncation, with the same function cp. 
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We consider case (c). Writing xu = xi1.'' and xa = x[j'"', g = (a, b), we 
have xflb) = ax, + b, and 

x - a  
~ ? a , b ) b )  = db, bI-lP?f (T) 

follows. Hence formulae (7a) to (7c) can be applied directly. 
The calculations leading to the following solutiolis are omitted here (for 

sake of completeness, results of [lo] are also included). 

A. Exponential distribution. Density: j (x)  = e l x  l(O,m) (x). 

. ~st imat ion  of density: Df =f. 
(i) a = 1, b unknown. 

(ii) b = 0, a > 0 unknown. 

(iii) a > 0, b unknown. 

I - (n- 1 )  
- I  [l+ x-  X(I) if x 2 x(,,. 

n(Z-x( l , )  

Estimation of reliability function truncated at quantizes: 

xu = -log(l-a),  xr = -log(l-/I) ( 0 < u  </?< 1): 

(i) a = 1, b unknown. 
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(ii) b = 0, ca > 0 unknown. 

, (r(k, r) = ie-'rk-'dt  denotes the incomplete gamma-function). 
0 

Fig. 1. Estimate of reliability function truncated at G, 5, n - 5,  x(,, = 0.2. 
rf - reliability function 

Fig. 2 Estimate of reliability function truncated at q, xa. n = 5,  R = 1. 
rf - reliability function 

~ s r i k t i o n  of hazard rate truncated at puantiles: Df = I(xa,q,. 
a = 1, b unknown. 

[(I -*--(1 -fly] ax-x(l)) if x < x(l,+xa, 
n " ( x - ~ ( I ) )  1-(1-jl) e if X { I ) + X ,  6 x < x ( I , + x ~ ,  

if x 2 x(,,+x,. 
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. . Fig. 3. n = 5, x ,~ ,  = 0.2. 

hrt - hazard rate truncated at xh, xa; e - estimates; d - density 

B. laplace distribution. Density: f (x) = 4 e-IXI. 

Estimation of density: 
b = 0, a > 0 unknown. 

n 

Fig. 4. n = 5, 1 Ix,t = 5. 
i= 1 

. . 
d - density; de - density estimate 

C. Uniform distribution. Density: f = I(,,,). 
Estimation of density: 
(i) Q = 1, b unknown (see Fig. 5). 

( 0  otherwise. 
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(ii) b = 0, a > 0 unknown (See Fig. 6). 

0 if x < 0, 

n-1  
if 0 4  x<x(,,), 

-- if x 3 xtm). 
n xn 

(iii) a > Oy b unknown. 

I I n-2 1 
if X( , )  < X < X ( , ) ,  

X ( n l - X ( l )  

?I-2 Cx(n)  - ~ ( l ) l ~ - ~  if x 2 x(,, . 
a [x - x( , , ln-  l 

I 

I Estimation of distribution fisnction. 
I 

I F I X )  = x 4 o m l ) ( x ) +  I [ l , m , ( x ) .  

I 

I 
(i) a = 1, b unknown. F truncated at b + 1 : Df = F 4 -  ,,,). 

( 0  otherwise. 

t 

Fig. 5. n = 5 ,  x(,, =0.1 ,  x (n )=0 .8 .  
d - density; de - density estimate; dft - distribution function truncated at b+ 1 = I ;  

edf - estimate of distribution function 
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(ii) b = 0, Q > 0 unknown. F truncated at ac (c > 1): Df = FB(, ,,,,,. 

1 x;L,t1 

l l - ~ ~  
if XI,, < x < cx,,, 

Fig. 6. n = 5, x,,, = 0.75. 
d - density; de - density estimate; dft 1 distribution function truncated; edf - estimates of 

distribution function 

The following examples are direct consequences of formula (2). 

I). k-dimensional wrmal distribution. X = G = @, density f (x) 
- - (27~)-~/' ~ - X ' X / ~  '(XE #), p = v = Ak (k-dimensional Lebesgue measure). 

The class of considered distribution consists of the normal ones with 
unknown vector of expectations and unit covariance matrix, with density 

fa (3[) = (2,$k12 e-(x-b)'(x-b)lz. 

1 
The IOE is a normal density with vector of expectations X = - 1 xi and 

n i ,  
n + f  

covariance matrix - I: 
n 

n 
J, (x", X )  = (27r ?)- exp [- - 2(n+ 1) 
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E. Discrete uniform distribution. We take X =.G = 3 (additive group of 
integers), p = v = counting measure on 3: 

Let k be fixed and f (x) = l /k if X E  (1, .. ., k).  We estimate Df =j; i.e. the 
probabilities of the discrete distribution. 

1 0  otherwise. 

Fig. 7. k = 10, n = 5 ;  x(,, = 2, x,,) =8.  

p - probabilities; e - estimates 

At first sight, some of the solutions look rather strange, and they 
obviously differ from the usual parametric methods. The fact stems from the 
use of the nonparametric type of loss. But in fact, our risk R ( L  g), the mean 
integrated square error (MISE), is used in purely nonparametric situations 
without any objection. Our results can be used to define a notion of 
efficiency of nonparametric curve estimators (e.g. defined by kernel methods, 
modified histograms, nearest neighbour rules) by comparing their risk with 
the risk of the IOE in particular parametric models. 

Generally speaking, use of a loss function defined by an integral leads to 
smooth estimates (cf. the examples above). Uncertainty relative to location 
smears the estimate over the real line, even if the support of Df is a proper 
subset of W (see e.g. the estimates of the exponential density with known 
scale parameter). If the scale parameter is unknown, usually only finitely 
many moments of the density estimate exist, even in case as uniform, 
exponential, normal (see ClOj) and Laplace distributions (see Figs. 4 and 6). 
This phenomenon is closely connected with the remarks in chapter 1. 
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